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Abstract  16 

Background: CGM-based tracking is expanding in non-diabetic groups to meet wellness and 17 

preventive care needs. However, data is limited on short-term outcomes for glycemic control, 18 

insulin resistance and correlation of algorithm-derived score to known glycemic metrics in 19 

controlled settings, making benchmarking difficult. This is especially true for the high-risk 20 

Indian/South Asian demographic. 21 

Objectives: To examine changes resulting from the Ultrahuman (UH) M1 CGM application- 22 

with concomitant FitBit tracker use in patterns of glucose variability (GV). Evaluate GV 23 

correlations with stress, sleep duration, inflammation, and activity. Examine correlations 24 

between UH metabolic score (UH-MS) and biomarkers of dysglycemia and insulin 25 

resistance. 26 
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Methods: Participants (N=53 non-diabetic, 52 pre-diabetic) wore the UH-M1 CGM and 27 

FitBit tracker for a 14-day period. HsCRP, cortisol, OGTT, HbA1c, HOMA-IR levels, and 28 

standard blood profile measurements were obtained.  29 

Results: Mean glucose levels, restricted time in range (70-110mg/dL), and GV metrics were 30 

significantly different between non- and pre-diabetics and displayed improvements with M1 31 

use.  Strong correlations of specific GV metrics with inflammation were found in pre-32 

diabetics, with modest correlation between sleep and activity in non-diabetics. Elevated 33 

HOMA-IR, HbA1c, and OGTT were linked with J-index and high blood glucose index in 34 

pre-diabetics, and low blood glucose index in non-diabetics. UH-MS displayed a strong 35 

inverse relationship with insulin resistance and glucose dysregulation.  36 

Conclusions: The study presents the first guidance values of glycemic indices of non- and 37 

pre-diabetic Indians and supports the notion that short-duration CGM use with algorithm 38 

scores can affect positive changes in glucose management. 39 

Clinical Trials Registry - India identifier - CTRI/2022/08/044808 40 

Keywords: Metabolism, Continuous glucose monitoring, Wearables, Digital health, Insulin 41 

resistance, Glycemic control, prediabetes, non-diabetics, Metabolic Score, Inflammation. 42 
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Introduction 45 

Type 2 diabetes mellitus (T2DM) and its associated metabolic conditions are known 46 

global pandemics with an estimated prevalence of 422 million.1 Similarly, the burden of 47 

prediabetes (intermediate hyperglycemia) is increasing at an aggressive rate with a 48 

projected estimate of 8.0 % (454 million) by 2030 and 8.6% (548 million) by 2045.1,2 49 

Prediabetes is defined by glycemic variables that are intermediate between healthy and 50 

diabetic ranges. Hyperglycemia is known to upregulate chronic inflammatory markers, 51 

and cellular stress such as increased reactive oxygen species (ROS) generation which 52 

leads to a condition termed insulin resistance, wherein cells become insensitive to insulin 53 

and have lower activity-dependent glucose uptake.3, 4 These physiological and cellular 54 

changes propel the individual towards the diabetic “state”, and it is estimated that 55 

approximately 5-10% of pre-diabetics convert to diabetics per year worldwide with a 56 

large variation depending on diagnostic criteria and geography5.  57 

Interestingly, a considerable proportion of pre-diabetic patients can revert to 58 

normoglycemia if proper corrective measures are implemented including consistent 59 

tracking of blood glucose levels and complementing lifestyle modification.6 The widely 60 

accepted American Diabetes Association (ADA) guidelines, therefore, strongly 61 

emphasize the adoption of these non-pharmacological management and lifestyle 62 

modification techniques as soon as a person is diagnosed as a pre-diabetic.7 The extension 63 

of these health management measures has reached the wellness sector in recent times, 64 

attesting to their real-world effectiveness.  65 

Several risk-scoring diagnostics and biochemical tests (random blood glucose, fasting 66 

blood glucose [FBG], 75g-oral glucose tolerance test [OGTT], glycated hemoglobin 67 

[HbA1c]) usually in combination, are widely used for pre-diabetes and diabetes 68 

surveillance.8, 9 In recent times, the practice of continuous glucose monitoring (CGM) 69 
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using subcutaneous sensors has revolutionized the concept of real-time glucose tracking 70 

and offered dependable solutions for screening both diabetic and pre-diabetic 71 

individuals.10, 11 CGM-mediated real-time tracking of glycemic variables improves the 72 

chances of detecting glycemic deviations in basal, night-time, and postprandial 73 

conditions, and derive correlations between dietary- and exercise-related changes in 74 

lifestyle and glucose tolerance. These advantages have accelerated the adoption of CGMs 75 

among high-performance athletes, fitness-oriented healthy individuals, and suspected pre-76 

diabetics.12,13 The challenge remains in developing easy-to-understand metrics and user 77 

interfaces that promote better adoption and compliance, and enhance the predictive 78 

component of interpreted glycemic trends by evidence-based correlation.  79 

The Ultrahuman (UH) M1 platform consists of a CGM sensor, application (app)-based 80 

analytics, and timely fitness advice provided by certified experts. 15 The captured glucose 81 

data is used to generate the daily user-specific metabolic score (MS), which is a holistic 82 

snapshot of a user’s daily glucose regulation patterns (see Methods). 16 The app also 83 

prompts lifestyle changes by providing actionable nudges and alerts to the user (e.g., a 84 

prompt to move if the glucose level rises above the target range).  85 

In South Asia, especially India, CGMs are predominantly used for diabetes evaluation.17 86 

While wellness and lifestyle monitoring apps enjoy reasonable following, the data include 87 

user-uploaded, non-biomarker information such as food logs, step counts, sleep duration, 88 

etc., which provide a general overview of health but cannot be substantially correlated to 89 

clinical biomarkers. This gap in biomarker-based tracking is especially crucial for India 90 

which is increasingly being known as the “Diabetic capital of the world”.18 In a recently 91 

published, nationwide survey, the overall prevalence of diabetes was calculated to be 92 

11.4%, and for prediabetes 15.3%.19 More concerning was that individuals with 93 

intermediate fasting glucose (IFG, 100-125mg/dL) had tripled since the last survey in 94 
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2017.20 Alongside are the findings of the CUREs longitudinal study, which reports that 95 

58.9% of pre-diabetic Indians convert to diabetes over a 10-year period.21 Taken together, 96 

there is substantial evidence of Indian and South Asians having a high susceptibility to 97 

metabolic syndrome and a silent epidemic is most likely underway in this population.  98 

Although the scope of remote monitoring and use of apps has improved after the COVID 99 

pandemic, the lack of population-scale, curated digital data for evidence-based profiling 100 

of health status creates a gap in usable glycemic benchmarks for Indian and South Asian 101 

profiles. This results in a dearth of clinically relevant data to differentiate between the 102 

healthy and at-risk populations based on CGM findings, impacting the design of point-of-103 

care, customized lifestyle management interventions, which is the main premise of non-104 

pharmacological management for diabetes prevention prescribed by ADA and other 105 

organizations.  106 

Therefore, to address this gap, we undertook a controlled, multi-arm observational study 107 

to simultaneously derive glycemic variability (GV) data in non-diabetics (healthy) and 108 

pre-diabetics, correlate these with established markers of inflammation, stress, and 109 

lifestyle indicators of sleep, step count, and heart rate; examine the relationship between 110 

these biomarkers and MS, and finally obtain profiles of glucose tolerance following a 14-111 

day use of the UH-M1 platform for both groups.   112 
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Methods 113 

Study design and participants 114 

This prospective two-arm parallel-group observational study was conducted across multiple 115 

urban diabetes clinics and hospitals (N=9) across the states of Delhi, Karnataka, Telangana, 116 

Gujarat, and Tamil Nadu within India. Following this, participants were recruited in an 117 

enrolment period that spanned from September 2022 to December 2022.  118 

The overarching aim of this study was to assess CGM-derived GV indices and their 119 

correlation with clinical biomarkers in healthy and pre-diabetic individuals to generate 120 

reference data on metabolic health for this age and geographic group. The dataset would also 121 

be used to a) investigate MS correlation with well-established clinical biomarkers of stress, 122 

sleep, inflammation, insulin resistance, and glucose intolerance, and b) form the basis of 123 

updating MS. MS is a proprietary algorithmic output that has been developed by Ultrahuman 124 

Pvt Ltd., for the purpose of metabolic fitness tracking and management.16   125 

Participants (males and females) were included in the study if they were between 25-50 years 126 

of age (both inclusive) and had body mass index (BMI) within 20 – 30 kg/m2 range. They 127 

were required to comply with the advised use of CGM (Abbott FreeStyle Libre22, activity 128 

tracker (Fitbit Inspire 2), and the UH Application. The exclusion criteria consisted of a 129 

history of acute or subacute infection (within the last three months) and chronic illnesses 130 

(including T1 (Type 1)- and T2DM, and cardiac disease), anemia, endocrine disorders, and 131 

autoimmune conditions. Individuals taking antimicrobials, including antibiotics, antivirals, 132 

and antifungals were also ineligible for participation. 133 

The study was conducted in compliance with the International Conference of 134 

Harmonization/Good Clinical Practice guidelines (ICH-GCP) and the Declaration of 135 

Helsinki. Participants voluntarily signed a written informed consent form prior to 136 

participation and were allowed to withdraw from the study at any time. The study protocol 137 
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was reviewed and approved by the ethics committees of all the participating centers. Ethics 138 

clearance was secured individually at each site involving either the hospital’s ethics 139 

committee or an independently instituted ethics committee for smaller clinics. The details of 140 

the trial site, ethics committee, and date of approval are provided in a tabular format in 141 

Supplementary Table 7. This study is registered in the Clinical Trials Registry - India 142 

CTRI/2022/08/044808. 143 

 144 

Study procedure 145 

Random sampling method was used to recruit eligible subjects. During the screening visit 146 

(between -3 to -1 day from the baseline [inclusion] visit), a detailed medical, medication-147 

related, and family history was acquired. Demographic data, anthropometric measurements, 148 

and vital signs were recorded and blood samples were obtained to estimate FBG, and 149 

glycated HbA1c levels. Potential participants also underwent an OGTT test. Based on the 150 

results obtained, the subjects were then screened for eligibility and those selected were 151 

divided into two groups: healthy/non-diabetic (FBG: 79-99 mg/dl; HbA1c: 4.0-5.6 % and 2-152 

hour plasma glucose during 75-g OGTT below 140 mg/dL) and pre-diabetics (FBG: 100-125 153 

mg/dl; HbA1c: 5.7-6.4 % and 2-hour plasma glucose during 75-g OGTT: 140–199 mg/dL) 154 

based on the ADA criteria of Screening and Diagnostic Tests for Prediabetes.7 155 

 156 

At day 0 (baseline visit), the eligibility was reconfirmed by repeating the OGTT and a general 157 

physical examination. Details regarding the CGM and UH-M1 application were also 158 

explained to the participants during this visit. The app was installed on the smartphone of the 159 

subject, and he/she was trained on the features of the app and its use. Once the subject was 160 

familiar with the app, the CGM was attached to the upper arm (preferably left) and activated 161 

followed by the initializing of the app. The participants were asked to follow a regular daily 162 
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routine and log (food information) the same on the UH-M1 app daily. He/she was instructed 163 

to contact the investigator or the team in case of any difficulties while using the app.  164 

Adverse reactions (if any) were planned to be coded using the MedDRA central coding 165 

dictionary, version 25. All medications were to be coded using the WHO-DD, September 1, 166 

2019, or later. Preferred ATC coding was planned to be applied to encode medications use.       167 

A second follow-up visit was arranged between days 5-7 of the trial period. The tests 168 

conducted on this day included an OGTT and a general physical examination. This OGTT 169 

visit was postponed in subjects with any concomitant indigestion, gastric irritation, or 170 

vomiting. Data collection ended on day 14 of CGM and app use, followed by a final, physical 171 

examination and laboratory investigations. In the case of sensor failure (sensor stopped 172 

reporting values or widely fluctuating measurements) the endpoint occurred earlier. This 173 

session was termed as the “End of study” (EOS) visit. In addition, the participants also 174 

completed a satisfaction feedback form and a Pittsburgh Sleep Quality Index (PSQI) sleep 175 

self-assessment questionnaire during this visit. 23 Subjects experiencing any temporary health 176 

issues, technical difficulties in using CGM, CGM data collection failure, or non-compliance 177 

with the app were discontinued/withdrawn from the study. 178 

 179 

Study endpoints:  180 

The primary endpoints included CGM-based glucose indices over 14 days period such as the 181 

mean glucose levels as described by a 24-hour profile during 2 weeks; time in glucose ranges 182 

(TIR: 70-180 mg/dL for “acceptable” diabetes glucose range; TAR: time-above-range >180 183 

mg/dL and TBR: time-below-range <70 mg); GV as measured by the standard deviation (SD) 184 

and the coefficient of variation (CV); and the mean amplitude of glycaemic excursions 185 

(MAGE), defined as the arithmetic mean of the amplitude of glucose excursions that are 186 

greater than the standard deviation of the glucose values. In addition, for the 187 
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preventive/wellness use case, the UH-CGM application employs a tighter target range of 70-188 

110mg/dL; and hence it was also computed for the healthy and pre-diabetic groups post-facto 189 

after study completion. Daily MS scores were generated for each participant across the study 190 

period which were then used for correlation analyses (representative snapshot of MS display 191 

on the app interface is depicted in Supplementary Figure S1).  192 

The secondary endpoints included changes in FBG levels from day 0 -15, the correlation 193 

between GV indices and sleep duration, step count, heart rate (acquired from fitness tracker 194 

use), and blood-based biomarkers such as stress (serum cortisol), inflammation (serum Hs-C 195 

reactive protein (Hs-CRP)). Additional samples to catalog gut microbiome, and urine 196 

metabolites were also acquired for future analyses and are not within the scope of this 197 

manuscript.  198 

 199 

Statistical analysis:  200 

Data were analyzed between day 2-14 of CGM use to rule out differences in sensor 201 

application across participants and known variability of sensor output in the first 24h of 202 

sensor activation24. Data were analyzed using the R Software version 4.2.2.25 Intent-to-Treat 203 

(ITT) set (included all subjects who were enrolled in the study) and Per Protocol (PP) set 204 

(included all subjects who completed the study procedures as per the planned protocol) were 205 

defined for analyzing the data. Normality tests were performed to select the appropriate test 206 

and the outliers were removed following +3SD for normal distributions, and beyond three 207 

times lowest and highest interquartile range (IQR) for non-parametric data. Categorical data 208 

were presented as frequencies and proportions and compared using the Chi-square test with 209 

Yates correction or Fischer's exact t-test, as appropriate. Continuous data were presented as 210 

mean with SD or median with interquartile range and were compared using unpaired t-test, or 211 

Mann-Whitney U test, as appropriate. In addition to summary statistics, the differences in the 212 
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primary endpoint results between non-diabetic and pre-diabetic subjects’ groups were 213 

compared using statistical models. Least-squares means (LSM), visit differences in LSM, and 214 

the corresponding 95% confidence intervals (CIs) for the subject group differences were 215 

estimated using the model. Receiver operating characteristic (ROC) curve analysis was used 216 

to assess the predictive value of CGM-based GV indices in prediabetes. For the secondary 217 

endpoints, Pearson correlation or Spearman coefficients were calculated and presented in 218 

graph and tabular outputs to assess the association between the clinical biomarkers, and 219 

interstitial glucose. Linear models were also used to explore these associations. All statistical 220 

tests were conducted at a 2-sided alpha level of 0.05 and a 2-sided 95% CI was provided. 221 

  222 
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Results 223 

Patient disposition and trends 224 

A total of 151 subjects were screened of which 105 met all the inclusion criteria and 225 

participated in the study (Figure 1). All the 105 enrolled participants completed the study 226 

and there were no drop-outs. Both the healthy (n=53) and pre-diabetic (n=52) groups 227 

were well-matched with respect to baseline demographics and clinical characteristics 228 

(Supplementary Table S1). The mean BMI was slightly higher in healthy, but there was 229 

no significant difference between the groups. Physical examination and medical history 230 

were well within the inclusion parameters. Although there was a higher prevalence of 231 

familial diabetes in the pre-diabetic cohort and a higher rate of familial hypertension in 232 

the non-diabetic group, the differences were not statistically supported (data not shown). 233 

No serious adverse events were reported during the study. 234 

Primary outcomes: Changes in mean blood glucose and TIRs, across non-diabetics and pre-235 

diabetics over time  236 

Over the years, a wealth of studies have contributed to the generation of a set of CGM-237 

derived glycemic indices, which have been used in a variety of ways to assess metabolic 238 

health.26 Normal reference ranges of some of these markers are available in small studies 239 

with diverse ethnic representation; however, information on South Asians derived from 240 

controlled studies is scarce.27 241 

In our cohort, we observed a significant difference in daily the mean glucose levels 242 

detected by UH-M1 between the healthy (Mean + SD: 102.4±11.78 mg/dL) and pre-243 

diabetic (Mean + SD: 112.2 ±14.25 mg/dL) individuals and this difference extended over 244 

the entire duration of 14 days (Two-way ANOVA, main effect, cohort: p<0.0001; 245 

interaction cohort x day: p<0.01; Figure 2A). It is noteworthy that there was a significant 246 

downward trend over time in mean glucose levels in both groups (main effect, day: 247 
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p<0.0001). The mean percentage of CGM-based TIR between day 2 to day 14 was better 248 

in healthy individuals (95.3 % ±10.43) than in the pre-diabetic group (94.6 % ±9.4), 249 

however, there was no statistically significant difference between the two groups (Two-250 

way ANOVA, main effect, cohort: p=0.91; main effect, day: p=0.91, Figure 2B). 251 

Furthermore, TIR adherence tapered over the period of 14 days, especially towards the 252 

end of the study in healthy and pre-diabetics (Figure 2B). The UH-M1 application uses a 253 

relatively tighter target range of 70-110mg/dL glucose (as compared to the normal TIR of 254 

72-180 mg/dL). Post-facto calculation for this restricted TIR (rTIR), revealed extremely 255 

significant differences between the groups and across days (Two-way ANOVA, main 256 

effect, cohort: p<0.0001; main effect, day: p<0.0001, interaction cohort x day: p<0. 257 

0.00001, Supplementary Figure S2). Pre-diabetics consistently had lower dwell times in 258 

the optimal rTIR range as compared to non-diabetics, and both groups appeared to reach 259 

comparable rTIR values by the end of the study period. For TAR (>180 mg/dL glucose), 260 

there was a statistically significant difference (Two- way ANOVA, main effect, cohort: 261 

p<0.01; main effect, day, ns, interaction cohort x day: ns) between pre-diabetics (mean 262 

1.4% ±4.15) and healthy individuals (mean 0.1% ±0.72); and the healthy participants had 263 

negligible hyperglycemic events (Figure 2C). Interestingly, a clear downward trend was 264 

detected in pre-diabetics over time (Figure 2C). There were no distinct trends in TBR 265 

identifying hypoglycemic events (< 72 mg/dL glucose), in healthy (mean 1.6%+6.43) and 266 

pre-diabetics (mean 1.0%+ 5.99) with a higher level of such events in both groups 267 

towards the end of the observation period (Figure 2D). 268 

 269 

Primary outcomes: Changes in glycemic variability indices, across non-diabetics and pre-270 

diabetics over time  271 
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Next, we measured a variety of CGM-derived indices of cumulative glycemic variability 272 

in an effort to identify which of the metrics efficiently differentiated between non-273 

diabetics and pre-diabetics and captured changes in trends due to app-based tracking.   274 

Results revealed that GV, as measured by standard deviation (GV by SD), captured 275 

significant across-group differences in the analyses period (19.4±6.51 pre-diabetics vs 276 

16.2±4.85 non-diabetics, Two-way ANOVA, main effect, cohort: p<0.001; main effect, 277 

day: p<0.001, interaction cohort x day: ns, Figure 2E). In comparison, GV as measured 278 

by the coefficient of variation (GV by CV), had more overlaps between groups, with 279 

milder but significantly different values (17.3± 5.67 pre-diabetics vs 15.8±4.57 non-280 

diabetics, Two-way ANOVA, main effect, cohort: p<0.05; main effect, day: p<0.05, 281 

interaction cohort x day: ns; Figure 2F). Both GV by SD and GV by CV indices 282 

displayed a gradual decrease over the trial period in both groups.  283 

Mean amplitude of glycaemic excursions (MAGE) values showed across-day 284 

improvements, but the level of decrease was not as significant as GV, and there was no 285 

distinction between healthy (30.7±15.99) and pre-diabetic (32.9±18.19) individuals (Two-286 

way ANOVA, main effect, cohort: p=0.083; main effect, day: p<0.0001, interaction 287 

cohort x day: ns; Figure 2G).  288 

Finally, FBG levels were monitored at the beginning and end of the study to provide an 289 

external anchor point for CGM-derived values. FBG increased modestly from 90.5±7.90 290 

mg/dl at baseline to 92.3±7.28 mg/dl at day 15 in healthy individuals while it decreased 291 

from 99.1±10.11 mg/dl at baseline to 96.3±9.84 mg/dl in pre-diabetics (Figure 2H). 292 

Given the convergent trend of FBG values, there were no significant differences between 293 

groups or across time in each group (ANCOVA model with treatment as fixed effect and 294 

FBS values at baseline visit as covariate, p=0.81). 295 
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Secondary outcomes: Correlation of CGM-derived glycemic metrics with biomarkers 296 

associated with metabolic syndrome  297 

A wealth of evidence supports a strong relationship between stress-related markers such 298 

as inflammation, disturbed sleep, reduced physical exercise, and impaired cortisol and the 299 

development of prodromal conditions like prediabetes. 28-30 Several data points are also 300 

available for the Indian / South Asian demographic group as well.31 However, these 301 

reports do not utilize CGM-derived metrics. To address this gap, we carried out a 302 

correlation analysis for sleep, stress, inflammation, heart rate, and step count in our cohort 303 

with the following seven established glycemic indices: J-index, high blood glucose index 304 

(HBGI), low blood glucose index (LBGI), average daily risk range (ADRR), MAGE, 305 

mean of daily differences (MODD) and continuous overall net glycemic action 306 

(CONGA).32 Here we highlight the main results with all data presented in 307 

Supplementary Tables S2-S5.  308 

The strongest correlation was found between GV indices and inflammation as measured 309 

by serum Hs-CRP levels (Supplementary Table 2, Figure 3 A-C). The J index, HBGI, 310 

and LBGI revealed a strong positive correlation in pre-diabetics, but not in non-diabetic 311 

individuals.  Surprisingly, there was little correlation with stress as measured by serum 312 

cortisol levels and any of the GV indices in either group (Supplementary Table S3). 313 

This may be because GV was calculated over 2-14 days whereas cortisol levels were 314 

measured on day 0 and day 15. Sleep duration was negatively correlated with HBGI in 315 

non-diabetic but not pre-diabetic individuals (Supplementary Table S4, Figure 3D). 316 

Interestingly, CONGA was negatively correlated with sleep data in both groups, the 317 

significance of which is as yet unclear.  318 

Fitness tracker-derived motility and sleep metrics showed weak but significant 319 

correlations. There was a significant positive correlation between ADRR, MODD, and 320 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.20.23295642doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.20.23295642
http://creativecommons.org/licenses/by-nc/4.0/


15 

 

step count in non-diabetics (Supplementary Table S5, Figure 3E), while heart rate was 321 

positively correlated with ADRR and MAGE in pre-diabetics (Supplementary Table 5, 322 

Figure 3F).   323 

Correlations with CGM-derived GV indices with HOMA-IR, OGTT, and HbA1c  324 

While CGM-derived indices have been utilized to develop algorithms to differentiate 325 

between healthy and diabetic individuals, studies evaluating the correlation of CGM-326 

derived GV metrics with clinical gold standards to detect impaired glucose tolerance 327 

(IGT) and insulin resistance such as HbA1c, OGTT, and HOMA-IR are scarce.31-33 To 328 

bridge this gap, we carried out a post-hoc analysis, correlating the factors recorded in our 329 

study (Table 1). For all clinical biomarkers, daily glycemic variability (J-index) was a 330 

strong associate in the pre-diabetes group with highly significant positive correlations. 331 

The HBGI count in both healthy and pre-diabetics was a consistent measure of elevated 332 

OGTT and HbA1c levels.  However, HBGI correlated with increased HOMA IR showing 333 

that insulin resistance is a feature of IGT space and not a healthy glucose control space. 334 

LBGI showed some interesting correlations with OGTT and HOMA-IR in the healthy 335 

group, perhaps indicating that hypoglycemic events requiring glucose mobilization are 336 

more tightly regulated in normal glucose tolerance regimes. Specifically, in healthy 337 

participants, the glucose swing as captured by the ADRR or MODD is likely a better 338 

predictor of nascent insulin resistance. In summary, there is a difference in the type of 339 

glycemic parameters that a healthy or an IGT user of CGMs should focus on.  340 

Correlations of MS with biomarkers associated with metabolic syndrome and fitness metrics   341 

The MS metric was developed as an all-encompassing snapshot of glucose tolerance and 342 

by extension, of the glycemic fitness of UH-M1 users. While this proprietary score is 343 

composed of weighted contributions from an individual’s glycemic variability, time in 344 

range, and mean glucose values, we tested the correlation of MS with the clinical 345 
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biomarkers gathered for both pre- and non-diabetic groups, in an effort to benchmark in a 346 

controlled population. As shown in Table 2, MS had extremely strong negative 347 

correlations with inflammation (HsCRP), HbA1c, OGTT, and HOMA-IR in pre-diabetic 348 

participants. In non-diabetics, significant negative correlations were found between OGTT 349 

and HOMA-IR only. As a counterpoint, MS did not show any correlation with single-350 

snapshot FBG levels in either group, attesting to its cumulative informational quality. In 351 

the fitness tracker metrics, the MS in both groups was weakly correlated with step count, 352 

heart rate, and sleep duration. Heart rate (being tightly regulated), displayed the expected 353 

negative correlation with MS and was statistically significant for both groups. 354 

Interestingly, a small but significant positive correlation was found between sleep duration 355 

and MS in non-diabetics, with a paradoxical weak, negative correlation between sleep and 356 

MS in pre-diabetics.   357 

 358 

Discussion 359 

The study cohort was representative of an urban, young adult Indian population who were 360 

non-obese, but overweight which constitutes a third of Indian adults as per the National 361 

Family Health Survey (NFHS-5) conducted in 2021.34 This is also the population most prone 362 

to developing prediabetes and diabetes in India, although the share of rural patients is seen to 363 

be increasing.19-20 To our knowledge, this is the first study that provides CGM-derived 364 

guidance values of glycemic indices and variability in non-diabetic (healthy) and pre-diabetic 365 

Indian populations. Furthermore, our extended analyses revealed that of the multiple 366 

glycemic indices used in this therapy area, there is a difference in the significance of 367 

correlating benchmarks of glucose control like Hba1c, OGTT, and insulin resistance by 368 

HOMA-IR between healthy and pre-diabetics. Interestingly, UH-MS mirrors many of the 369 

trends in glycemic dysfunction found in pre-diabetics and offers a dynamic, easy-to-370 
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understand metric that can generate personalized information. Finally, we report that 371 

inflammation had the strongest positive correlation with glycemic indices in pre-diabetics 372 

indicating that significant metabolic dysregulation is already underway in this group. This 373 

supports the notion that glucose tolerance regimes are most likely a contiguous spectrum, 374 

rather than discrete states of non-diabetes, pre-diabetes, and diabetes.    375 

In terms of digital health tracking, studies like GLITTER, Twin Precision Nutrition (TPN) 376 

Program, and ambulatory glucose profiling (AGP) have demonstrated the power of CGM-377 

based tracking in making real-time interventional decisions like dietary- or exercise changes, 378 

dosage changes of insulin, etc, that can be tracked by patients and clinicians 379 

simultaneously.35-37 Within India, electronic health (e-health) and mobile health (m-health) 380 

initiatives have been successfully used to provide support, motivation, and directional 381 

suggestions to large cohorts to make healthier lifestyle choices.38-39 Internationally, large 382 

cohort studies have been undertaken in developed countries like the Dehgani-Zahedani et al, 383 

2021 (Sugar.AI initiative), that show that a 10-day CGM app-based tracking regime can 384 

significantly promote healthier metabolic-oriented choices in healthy and at-risk 385 

individuals.40 The gap lay in reference data of CGM-derived glycemic metrics for non-386 

diabetic/healthy Indians (and by extension South Asians), which were either not the focus of 387 

clinical studies like GLITTER and Twin, or underrepresented in North American and 388 

European studies. With a demographic contribution of over a fifth of the world’s population, 389 

and being a high-risk group for developing metabolic syndromes, this group represents an 390 

important resource for gathering natural history, baseline evidence development, and 391 

increased surveillance.  392 

In terms of primary outcomes of the study, we found a consistent and significant difference in 393 

mean glucose levels between non-diabetics and pre-diabetics with no significant differences 394 

in TIR per the broader ADA guideline range. Interestingly, the rTIR per app guidance of a 395 
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target range of 70-110mg/dL was significantly improved in both groups and across all days, 396 

highlighting the need to adjust metrics to derive useable information in a context-specific 397 

manner.  The improved rTIR was also tracked with lesser hyper- and hypo-glycemic events 398 

in both groups over days. CGM-based metrics of GV as measured by SD, CV, and MAGE 399 

also showed significant improvement over time in both groups. However, the data alludes to 400 

the fact that for more lasting changes in FBG and allied indices, tracking for a period longer 401 

than 14 days might be required to yield lasting corrective changes for pre-diabetics. 402 

Inflammation as measured by hsCRP had the strongest positive correlation with glycemic 403 

indices in pre-diabetics. This confirms the fact that there is already significant metabolic 404 

dysregulation in this group. This is of particular importance as a clear association between 405 

cardiovascular disease and prediabetes has emerged over the past few years.41 Furthermore, 406 

Indians have been known to have a higher hsCRP level both in healthy and pre-diabetics.42-43 407 

In this study, pre-diabetics displayed a trend of having roughly twice the levels of 408 

inflammation as compared to healthy participants even though the cohort was comparably 409 

overweight. This is in dramatic contrast to the cortisol data, which seems to indicate that 410 

stress levels were comparable between the groups.  411 

In the domains of sleep duration, heart rate, and step count, the data indicated that glycemic 412 

indices were only correlated in the healthy group. The sleep duration correlates reported in 413 

this study were derived using the FitBit tracker. Results indicate that higher GV and 414 

increased episodes of hyperglycemia have noticeably less impact on sleep duration in healthy 415 

people and are more of a concern for at-risk individuals such as pre-diabetics. Hence these 416 

metrics take on added significance only when a pre-diabetes diagnosis has been made.  417 

Although not in the remit of this current study, it is possible that multi-modal analyses of data 418 

for pre-diabetics could identify sub-populations with specific sleep disturbance patterns that 419 

correlate better with impaired glucose control.  420 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.20.23295642doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.20.23295642
http://creativecommons.org/licenses/by-nc/4.0/


19 

 

Step count and heart rate monitoring have now become integral parts of any fitness agenda. 421 

Although the strength of the correlations between these factors and GV was found to be weak 422 

in this study, it should be considered that other coexisting factors may also influence the 423 

relationship. For healthy individuals, a recent study reported every 1000 step increase per day 424 

was correlated with a blunted GV the following day but not within the same day.44   Per 425 

protocol, this study analysed within-day GV with step count and heart rate which may be the 426 

reason for the weaker association of these metrics in our study. Nevertheless, the positive 427 

correlation of step count with mean daily differences is a useful indicator of daily swings 428 

which can potentially be leveraged to optimally fuel for exercise sessions in healthy 429 

individuals.  430 

An important post-hoc analysis conducted on the study data aimed to address a vital gap in 431 

point-of-care surveillance. With busy lifestyles, people often miss conducting wellness 432 

check-ups involving gold-standard biomarkers (HbA1c, OGTT, and HOMA-IR) for glucose 433 

tolerance. Hence, by the time systemic symptoms appear, an individual has already 434 

progressed to an advanced clinical state within the diabetic spectrum. Recent studies have 435 

investigated the predictive power of CGM systems to differentiate healthy, pre-diabetic, and 436 

diabetic individuals using these biomarkers.33,45 Our results indicate that daily GV (J-index) 437 

was a strong proxy in the pre-diabetes group of all three clinical parameters in the Indian and 438 

South Asian demographics. This relationship did not hold true in the healthy participant 439 

group indicating a need to attribute differential weightage to these indices based on diagnosis. 440 

The HBGI in both healthy and pre-diabetics was a consistent measure of elevated OGTT and 441 

HbA1c. However, hyperglycaemic events correlated with increased HOMA IR indicating that 442 

insulin resistance was a feature of the IGT space specifically. Instead, in healthy participants, 443 

the glucose swing daily as captured by the ADRR or MODD was a better predictor of insulin 444 

resistance. We hope that these relationships will be explored in larger controlled and real-445 
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world cohorts to determine the best continuous proxies for clinical biomarkers of glucose 446 

dysfunction. 447 

Wellness/risk score calculators offer an easy-to-understand metric for laypeople to appreciate 448 

the risk of developing various conditions. Scores such as the Life’s Essential 8 TM developed 449 

by the American Heart Association predict cardiovascular health based on self-reported 450 

responses to generalized questions and offer a demographic risk factor-powered perspective 451 

to an individual’s heart health. 46 On the other hand, personalized wearables and digital health 452 

monitoring devices are accompanied by aggregate, algorithmic scores to serve as an easy-to-453 

understand handle for a user to track his/her health and potentially modify their behaviour. 454 

Only a handful of these scores have been validated using cohorts in controlled settings and 455 

benchmarked to accepted clinical biomarkers. To our knowledge, our study is novel in its 456 

approach to clinically validate UH-MS and the results indicate that the score is an effective 457 

digital proxy for IGT and insulin resistance in the population studied. Given its relevance to 458 

glucose tolerance and insulin resistance, it is plausible to imagine an expanded use case in 459 

other ethnic groups. 460 

The main limitation of the study was the short duration of CGM use (14-day period) which 461 

may have been minimally sufficient to glean early indications of the positive impact of UH-462 

M1-based tracking. A longer observational study is required to derive more substantive 463 

conclusions on app-guided lifestyle changes or the data mining of real-world, non-controlled 464 

evidence from the UH user community. Other limitations included capturing basic sleep 465 

duration using the Fitbit activity tracker, which did not have refined measurement of epochs, 466 

and REM vs. non-REM which could have linked more accurately to GV measured in pre-467 

diabetics. This also holds true for opposing correlation patterns of sleep duration with 468 

metabolic score. It is not clear how a high MS (indicative of strong glycemic control) is 469 
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linked with poor sleep in pre-diabetics at the same time that good sleep is coincident with 470 

high MS in non-diabetics.  471 

With this study, we lay the foundation for further exploring valuable dynamics of GV with 472 

day-to-day activities as well as the metabolic parameters in non-diabetic and pre-diabetic 473 

diabetic individuals. The findings underscore the value of using CGMs for wellness and 474 

preventive surveillance. Long-term studies will provide more data on these associations and 475 

may serve as a guide to managing these individuals by making adequate lifestyle and if 476 

required, pharmacological changes. 477 

Conclusions: This study provides a reference data set for CGM-derived glycemic metrics in 478 

adult Indian/South Asian groups, for a 14-day use period. The data indicates that the specific 479 

GV indices correlate better with clinical biomarkers and lifestyle indicators for pre-diabetics 480 

as compared to non-diabetics and should be given varying weightage by clinicians when 481 

reviewing the fitness of the two groups. Finally, the study also provides critical support for 482 

the use of MS score as a digital proxy for glycemic health.  483 

 484 

Declarations:  485 

Conflicting interests: B.S, V.S., and M.K. are stakeholders in Ultrahuman Healthcare Private Limited. 486 

M.C. was a full-time employee of Ultrahuman during the study and analysis period.  M.K. and V.S. 487 

declare no other conflict of interest. B.S. is a stakeholder of Triomics Healthcare.  488 

Funding Statement: The study was sponsored by Ultrahuman Healthcare Pvt. Ltd. 489 

Ethical approval: Ethical approval was obtained from each of the clinical trials individually. This is 490 

captured in Supplementary Protocol file uploaded and information is available publicly on the Clinical 491 

Trial Registry of India website, accessed by trial identifier CTRI/2022/08/044808 492 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.20.23295642doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.20.23295642
http://creativecommons.org/licenses/by-nc/4.0/


22 

 

Guarantor: B.S. (ORCID ID: 0009-0009-4865-380X)  493 

Author Contributions: B.S.: Conceptualization, Methodology, Overall supervision and coordination, 494 

and manuscript review; M.C.- Trial coordination, Curation of Data, Extended data analysis, 495 

Visualization, manuscript review; M.K. and V.S.- Conceptualization, Funding acquisition, 496 

Technological development, and support.   497 

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for 498 

authorship for this article, take responsibility for the integrity of the work, and have given their 499 

approval for this version to be published. 500 

Acknowledgments: The authors would like to thank all the participants in the study. Authors are 501 

grateful to Dr. Prabhat Ranjan Sinha, Dr. R.P. Rajesh, Dr. Neeta Deshpande, Dr. Suresh S.M., Dr. 502 

Banshi Saboo, Dr. Hamsraj Alva, Dr. B.V.S.N. Raju, Dr. Sriharee Kulkarni, and Dr. Pankaj Aneja 503 

who were principal investigators at the various trial sites. Additionally, the authors acknowledge the 504 

contributions of Triomics Healthcare for trial automation and trial management, Dr. Aditi 505 

Bhattacharya for scientific analyses and publication development support, and Dr. Aafrin Khan for 506 

editorial support of the manuscript. 507 

Data availability: Study outcomes data can be made available upon reasonable request. The M1 and 508 

MS platform codes and technical details are proprietary assets of Ultrahuman and will not be 509 

disclosed.  510 

 511 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.20.23295642doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.20.23295642
http://creativecommons.org/licenses/by-nc/4.0/


1 

 

Tables and Figures 

Table 1. Correlation between Glycaemic variability indices and HbA1C, OGTT, and HOMA-IR (PP Population) 

Glycaemic Variability Indices  
 HbA1c % OGTT HOMA-IR 

Statistics 
Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

J index Correlation 
coefficient 

0.17 0.22 -0.12 0.39 -0.15 0.35 

 p-value 0.0781 0.0265 0.2377 0.0001 0.3092 0.0169 
        

Low blood glucose index Correlation 
coefficient 

-0.16 0.13 0.21 -0.05 0.47 -0.06 

 p-value 0.1150* 0.2078* 0.0370 0.6403 0.0010 0.6965 
        

High blood glucose index Correlation 
coefficient 

0.19 0.22 -0.10 0.39 -0.08 0.38 

 p-value 0.0498* 0.0284* 0.3322 0.0001 0.5791 0.0096 
        

Average daily risk range Correlation 
coefficient 

0.01 0.32 0.10 0.29 0.45 0.14 

 p-value 0.9122* 0.0009* 0.3352 0.0030 0.0017 0.3530 
        

Mean amplitude of glucose 
excursion 

Correlation 
coefficient 

-0.09 0.09 -0.01 0.05 0.09 -0.13 

 p-value 0.3382* 0.3671* 0.9313 0.6439 0.5346 0.3857 
        

Mean of daily differences Correlation 
coefficient 

0.14 -0.03 -0.07 0.08 -0.33 0.04 

 p-value 0.1485* 0.7867* 0.5091 0.4094 0.0270 0.8012 
        

Continuous overall net glycaemic 
action 

Correlation 
coefficient 

0.03 0.19 -0.00 0.02 -0.01 -0.03 
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 p-value 0.7910 0.0496 0.9843 0.8603 0.9346 0.8472 
p-value based on Pearson correlation & 
Spearman correlation test 

* represent Spearman correlation test 
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Table 2:  Correlation Between Metabolic Score and Stress (by Cortisol), Inflammation (by Hs-CRP), HbA1C%, OGTT values, HOMA IR, fasting 
glucose levels, and fitness variables (PP Population) 

Metabolic Score with  
 PSQI Score, Stress, Inflammation,  
 HbA1C %, OGTT, HOMA-IR and GMI Statistics 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

Stress Correlation coefficient -0.05 0.16 
 p-value 0.6023* 0.1142* 
    
Inflammation Correlation coefficient -0.16 -0.38 
 p-value 0.2748* 0.0055* 
    
HbA1C (%) Correlation coefficient -0.15 -0.36 
 p-value 0.1397 0.0002 
    
OGTT Correlation coefficient -0.27 -0.42 
 p-value 0.0056* <0.0001* 
    
HOMA-IR Correlation coefficient -0.37 -0.43 
 p-value 0.0113* 0.0036* 
    
Fasting Blood Glucose  Correlation coefficient 0.01 -0.15 
 p-value 0.9186 0.1189 
    
Step Count Correlation coefficient -0.004 0.07 
 p-value 0.908 0.0978 
    
Heart Rate Correlation coefficient  -0.13 -0.08 
 p-value 0.0006 0.0380 
    
Sleep Duration Correlation coefficient  0.12 -0.08 
 p-value 0.0014 0.0356 
p-value based on Pearson correlation & spearman 
correlation test. * represents Spearman Correlation test 
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Figure 1. Patient disposition 
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Figure 2. Primary outcome measures in healthy vs. pre-diabetic within the stipulated time-frame 

 

CV: Coefficient of variation; MAGE: Mean amplitude of glycemic excursion; SD: Standard deviation.  *, **, *** denotes p<0.05,  0.01 and 0.001, by Two -way 

ANOVA (see text for  details)
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Figure 3. Secondary outcomes:  Correlations of GV with clinical biomarkers associated with impaired glucose tolerance (IGT) and 

commonly tracked fitness measures 

 

R - correlation coefficient. Linked to Supplementary Tables 2-5 
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Supplementary section 

Supplementary Figure S1: Exemplar snapshot of the MS information panel on the M1 platform 
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Supplementary Figure S2: Restricted time in range in healthy vs pre-diabetic within the stipulated time-frame  

 

 

rTIR: restricted Time in range, Statistical analyses: Two-factor ANOVA (cohort x day; main effect, cohort: p<0.0001; main effect, day: 

p<0.0001, interaction cohort x day: p<0. 0.00001) 
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Supplementary Table S1: Baseline demographics 

Parameter Statistics 
Healthy  
 (N=53) 

Pre-Diabetic  
 (N=52) 

Gender n (%) Male 39 (73.6) 45 (86.5) 

Age (Years) N* 53 52 

  Mean (SD) 32.8 (6.56) 35.6 (6.94) 

  Median (Q1, Q3) 30.0 (28.0, 37.0) 35.5 (30.5, 41.0) 

  Min, Max 25.0, 47.0 25.0, 49.0 

BMI (kg/m2) N* 53 52 

  Mean (SD) 25.571 (2.8634) 26.456 (2.6311) 

  Median (Q1, Q3) 25.390 (24.050, 27.940) 26.830 (24.905, 28.410) 

  Min, Max 20.030, 29.760 20.260, 29.940 

BMI: Body mass index; SD: Standard deviation. 
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Supplementary Table S2: Correlation between Glycaemic variability indices and inflammation (as measured by Hs-CRP) (PP 

Population) 

Inflammation with  
 glycaemic variability indices Statistics 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

J index Correlation coefficient 0.06 0.42 
 p-value 0.6959 0.0020 
    
Low blood glucose index Correlation coefficient -0.002 -0.35 
 p-value 0.9876 0.0108 
    
High blood glucose index Correlation coefficient 0.03 0.43 
 p-value 0.8162 0.0016 
    
Average daily risk range Correlation coefficient -0.05 -0.12 
 p-value 0.7448 0.3840 
    
Mean amplitude of glucose excursion Correlation coefficient 0.01 -0.10 
 p-value 0.9637 0.4692 
    
Mean of daily differences Correlation coefficient -0.10 0.20 
 p-value 0.5034 0.1492 
    
Continuous overall net glycaemic action Correlation coefficient 0.04 0.004 
 p-value 0.7912 0.9772 
 
p-value based on Pearson correlation & spearman correlation test 
* represent spearman correlation test 
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Supplementary Table S3: Correlation between glycaemic variability indices and stress (as measured by cortisol) (PP Population) 

Stress with  
 glycaemic variability indices Statistics 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

J index Correlation coefficient 0.06 -0.15 
 p-value 0.5615* 0.1253* 
    
Low blood glucose index Correlation coefficient -0.04 0.09 
 p-value 0.7242* 0.3663* 
    
High blood glucose index Correlation coefficient 0.04 -0.16 
 p-value 0.6688* 0.0970* 
    
Average daily risk range Correlation coefficient 0.01 -0.08 
 p-value 0.8956* 0.4105* 
    
Mean amplitude of glucose excursion Correlation coefficient -0.09 0.06 
 p-value 0.3760* 0.5502* 
    
Mean of daily differences Correlation coefficient -0.07 -0.08 
 p-value 0.4685* 0.4078* 
    
Continuous overall net glycaemic action Correlation coefficient -0.09 -0.05 
 p-value 0.3521 0.5844 
 
p-value based on Pearson correlation & spearman correlation test 
* represent spearman correlation test 
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Supplementary Table S4: Correlation between Glycaemic variability indices and sleep duration (PP Population) 

Glycaemic variability indices Statistics 
Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

J index Correlation coefficient -0.08 0.07 
 p-value 0.0336 0.0872 
    
Low blood glucose index Correlation coefficient 0.01 -0.05 
 p-value 0.8938 0.2408 
    
High blood glucose index Correlation coefficient -0.10 0.07 
 p-value 0.0082 0.0845 
    
Average daily risk range Correlation coefficient -0.07 0.06 
 p-value 0.0768 0.1262 
    
Mean amplitude of glucose excursion Correlation coefficient -0.06 -0.06 
 p-value 0.1025 0.1445 
    
Mean of daily differences Correlation coefficient -0.05 -0.04 
 p-value 0.1591 0.3318 
    
Continuous overall net glycaemic action Correlation coefficient -0.09 -0.10 
 p-value 0.0159 0.0115 
 
p-value based on Pearson correlation & spearman correlation test 
* represent spearman correlation test 
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Supplementary Table S5: Correlation between Glycaemic variability indices and physical activity (step count) (PP Population) 

Glycaemic variability indices Statistics 
Step Count Heart rate 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

Healthy  
(N = 53) 

Pre - Diabetic  
(N = 52) 

J index Correlation coefficient -0.03 -0.09 0.04 0.06 
 p-value 0.4363 0.0174 0.3207 0.1545 
      
Low blood glucose index Correlation coefficient 0.04 0.01 0.11 -0.06 
 p-value 0.2966 0.7298 0.0045 0.1100 
      
High blood glucose index Correlation coefficient 0.004 -0.10 0.05 0.05 
 p-value 0.9173 0.0134 0.2071 0.1768 
      
Average daily risk range Correlation coefficient 0.10 0.004 0.15 0.07 
 p-value 0.0082 0.9146 0.0001 0.0847 
      
Mean amplitude of glucose 
excursion 

Correlation coefficient 
0.06 -0.05 

-0.07 0.11 

 p-value 0.0950 0.1747 0.0520 0.0048 
      
Mean of daily differences Correlation coefficient 0.22 -0.04 -0.08 -0.04 
 p-value <0.0001 0.2973 0.0412 0.2983 
      
Continuous overall net 
glycaemic action 

Correlation coefficient 
0.04 -0.06 

-0.09 0.05 

 p-value 0.2493 0.1449 0.0145 0.2324 
 
p-value based on Pearson correlation & spearman correlation test 
* represent spearman correlation test 
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Supplementary Table 7: Details of trial sites, principal investigators, ethics committee 
approval dates 
 
Site Name (Name of 
Ethics Board) 

Site Address Date of Approval 

Aakash Healthcare 
Private Limited 
(Hospital Ethics 
Board) 

Aakash Healthcare, Private Limited Hospital Plot Road No. 
201, Sector-3, Dwarka, New Delhi -110075 

11th August 2022 

Aadhavvan Diabetes & 
Research Centre    
(Universal Ethics 
Committee) 

No.3, 5th Street, Eswar Nagar, Kodambakkam, Chennai, 
Tamil Nadu - 600024 

08th August 2022 

Belgaum Diabetes 
Centre (Diabetes 
Centre Ethics 
Committee) 

Ground and second floor, Maruti street, Belgaum, 
Karnataka- 590001 

 

12th August 2022 

Suresh Diacare 
(Bangalore Ethics 
Committee) 

No 723B, 11th Main Rd, 3rd Block, Rajajinagar, 

Bengaluru, Karnataka 560010 

26th September 2022 

Diacare Research 
(Shrey    Hospital             
Institutional    Ethics 
Committee) 

1,2 Gandhi Park, near Nehrunagar, Ambawadi, 

Ahmedabad, Gujarat- 380015 

 

12th August 2022 

Vinaya Hospital, 
(Hospital Ethics 
Committee) 
 

Vinaya Hospital and Research Centre (a unit 

of KIMS), Karangalpady, Mangaluru, Karnataka-575003 

 

30th July 2022 

Induss Hospital,  
(Institutional Ethics 

Committee) 

Induss Hospital, Opp. Kothapet Fruit Market Kothapet, Sri 

Sai Shivani Complex, HUDA Complex, 

Saroornagar, Hyderabad, Telangana- 500035 

14th October 2022 

Kulkarrnis Medzonne 
(Bangalore Ethics 
Committee) 

Kulkarrni’s Medzonne, GD Naidu Hall, Mohan Matrix, 450th 

,12th cross road, Near Vidya Bharti School, 
Mahalakshmipuram, Bengaluru, Karnataka. 560086 

03rd October 2022 

 

Naveda Healthcare 
Centre (Good Society 
Ethical Research 
Oversight Committee) 

A-1/81, Sector-8, Rohini, Delhi. 110085 02nd August 2022 
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