1	Reliability, validity, and sensitivity of Japanese version of the UCLA Scleroderma
2	Clinical Trial Consortium Gastrointestinal Tract Instrument: application to
3	efficacy assessment of intravenous immunoglobulin administration.
4	
5	Kazuki M Matsuda ^{1*} , MD, PhD, Eiki Sugimoto ^{1*} , MD, Yoshiaki Ako ¹ , MD, Marie
6	Kitamura ¹ , MD, Mai Miyahara ¹ , MD, Hirohito Kotani ¹ , MD, PhD, Yuta Norimatsu ¹ ,
7	MD, PhD, Teruyoshi Hisamoto ¹ , MD, PhD, Ai Kuzumi ¹ , MD, PhD, Takemichi
8	Fukasawa, ^{1,2} MD, PhD, Shinichi Sato ¹ , MD, PhD, Ayumi Yoshizaki, ^{1,2#} MD, PhD
9	* Contributed equally.
10	
11	1. Department of Dermatology, Graduate School of Medicine, The University of
12	Tokyo, Tokyo, Japan
13	2. Department of Clinical Cannabinoid Research, The University of Tokyo Graduate
14	School of Medicine, Tokyo, Japan
15	
16	Key words: Autoantibody, autoimmune diseases, miscellaneous rheumatic and
17	inflammatory diseases.

It is made available under a CC-BY 4.0 International license .

18

19 # Corresponding a	author
----------------------	--------

- 20 Ayumi Yoshizaki, MD, PhD
- 21 Department of Dermatology, and Department of Clinical Cannabinoid Research, The
- 22 University of Tokyo Graduate School of Medicine, Tokyo, Japan, 1138655
- 23 Phone: +81-3-3815-5411
- 24 ORCID: 0000-0002-6755-8047
- 25 E-mail: ayuyoshi@me.com
- 26

27 Competing interests

TF and AY belong to the Social Cooperation Program, Department of Clinical Cannabinoid Research, supported by Japan Cosmetic Association and Japan Federation of Medium and Small Enterprise Organizations. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

It is made available under a CC-BY 4.0 International license .

34 Abstract

35 *Objective*

36	This study aimed to develop and assess the reliability, validity, and sensitivity
37	of Japanese version of the University of California Los Angeles Scleroderma Clinical
38	Trial Consortium Gastrointestinal Tract (GIT) Instrument 2.0 (the GIT score), as an
39	evaluation tool for GIT symptoms in systemic sclerosis (SSc).
40	
41	Methods
42	Japanese version of the GIT score was constructed using the forward-backward
43	method. The reliability and validity of this instrument were evaluated in a cohort of 38
44	SSc patients. Correlation analysis was conducted to assess the relationship between the
45	GIT score and existing patient-reported outcome measures. Additionally, the sensitivity
46	of the GIT score was examined by comparing GIT scores before and after intravenous
47	immunoglobulin (IVIG) administration in 10 SSc-myositis overlap patients, as IVIG
48	has recently demonstrated effectiveness in alleviating GIT symptoms of SSc.
49	

50 *Results*

51	Japanese version of the GIT score exhibited internal consistency and a
52	significant association with the Frequency Scale for the Symptoms of Gastroesophageal
53	Reflux Disease. Furthermore, the total GIT score, as well as the reflux and
54	distention/bloating subscales, displayed moderate correlations with the EQ-5D
55	pain/discomfort subscale, Short Form-36 body pain subscale, and its physical
56	component summary. Notably, following IVIG treatment, there was a statistically
57	significant reduction in the total GIT score and most of the subscales.
58	
59	Conclusion
60	We firstly validated Japanese version of the GIT score in Japanese SSc patients
61	in real-world clinical settings. This instrument holds promise for application in future
62	clinical trials involving this patient population.
63	

It is made available under a CC-BY 4.0 International license .

64 Key messages

65	•	What is already known about this subject?
66		Khanna et al. developed the UCLA Scleroderma Clinical Trial Consortium
67		Gastrointestinal Tract (GIT) Instrument (the GIT score) to assess patient-reported
68		GIT symptoms in individuals with systemic sclerosis (SSc).
69		
70	•	What does this study add?
71		We have developed and established the reliability, validity, and sensitivity of the
72		Japanese version of the GIT score in cohorts of Japanese individuals with SSc.
73		
74	•	How might this impact on clinical practice?
75		This tool can effectively evaluate GIT manifestations in Japanese SSc patients in
76		routine clinical settings, and potentially in clinical trial contexts.
77		

It is made available under a CC-BY 4.0 International license .

78 Introduction

79	Systemic sclerosis (SSc) is a complex connective tissue disease typified by
80	widespread inflammation, vasculopathy, and severe fibrosis affecting various organs
81	including the skin, lungs, and the gastrointestinal tract (GIT).[1] The fibrotic process
82	particularly compromises the GIT by inducing hypomotility, leading to a spectrum of
83	manifestations throughout both the upper and lower GIT, such as gastroesophageal
84	reflux disease (GERD) and intestinal pseudo-obstruction (IPO). Notably, as many as
85	90% of SSc patients suffer GIT abnormalities, which significantly associates with a
86	marked decline in health-related quality of life (HRQOL),[2] extended duration of
87	hospitalization, and in severe cases, increased mortality rates.[3]
88	Although the current therapeutic modalities for addressing the GIT
89	involvement of SSc have been constrained, the emergence of innovative treatment
90	approaches with disease-modifying potential, including biologics[4][5] and autologous
91	hematopoietic stem cell transplantation,[6] harbors promise for more efficacious
92	outcomes. Furthermore, recent investigations have underscored the advantages of
93	intravenous immunoglobulin (IVIG), one of the conventional agents being tried for SSc
94	management characterized by its low adverse event profile, for mitigating the GIT
95	symptoms of SSc.[7] As such, the development of clinical outcome measures that are

It is made available under a CC-BY 4.0 International license .

96 robust, valid, and sufficiently sensitive for use in clinical trials is imperative to assess

97	the efficacy of these groundbreaking therapies on the GIT symptoms of SSc.
98	The recent trend towards the integration of solid methodologies for capturing
99	patient perspectives in clinical trials has assumed escalating importance in regulatory
100	decision-making, aiming to enhance the 'patient-centeredness' of drug development
101	processes. Consequently, patient-reported outcome measures (PROMs) have become
102	increasingly pertinent in the context of SSc. Given the substantial heterogeneity and
103	complexity of the clinical manifestations in SSc patients, their evaluation necessitates a
104	multidimensional approach. For instance, certain patients may exhibit severe symptoms
105	related to upper GIT involvement, such as reflux, while others may predominantly
106	present complaints attributed to lower GIT abnormalities, such as distention and
107	bloating. Furthermore, conditions that appear mutually exclusive, such as diarrhea and
108	constipation, may paradoxically coexist at varying times throughout the disease
109	progression. This co-occurrence further complicates the comprehensive communication
110	of the full spectrum of GIT symptoms between patients and clinicians.
111	In an effort to develop a PROM to subjectively and holistically quantify GIT
112	involvement in SSc patients, Khanna et al. conceptualized the SSc-GIT 1.0 in 2007.[8]

113 This tool was initially formulated as a 52-item questionnaire, the content of which was

114	guided by an extensive literature review, expert consensus, and the findings from two
115	focus groups. Subsequently, in 2009, Khanna et al. introduced a more concise and
116	refined version known as the University of California Los Angeles (UCLA)
117	Scleroderma Clinical Trial Consortium (SCTC) GIT 2.0 Instrument (the GIT score),
118	which comprised of 34 items.[9] Evidence suggests that the GIT score exhibits
119	commendable test-retest reliability. Further, both the total and subscale scores were
120	shown to effectively differentiate between patients with mild, moderate, and severe
121	self-rated GIT involvement. Thus, its application in both clinical trials and routine
122	patient care has been strongly endorsed.
123	The GIT score has been adapted and validated in multiple languages, including
123 124	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14]
123 124 125	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by
123 124 125 126	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by Khanna et al. online, it has yet to undergo validation within the Japanese population. In
123 124 125 126 127	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by Khanna et al. online, it has yet to undergo validation within the Japanese population. In light of this, we undertook the reformation of the Japanese version of the GIT score,
123 124 125 126 127 128	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by Khanna et al. online, it has yet to undergo validation within the Japanese population. In light of this, we undertook the reformation of the Japanese version of the GIT score, based on its original counterpart. This newly adapted tool was then implemented in a
123 124 125 126 127 128 129	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by Khanna et al. online, it has yet to undergo validation within the Japanese population. In light of this, we undertook the reformation of the Japanese version of the GIT score, based on its original counterpart. This newly adapted tool was then implemented in a cohort of Japanese patients with SSc in our clinic, and its reliability and validity were
123 124 125 126 127 128 129 130	The GIT score has been adapted and validated in multiple languages, including but not limited to French,[10] Dutch,[11] Italian,[12] Romanian,[13] and Chinese.[14] Although a Japanese translation of the questionnaire has been made available by Khanna et al. online, it has yet to undergo validation within the Japanese population. In light of this, we undertook the reformation of the Japanese version of the GIT score, based on its original counterpart. This newly adapted tool was then implemented in a cohort of Japanese patients with SSc in our clinic, and its reliability and validity were evaluated using statistical methodologies. We also assessed the correlation between the

- 132 Furthermore, we gauged the sensitivity of Japanese version of the GIT score by
- 133 comparing scores before and after the administration of IVIG, which demonstrated
- rapid improvement of GIT symptoms of SSc in a previous study.[7] In this study, our
- primary objective is to establish this questionnaire as a benchmark tool for evaluating
- 136 therapeutic efficacy in clinical trials involving the Japanese population.

It is made available under a CC-BY 4.0 International license .

137 Materials and Methods

138 Translation

139	We utilized the "forward-backward method"[15] to construct a Japanese
140	adaptation of the GIT score. The process began with independent translations by two
141	translators (KMM and ES), both native speakers of Japanese. They then came together
142	to scrutinize each item, identifying and resolving any potential points of confusion or
143	ambiguity until they reached a consensus. This intermediate version of the instrument
144	was then tested on 10 non-bilingual SSc subjects with no issues arising in relation to
145	clarity or comprehension. Subsequently, this version underwent back-translation by two
146	bilingual translators. The English rendition produced from this process was critically
147	reviewed by 2 native English speakers, who found no need for further modifications
148	(Supplementary Data 1).
149	

150 Patients

We consecutively recruited Japanese patients with SSc visiting our scleroderma center outpatient clinic from November 2022 until April 2023 for assessing the reliability and validity of Japanese version of the GIT score. All the SSc patients fulfilled the classification criteria established by the American College of

It is made available under a CC-BY 4.0 International license .

155	Rheumatology and European League Against Rheumatism in 2013.[16] We also
156	sequentially enrolled patients with SSc-myositis overlap admitted to our wards from
157	April 2023 until August 2023 for IVIG administration for evaluating sensitivity of
158	Japanese version of the GIT score. This study was approved by The University of
159	Tokyo Ethical Committee (Approval Number 0695). Written informed consent was
160	obtained from all the human subjects.
161	
162	Clinical data acquisition
163	Clinical data were collected by retrospective review of electric medical records.
164	We gathered basic patient information, symptoms, medications, and laboratory findings
165	from the closest time point from the date of the GIT score evaluation. SSc patients were
166	categorized by LeRoy's classification rule into diffuse cutaneous SSc (dcSSc), limited
167	cutaneous SSc (lcSSc), or overlap syndrome.[17] Skin thickness was
168	semi-quantitatively examined by the modified Rodnan total skin thickness score
169	(mRSS).[18] Interstitial lung disease (ILD), pulmonary hypertension (PH), and
170	scleroderma renal crisis (SRC) were diagnosed as previously described.[19]
171	

172 Autoantibody detection

It is made available under a CC-BY 4.0 International license .

173	Autoantibodies in the serum samples were evaluated utilizing autoantibody
174	array assay (A-Cube) as previously described.[20][21] Briefly, a total of 65 antigens of
175	43 autoantibodies associated with SSc, Sjogren syndrome (SjS), primary biliary
176	cholangitis (PBC), myositis, and overlap syndrome, with FLAG-GST-tag on the
177	N-terminus were synthesized in vitro with a wheat germ cell-free translation
178	system,[22] from human cDNA library entry clones.[23] The synthesized proteins were
179	captured on array plates under wet conditions by affinity between the GST tags and
180	glutathione (GSH) coated over the glass slides.[24] Then the slides were consequently
181	treated with serum samples diluted in the blocking buffer and fluorescence-labeled
182	anti-human IgG antibody (Ab). After the slides were washed and air-dried, the plates
183	were scanned by a fluorescence imager (Supplementary Figure A). The negative
184	control spots were prepared using distilled water instead of mRNA during protein
185	preparation. The positive control spots were prepared using mRNA encoding human
186	IgG for protein synthesis. The autoantibody quantification was performed based on the
187	fluorescent values obtained from reactions of serum with the protein spots. The level of
188	each autoantibody was calculated as below:

$$Index \ value = \frac{F_{autoantigen} - F_{negative \ control}}{F_{positive \ control} - F_{negative \ control}} \times 100$$

 $F_{autoantigen}$: Fluorescent intensity of autoantigen spot

It is made available under a CC-BY 4.0 International license .

F_{negative control}: Fluorescence intensity of negative control spot

 $F_{positive \ control}$: Fluorescence intensity of positive control spot

- 189 The cut-off value of each autoantigen was determined based on the mean + 3 standard
- 190 deviation (SD) of healthy controls.
- 191
- 192 Cytokine measurement
- 193 The serum levels of cytokines were measured by Luminex Discovery Assay
- 194 Human Premixed Multi-Analyte Kit (R&D Systems, Minneapolis, MN, USA)
- 195 according to the manufacturer's protocol. The evaluated cytokines were as follows:
- 196 tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 10 (IL-10),
- 197 interleukin 27 (IL-27), vascular endothelial growth factor (VEGF), interferon-gamma
- 198 (IFN- γ), interleukin 31 (IL-31), interleukin 1 alpha (IL-1 α), interleukin 4 (IL-4),
- 199 interleukin 17 (IL-17), B cell activating factor belonging to the tumor necrosis factor
- 200 family (BAFF), interleukin 13 (IL-13), interferon alpha (IFN-α), and interleukin 23
- 201 (IL-23).
- 202
- 203 Patient-reported outcome measures

204	Patients completed the Japanese version of the GIT score, Medical Outcomes
205	Short Form (SF)-36,[25] the EQ-5D with five levels tool,[26] and the F-scale.[27]
206	UCLA SCTC GIT 2.0 comprises 34 items divided into seven domains: reflux,
207	distention/bloating, diarrhea, fecal soilage, constipation, emotional well-being, and
208	social functioning.[9] Each domain is rated from 0 (indicating better HRQOL) to 3
209	(representing poorer HRQOL), with the exception of the diarrhea and constipation
210	domains, which have a range of $0-2$ and $0-2.5$, respectively. The overall GIT score is
211	the mean score of six out of the seven domains, excluding constipation, and varies from
212	0 (higher HRQOL) to 3 (lower HRQOL). The original version in English is accessible
213	online at http://uclascleroderma.researchcore.org/.
213 214	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items
213 214 215	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely
213 214 215 216	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely physical functioning (10 items), bodily pain (2 items), role limitations resulting from
213 214 215 216 217	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely physical functioning (10 items), bodily pain (2 items), role limitations resulting from physical health perceptions (4 items), and overall health perceptions (5 items). An
213 214 215 216 217 218	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely physical functioning (10 items), bodily pain (2 items), role limitations resulting from physical health perceptions (4 items), and overall health perceptions (5 items). An additional four scales are dedicated to mental health, which include mental health (5
213 214 215 216 217 218 219	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely physical functioning (10 items), bodily pain (2 items), role limitations resulting from physical health perceptions (4 items), and overall health perceptions (5 items). An additional four scales are dedicated to mental health, which include mental health (5 items), role limitations due to emotional concerns (3 items), vitality (4 items), and social
213 214 215 216 217 218 219 220	online at http://uclascleroderma.researchcore.org/. The SF-36 is a broad-spectrum measure of health status, comprised of 36 items that evaluate 8 distinct domains.[25] Four scales examine physical health, namely physical functioning (10 items), bodily pain (2 items), role limitations resulting from physical health perceptions (4 items), and overall health perceptions (5 items). An additional four scales are dedicated to mental health, which include mental health (5 items), role limitations due to emotional concerns (3 items), vitality (4 items), and social functioning (2 items), alongside a single-item health transition scale. The physical

222	mental health scales together make up the Mental Component Summary (MCS). These
223	summarized scores are normalized to the general population in Japan, which is
224	characterized by a mean \pm SD score of 50 \pm 10.[28] A standard 4-week recall period
225	was implemented.

226	The EQ-5D questionnaire with five levels is a generic instrument to quantify
227	HRQOL.[26] The EuroQoL Group developed and tested this tool for the purpose of
228	providing measurable health outcomes. In an initial study with SSc patients, the Italian
229	version of this tool proved to be valid.[12] The EQ-5D is composed of two primary
230	components: the first section, known as the EQ-5D profile, generates a health profile
231	derived from a descriptive system. This system defines health based on five dimensions:
232	'mobility', 'self-care', 'usual activities', 'pain or discomfort', and 'anxiety or depression'.
233	Each dimension offers three response categories indicating no problems, some problems,
234	or extreme problems. The second component of the questionnaire is the EQ-5D Visual
235	Analogue Scale (VAS), which evaluates the overall HRQOL on a scale from 0 (the
236	worst possible health state) to 100 (the best possible health state). For this study, a
237	standard 4-week recall period was employed.

238 F-scale refers to the Frequency Scale for the Symptoms of GERD (FSSG), which is a self-report questionnaire used to assess the frequency and severity of 239

It is made available under a CC-BY 4.0 International license .

240	GERD-related symptoms, originally developed in Japan.[27] The FSSG consists of 12
241	items grouped into two subscales: a reflux-related subscale (acid regurgitation and
242	heartburn) and a dysmotility-related subscale (including symptoms like non-cardiac
243	chest pain, a sensation of a lump in the throat, belching, etc.). Each item is rated on a
244	4-point scale (ranging from never = 0, occasionally = 1, sometimes = 2, often = 3), and
245	the scores are added together to provide a measure of the severity of GERD symptoms.

246

247 Statistical analysis

248 We analyzed average scores, SDs, ranges, and the percentage of missing data. 249 The floor and ceiling effects of the GIT scorewere determined by calculating the 250 percentage of participants who scored at the extreme lower (floor) and upper (ceiling) 251 limits. We gauged the internal consistency of the GIT score through Cronbach's 252 alpha.[29] We evaluated the construct convergent validity by examining the relationship 253 among the GIT score, the EQ-5D, and the SF-36 domains, using Spearman's rho to 254 measure correlations. The association between the GIT scores and clinical 255 manifestations or autoantibody profiles was investigated by logistic regression analyses. 256 Data analysis was performed using Stata 15/IC (StataCorp, College Station, TX, USA), 257 GraphPad Prism 9 (GraphPad Software, Boston, MA, USA), R, RStudio, and R

- 258 packages "dplyr", "ggplot2", "hrbrthemes", "ggcorrplot", and "ComplexUpset". We set
- 259 the threshold for statistical significance at P < 0.05.
- 260

It is made available under a CC-BY 4.0 International license .

261 Results

262 *Study population*

263	We recruited 38 patients with SSc for the assessment of reliability and validity
264	of Japanese SCTC UCLA GIT 2.0 (Table 1). A large majority were female (94%) with
265	the mean age of 65 years with SD of 11 years, all of whom were of Japanese ethnicity.
266	The proportion of the patients classified into dcSSc was 21%. None of the subjects
267	within this cohort had been classified as overlap with myositis. Comprehensive
268	autoantibody screening utilizing A-Cube revealed anti-centromere Ab,
269	anti-topoisomerase I Ab, anti-RNA polymerase III Ab, and anti-U1-RNP Ab with the
270	prevalence rate of 45%, 26%, 16%, and 5%, respectively (Supplementary Figure 1B
271	and 1C).
271 272	and 1C).
271 272 273	and 1C). Reliability
271 272 273 274	and 1C). <i>Reliability</i> The average GIT score was 0.29 (SD 0.33), with 24% reporting no symptoms
271 272 273 274 275	and 1C). <i>Reliability</i> The average GIT score was 0.29 (SD 0.33), with 24% reporting no symptoms (total score = 0), 55% reporting mild symptoms (total score = 0.01–0.49), 16%
271 272 273 274 275 276	and 1C). <i>Reliability</i> The average GIT score was 0.29 (SD 0.33), with 24% reporting no symptoms (total score = 0), 55% reporting mild symptoms (total score = 0.01–0.49), 16% reporting moderate symptoms (total score = 0.50–1.00), and 5% reporting severe
271 272 273 274 275 276 277	and 1C). <i>Reliability</i> The average GIT score was 0.29 (SD 0.33), with 24% reporting no symptoms (total score = 0), 55% reporting mild symptoms (total score = 0.01–0.49), 16% reporting moderate symptoms (total score = 0.50–1.00), and 5% reporting severe symptoms (total score = 1.01–3.00). All multi-item subscales displayed a Cronbach's

It is made available under a CC-BY 4.0 International license .

total score and all its subscales, ranging from 24% (total score) to 89% (fecal soilage),

280 while there was no observable ceiling effect.

281

282 *Validity*

283 The reflux subscale and the distention/bloating subscale of the GIT score 284 showed strong and significant correlation with the total score, the reflux subscale, and 285 the dyspepsia subscale of the F-scale (Table 3). The total GIT score, the reflux and 286 distention/bloating subscales also demonstrated moderate correlations with the EQ-5D 287 pain/discomfort subscale, the SF-36 BP subscale, and the SF-36 physical component 288 summary. Furthermore, there was a statistically significant, although weak, correlation 289 between selected GIT subscales and certain SF-36 domains and components. 290 291 Association between clinical features 292 No statistically significant correlation was observed between the GIT scores 293 and the clinical manifestations of SSc, as indicated in Supplementary Table 1. 294 Similarly, there was no significant association between the GIT scores and Ab profiles,

- as detailed in **Supplementary Table 2**. Meanwhile, a statistically significant correlation
- was observed between the serum levels of several cytokines and specific GIT subscales,

297	as outlined in Table 4. Notably, there was a significant correlation between serum
298	levels of TNF- α or IL-6 and the reflux subscale, as illustrated in Figure 1A and 1B.
299	Additionally, a significant correlation was found between serum levels of VEGF and the
300	social functioning or constipation subscales, as depicted in Figure 1C and 1D.
301	
302	Sensitivity
303	We enrolled a cohort of 10 Japanese patients diagnosed with SSc-myositis
304	overlap, with a predominance of 9 female patients (90%). Their average age was 65
305	years, with a SD of 8 years. Among the patients, 6 patients were positive for
306	anti-centromere Ab, 2 patients were positive for anti-U3-RNP Ab positivity, and one
307	patient was positive for anti-RNA polymerase III Ab. Japanese version of the GIT score
308	was administered both before and after IVIG treatment (Figure 2A), revealing a
309	reduction in total GIT scores with statistical significance, as well as in a large part of the
310	subscales, except for fecal soilage and constipation (Figure 2B).

It is made available under a CC-BY 4.0 International license .

311 Discussion

312	In the present study, Japanese version of the UCLA SCTC GIT 2.0 instrument
313	demonstrated commendable internal consistency and good reliability (Table 2),
314	comparable with its original version[9]. Additionally, Japanese version of the GIT score
315	exhibited robust divergent validity demonstrated by significant association with F-scale
316	(Table 3), suggesting its usefulness as a tool for evaluating GIT symptoms associated
317	with SSc in real clinical settings. GIT symptoms receive less attention than other
318	symptoms of SSc; GIT manifestations are not evaluated in composite measures of the
319	disease such as the American College of Rheumatology Composite Response Index in
320	Systemic Sclerosis.[30] The absence of significant correlations between GIT score
321	outcomes and other clinical manifestations of SSc affirmed that GIT involvement in
322	SSc stands as an independent factor (Supplementary Table 1), warranting separate
323	evaluation.

When contrasted with the original study utilizing the English version,[9] several baseline differences in the study population were observed (**Table 1**). The Japanese version assessment was conducted on a smaller patient population (n=38 vs. 152); the patients were older (mean age = 65 vs. 51 years); and our evaluation indicated lower mean scores in all the subscales: reflux (0.25 vs. 0.69), distention/bloating (0.70

329	vs. 1.07), fecal soilage (0.13 vs. 0.30), diarrhea (0.49 vs. 0.56), social functioning (0.21
330	vs. 0.26), emotional well-being (0.17 vs. 0.49), constipation (0.36 vs. 0.43), and total
331	GIT score (0.29 vs. 0.66). One explanation might be the higher proportion of patients
332	already treated; most of our patients had already on proton pump inhibitors (89%).
333	Alternatively, one could interpret our study as having enrolled individuals with SSc
334	who had comparatively milder disease manifestations and lesser health impairments.
335	This interpretation finds support in our assessment of HRQOL, revealing a mean SF-36
336	PCS and MCS score of 41.2 and 50.4, respectively, in contrast to the original study
337	where these scores were 36.7 and 47.1, respectively. Moreover, our study featured a
338	smaller proportion of patients with dcSSc (22% vs. 55%), a factor associated with
339	severe gastrointestinal involvement in SSc.[31]
340	An advantage of this study is the multi-dimensional immunophenotyping
341	conducted, which encompassed assessments of serum cytokine levels and autoantibody
342	profiles, aligned with the GIT score outcomes. As a result, we found that the serum
343	levels of TNF- α , IL-6, and VEGF were significantly correlated with the specific
344	subclass of the GIT score (Figure 1). Elevation of serum levels compared to healthy
345	controls and correlation with clinical manifestations of SSc have been reported
346	regarding TNF- α ,[32] IL-6,[33] and VEGF.[34] The involvement of IL-6 in the

It is made available under a CC-BY 4.0 International license .

347	pathogenesis of SSc has been strongly suggested by a substantial body of experimental
348	evidence.[35] This is further supported by the approval of tocilizumab, an anti-IL-6
349	receptor monoclonal antibody, for the treatment of SSc-ILD by the United States Food
350	and Drug Administration.[36] Meanwhile, the therapeutic effectiveness of TNF- α
351	inhibitors in treating SSc has not yet been conclusively demonstrated through
352	randomized placebo-controlled trials, despite some promising findings from smaller
353	observational studies.[37] It's worth noting that experimental studies involving biopsies
354	of patients with GERD have revealed that cultured esophageal epithelial cells,
355	fibroblasts, and muscle cells primarily produce IL-6, rather than TNF- α .[38] This
356	finding opens the possibility of exploring the response of GERD symptoms in SSc
357	patients to anti-IL-6 therapies, assessed using the GIT score, as a compelling avenue for
358	future research investigations.
359	The primary highlight of this study lies in its ability to demonstrate the
360	sensitivity of the GIT score through the improvement observed in the GIT score before
361	and after IVIG administration (Figure 2). In a prior publication, we presented evidence

363 symptoms such as intestinal pseudo-obstruction, and moreover, weight recovery and364 weaning from total parenteral nutrition following regular monthly IVIG treatments in

of rapid alleviation of subjective symptoms and imaging findings of SSc-related GIT

It is made available under a CC-BY 4.0 International license .

patients with SSc-myositis overlap.[7] Our current study reaffirmed the immediate
effectiveness of IVIG, as reflected in the improvement of the GIT score. These finding
underscores the utility of the GIT score as a tool for evaluating the effectiveness of
IVIG in Japanese SSc patients within real-world clinical settings and, prospectively, in

369 forthcoming clinical trials.

370 Our study has several limitations. Initially, it is important to note that the 371 sample size in our study was relatively modest. This limitation could potentially explain 372 our inability to detect any associations between autoantibody profiles and the GIT 373 scores (Supplementary Table 2), even though certain autoantibodies, such as 374 anti-U3-RNP Ab,[39] which are recognized for their association with GI involvement in 375 SSc. Furthermore, it is worth acknowledging that our evaluation of GIT scores before 376 and after IVIG administration followed a retrospective design. Consequently, the 377 potential for biases cannot be entirely ruled out, although we made efforts to minimize 378 them by sequentially enrolling cases. Additionally, it posed challenges to definitively 379 differentiate the impact of SSc from myositis on GIT symptoms, as our assessment was 380 limited to patients with SSc-myositis overlap. To comprehensively address the efficacy 381 and safety of IVIG in managing SSc-related GIT symptoms, future studies should aim

It is made available under a CC-BY 4.0 International license .

- 382 for a more rigorous investigation, ideally in a prospective, multicenter, randomized, and
- 383 placebo-controlled setup.

It is made available under a CC-BY 4.0 International license .

385 Contributor-ship

386	Conceptualization: KMM, AY
387	Methodology: KMM
388	Investigation: KMM, ES
389	Clinical data acquisition: KMM, YA, MK, MM, YN, HK, TH, AK, TF
390	Project administration: KMM
391	Supervision: AY, SS
392	Writing – original draft: KMM
393	Writing – review & editing: AY, SS
394	
395	Acknowledgements
396	We honor and appreciate Prof. Dinesh Khanna for developing and providing us
397	with the original version of the UCLA SCTC GIT 2.0. We thank Ms. Maiko Enomoto
398	and her colleagues for technical assistance and secretary work. We express our gratitude
399	to Ms. Teruko Tani and Ms. Mayumi Odagaki for their assistance in collecting clinical
400	information.
401	

402 Ethical approval information

- 403 This study was approved by The University of Tokyo Ethical Committee
- 404 (Approval number 0695).
- 405
- 406 Data sharing statement
- 407 The data analyzed during the current study are available from the
- 408 corresponding author on reasonable request.
- 409

It is made available under a CC-BY 4.0 International license .

410 References

- 411 [1] Y. Allanore et al., "Systemic sclerosis," Nat. Rev. Dis. Prim., vol. 1, pp. 1–21,
- 412 2015, doi: 10.1038/nrdp.2015.2.
- 413 [2] M. A. Omair and P. Lee, "Effect of gastrointestinal manifestations on quality of
- 414 life in 87 consecutive patients with systemic sclerosis," *J. Rheumatol.*, vol. 39, no.
- 415 5, pp. 992–996, 2012.
- 416 [3] A. Valenzuela *et al.*, "Intestinal pseudo-obstruction in patients with systemic
- 417 sclerosis□: an analysis of the Nationwide Inpatient Sample," *Rhematology*
- 418 (*Oxford*), vol. 55, no. 4, pp. 654–658, 2016.
- 419 [4] S. Ebata *et al.*, "Safety and efficacy of rituximab in systemic sclerosis
- 420 (DESIRES): a double-blind, investigator-initiated, randomised,
- 421 placebo-controlled trial," *Lancet Rheumatol.*, vol. 3, no. 7, pp. e489–e497, 2021.
- 422 [5] S. S. Takemichi Fukasawa, Ayumi Yoshizaki, Satoshi Ebata, Maiko Fukayama,
- 423 Ai Kuzumi, Yuta Norimatsu, Kazuki M Matsuda, Hirohito Kotani, Hayakazu
- 424 Sumida, Asako Yoshizaki-Ogawa, Hisashi Kagebayashi, "Interleukin-17
- 425 pathway inhibition with brodalumab in early systemic sclerosis: analysis of a
- 426 single-arm, open-label, phase 1 trial," J. Am. Acad. Dermatology, vol. 23, pp.
- **427** 516–9, 2023.

$\mathbf{L}_{\mathbf{V}}$ $\mathbf{V}_{\mathbf{V}}$ \mathbf{V} $\mathbf{V}_{\mathbf{V}}$ \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V}	. Saketkoo, and O. Distler, "Haematopoietic	[6] U. A. Walker, L. A. Saketk	. L. A. Saketkoo, and O. Distler, "Haematopoietic stem	n cell
---	---	--------------------------------	--	--------

- 429 transplantation in systemic sclerosis," *RMD Open*, vol. 4, no. 1, p. e000533, Jun.
- 430 2018, doi: 10.1136/rmdopen-2017-000533.
- 431 [7] K. M. Matsuda et al., "Rapid improvement of systemic sclerosis-associated
- 432 intestinal pseudo-obstruction with intravenous immunoglobulin administration,"
- 433 *Rheumatology*, no. January, pp. 1–7, 2023.
- 434 [8] D. Khanna *et al.*, "Development of a preliminary scleroderma gastrointestinal
- 435 tract 1.0 quality of life instrument.," *Arthritis Rheum.*, vol. 57, no. 7, pp.
- 436 1280–1286, Oct. 2007.
- 437 [9] D. Khanna *et al.*, "Reliability and validity of the university of california, los
- 438 angeles scleroderma clinical trial consortium gastrointestinal tract instrument,"
- 439 *Arthritis Care Res.*, vol. 61, no. 9, pp. 1257–1263, 2009.
- 440 [10] S. Bae *et al.*, "Development and validation of French version of the UCLA
- 441 Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument," *Clin*
- 442 *Exp Rheumatol*, vol. 29, pp. S15–S21, 2011.
- 443 [11] J. Meijs, D. Pors, T. P. M. V. Vlieland, T. W. J. Huizinga, A. A. Schouffoer, and
- 444 D. Pors, "Translation, cross-cultural adaptation, and validation of the UCLA

445		Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (SCTC
446		GIT) 2.0 into Dutch," Clin Exp Rheumatol, vol. 32, pp. S41–S52, 2014.
447	[12]	R. Gualtierotti et al., "Reliability and validity of the Italian version of the UCLA
448		Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument in
449		patients with systemic sclerosis," Clin. Exp. Rheumatol., vol. 33, pp. 55-60,
450		2015.
451	[13]	M. Gorga, C. Mihai, A. M. Soare, R. Dobrotă, A. M. Gherghe, and V. Stoica,
452		"Romanian version of the UCLA Scleroderma Clinical Trial Consortium
453		Gastrointestinal Tract Instrument," Clin. Exp. Rheumatol., vol. 33, no. 14, pp.
454		61–67, 2015.
455	[14]	A. H. L. Low et al., "Validation of the UCLA Scleroderma Clinical Trial
456		Consortium Gastrointestinal Tract Instrument 2.0 in English- and
457		Chinese-speaking patients in a multi-ethnic Singapore systemic sclerosis cohort,"
458		Clin. Rheumatol., vol. 36, no. 7, pp. 1643-1648, 2017.
459	[15]	D. E. Beaton, C. Bombardier, F. Guillemin, and M. B. Ferraz, "Guidelines for the
460		process of cross-cultural adaptation of self-report measures.," Spine (Phila. Pa.
461		1976)., vol. 25, no. 24, pp. 3186–3191, Dec. 2000.

462	[16]	F. Van Den Hoogen et al., "2013 classification criteria for systemic sclerosis: An
463		american college of rheumatology/European league against rheumatism
464		collaborative initiative," Arthritis Rheum., vol. 72, no. 11, pp. 1747–55, 2013.
465	[17]	W. F. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr,
466		Rowell N, "Scleroderma (systemic sclerosis): classification, subsets and
467		pathogenesis.," J Rheumatol., vol. 15, no. 2, pp. 202-5, 1988.
468	[18]	P. J. Clements, P. A. Lachenbruch, S. C. Ng, M. Simmons, M. Sterz, and D. E.
469		Furst, "Skin score: A semiquantitative measure of cutaneous involvement that
470		improves prediction of prognosis in systemic sclerosis," Arthritis Rheum., vol. 33,
471		no. 8, pp. 1256–63, 1990.
472	[19]	K. M. Matsuda et al., "Skin thickness score as a surrogate marker of organ
473		involvements in systemic sclerosis: a retrospective observational study.,"
474		Arthritis Res. Ther., vol. 21, p. 129, 2019.
475	[20]	K. M. Matsuda et al., "Autoantibody Landscape Revealed by Wet Protein
476		Array : Sum of Autoantibody Levels Re fl ects Disease Status," Front.
477		Immunol., vol. 13, pp. 1–14, 2022.

It is made available under a CC-BY 4.0 International license .

478	[21]	A. Kuzumi et al.,	"Comprehensive	autoantibody	profiling in system	ic
-----	------	-------------------	----------------	--------------	---------------------	----

- 479 autoimmunity by a highly-sensitive multiplex protein array," *Front. Immunol.*,
- 480 vol. 14, 2023.
- 481 [22] T. Sawasaki, T. Ogasawara, R. Morishita, and Y. Endo, "A cell-free protein
- 482 synthesis system for high-throughput proteomics," *Proc. Natl. Acad. Sci. U. S. A.*,
- 483 vol. 99, no. 23, pp. 14652–14657, 2002.
- 484 [23] N. Goshima *et al.*, "Human protein factory for converting the transcriptome into

485 an in vitro-expressed proteome," *Nat. Methods*, vol. 5, no. 12, pp. 1011–1017,

- **486** 2008.
- 487 [24] E. Fukuda *et al.*, "Identification and characterization of the antigen recognized by
- 488 the germ cell mAb TRA98 using a human comprehensive wet protein array,"
- 489 *Genes to Cells*, vol. 26, no. 3, pp. 180–189, 2021.
- 490 [25] S. Fukuhara, S. Bito, J. Green, A. Hsiao, and K. Kurokawa, "Translation,
- 491 Adaptation, and Validation of the SF-36 Health Survey for Use in Japan," J. Clin.
- 492 *Epidemiol.*, vol. 51, no. 11, pp. 1037–1044, Nov. 1998.
- 493 [26] K. S. Shunya Ikeda, Takeru Shiroiwa, Ataru Igarashi, Shinichi Noto, Takashi
- 494 FUKUDA, Shinya Saito, "Developing a Japanese version of the EQ-5D-5L value
- 495 set," J. Natl. Inst. Public Heal., vol. 64, no. 1, pp. 47–55, 2015.

496	[27]	M. Kusano et al.,	"Development	and evaluation	of FSSG:	frequency	scale for the
-----	------	-------------------	--------------	----------------	----------	-----------	---------------

- 497 symptoms of GERD," *J. Gastroenterol.*, vol. 39, no. 9, pp. 888–891, 2004.
- 498 [28] S. Fukuhara, J. E. J. Ware, M. Kosinski, S. Wada, and B. Gandek, "Psychometric
- 499 and clinical tests of validity of the Japanese SF-36 Health Survey.," J. Clin.
- 500 *Epidemiol.*, vol. 51, no. 11, pp. 1045–1053, Nov. 1998.
- 501 [29] J. M. Bland and D. G. Altman, "Cronbach's alpha.," BMJ, vol. 314, no. 7080, p.
- 502 572, Feb. 1997.
- 503 [30] D. Khanna et al., "The American College of Rheumatology Provisional
- 504 Composite Response Index for Clinical Trials in Early Diffuse Cutaneous
- 505 Systemic Sclerosis," *Arthritis Care Res.*, vol. 68, no. 2, pp. 167–78, 2016.
- 506 [31] E. Dein, P. Kuo, Y. S. Hong, L. K. Hummers, C. A. Mecoli, and Z. H. Mcmahan,
- 507 "Evaluation of risk factors for pseudo-obstruction in systemic sclerosis," *Semin.*
- 508 *Arthritis Rheum.*, vol. 49, no. 3, pp. 405–410, 2020.
- 509 [32] M. Hasegawa, M. Fujimoto, K. Kikuchi, and K. Takehara, "Elevated serum
- 510 tumor necrosis factor-alpha levels in patients with systemic sclerosis: association
- 511 with pulmonary fibrosis.," *J. Rheumatol.*, vol. 24, no. 4, pp. 663–665, Apr. 1997.
- 512 [33] M. Hasegawa, S. Sato, M. Fujimoto, H. Ihn, K. Kikuchi, and K. Takehara,
- 513 "Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and

soluble gp130 in patients with systemic sclerosis.," <i>J</i>	. Rheumatol., vol. 25, no. 2,
---	-------------------------------

- 515 pp. 308–313, Feb. 1998.
- 516 [34] J.-J. Choi *et al.*, "Elevated vascular endothelial growth factor in systemic
- 517 sclerosis.," J. Rheumatol., vol. 30, no. 7, pp. 1529 LP 1533, Jul. 2003.
- 518 [35] Y. Kawaguchi, "Contribution of Interleukin-6 to the Pathogenesis of Systemic
- 519 Sclerosis," J. Scleroderma Relat. Disord., vol. 2, no. 2_suppl, pp. S6–S12, Jan.
- **520** 2017.
- 521 [36] D. Khanna et al., "Safety and efficacy of subcutaneous tocilizumab in adults with
- 522 systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial," *Lancet*,
- 523 vol. 387, pp. 2630–2640, 2016.
- 524 [37] G. Murdaca, F. Spanò, M. Contatore, A. Guastalla, and F. Puppo, "Potential use
- 525 of TNF-α inhibitors in systemic sclerosis.," *Immunotherapy*, vol. 6, no. 3, pp.
- 526 283–289, 2014, doi: 10.2217/imt.13.173.
- 527 [38] F. Rieder et al., "Gastroesophageal Reflux Disease–Associated Esophagitis
- 528 Induces Endogenous Cytokine Production Leading to Motor Abnormalities,"
- 529 *Gastroenterology*, vol. 132, no. 1, pp. 154–165, 2007.
- 530 [39] E. Nishimagi, A. Tochimoto, Y. Kawaguchi, T. Satoh, and M. Kuwana,
- 531 "Characteristics of Patients with Early Systemic Sclerosis and Severe

It is made available under a CC-BY 4.0 International license .

532 Gastrointestinal Tract Involvement," J. Rheumatol., vol. 34, no. 10, pp.

- 533 2050–2055, 2007.
- 534
- 535

It is made available under a CC-BY 4.0 International license .

536 Figure legends

537	Figure 1	1.	Correlation	between	serum	cytokine	levels	and	Japanese	UCLA	SCT	С
	0											

- 538 GIT 2.0 scores. Scatter plots of TNF-α vs. reflux subscale (A), IL-6 vs. reflux subscale
- 539 (B), VEGF vs. social functioning subscale (C), and VEGF vs. constipation subscale (D).
- 540 r: Spearman's rho. * P < 0.05. The red line and the green area represent the regression
- 541 line and its 95% confidence interval.

It is made available under a CC-BY 4.0 International license .

543 Figure 2. Sensitivity of UCLA SCTC GIT 2.0 in relation to IVIG administration.

- 544 (A) Schematic figures of the study design. Japanese version of the GIT score was
- 545 analyzed on day 1 and day 7. IVIG 2 g/kg was administered over 5 days (day 2-6). (B)
- 546 The total GIT score and subscales before and after IVIG administration. *P* values were
- 547 calculated by Wilcoxon signed-rank test. * P < 0.05.

It is made available under a CC-BY 4.0 International license .

549	Supplementary Figure 1. Autoantibody profiling. (A) Schematic figures of A-Cube.
550	Synthesized antigens were displayed on glass slides in an array format. The arrays were
551	treated with patients' serum, followed by application of fluorescence-labeled secondary
552	antibodies specific to human IgG. The serum levels of each autoantibody were
553	determined through analysis of the resulting fluorescence image. GSH: glutathione. (B)
554	Correlational heatmap between each autoantibody. r: Spearman's rho. The size of each
555	circle represents the P value. (C) The UpSet plot of autoantibodies.

It is made available under a CC-BY 4.0 International license .

Number of patients	38	
Basic demographics		
Age, years	65±11	
Female, n (%)	36 (95%)	
Disease duration, years	9±7	
BMI	20±3	
Autoantibodies		
Anti-topoisomerase I Ab, n (%)	10 (26%)	
Anti-centromere Ab, n (%)	17 (45%)	
Anti-RNA polymerase III Ab, n (%)	6 (16%)	
Anti-U1-RNP Ab, n (%)	2 (5%)	
Type of SSc		
lcSSc, n (%)	28 (74%)	
dcSSc, n (%)	8 (21%)	

557 Table 1. Background of the patients for reliability and validity assessment.

Overlap with SLE, n (%)	2 (5%)
Overlap with PM/DM, n (%)	0 (0%)
Skin manifestations	
Diffuse skin sclerosis, n (%)	10 (26%)
mRSS	13±9
Puffy fingers, n (%)	30 (79%)
Telangiectasia, n (%)	20 (53%)
Calcinosis, n (%)	5 (13%)
Peripheral angiopathy	
Normal, n (%)	4 (11%)
Raynaud's phenomenon, n (%)	16 (42%)
Pitting scars, n (%)	11 (29%)
Digital ulcers, n (%)	6 (16%)
Gangrenes, n (%)	1 (3%)
N of ulcered fingers, n (%)	3±4

It is made available under a CC-BY 4.0 International license .

Organ involvements

ILD, n (%)	16 (42%)
PH, n (%)	4 (11%)
SRC, n (%)	1 (3%)
Medications	
PPI, n (%)	34 (89%)
Calcium channel blockers, n (%)	7 (18%)
Corticosteroids, n (%)	13 (34%)
Endothelin receptor antagonists, n (%)	18 (47%)
Objective clinical outcome measures	
%FVC	97±19
%DLco	89±18
KL-6	245±75
SP-D	72±36
Serum albumin, g/dL	4.4±1.0

Serum TG, mg/dL	134±55
PROMs	
F-scale	
Reflux score	7±6
Dyspeptic score	6±5
Total score	13±11
SF-36	
PF	77±22
RP	71±28
BP	59±24
GH	46±15
VT	55±20
SF	77±27
RE	79±26
МН	70±18

It is made available under a CC-BY 4.0 International license .

PCS	42±13
MCS	50±8
EQ-5D	
Mobility	0.39±0.72
Self-care	0.21±0.47
Usual activities	0.66±0.88
Pan/Discomfort	0.87±0.91
Anxiety/Depression	0.42±0.76
VAS	66±18

558 Unless noted otherwise, values are means \pm SD.

It is made available under a CC-BY 4.0 International license .

560 Table 2. Descriptive statistics and internal consistency reliability of the Japanese

561 UCLA SCTC GIT 2.0.

					Floor	Ceiling
Subclass	Mean	Min	Max	Cronbach's	effect	effect
	(SD)			α	(%)	(%)
Reflux	0.25 (0.37)	0	1.625	0.77	17 (45%)	0 (0%)
Distention/bloating	0.70 (0.67)	0	2.25	0.76	12 (32%)	0 (0%)
Fecal soilage	0.13 (0.41)	0	2	NA	34 (89%)	0 (0%)
Diarrhea	0.49 (0.68)	0	3	0.67	20 (53%)	1 (%)
Social functioning	0.21 (0.37)	0	1.5	0.76	24 (63%)	0 (0%)
Emotional well-being	0.17 (0.33)	0	1.67	0.78	21 (55%)	0 (0%)
Constipation	0.36 (0.53)	0	1.75	0.73	19 (50%)	0 (0%)
Total GIT score	0.29 (0.33)	0	1.27	0.92	9 (24%)	0 (0%)

562 NA: not applicable.

	Reflux	Distention/	Fecal	Diarrhea	Social	Emotional	Constipation	Total
		Bloating	soilage		functioning	well being		
F-scale								
Reflux	0.79****	0.71****	0.10	0.49**	0.43**	0.47**	0.21	0.73****
Dyspepsia	0.58***	0.77****	0.18	0.59***	0.48**	0.45**	0.34*	0.74****
Total	0.72****	0.77****	0.15	0.56***	0.47**	0.48**	0.29	0.77****
EQ-5D								
Mobility	0.27	0.10	-0.05	-0.14	0.05	-0.07	-0.02	0.08
Self-care	0.24	0.21	-0.16	0.04	-0.07	0.02	0.11	0.16
Usual activities	0.44**	0.28	-0.03	0.10	0.09	0.12	0.20	0.27

Table 3. Spearman's correlation coefficients among PROMs

_

Pain/discomfort	0.38*	0.47**	0.03	0.08	0.30	0.23	0.33*	0.40*	
Anxiety/depression	0.08	0.13	-0.02	0.09	0.03	0.13	0.12	0.12	
VAS	-0.18	-0.19	0.03	0.03	-0.06	-0.13	-0.11	-0.16	
SD-36									
PF	-0.39*	-0.12	0.10	0.14	-0.06	0.09	0.08	-0.09	
RP	-0.36*	-0.18	-0.02	-0.13	-0.21	0.05	-0.18	-0.20	
BP	-0.49**	-0.49**	-0.09	-0.25	-0.33*	-0.40*	-0.25	-0.51**	
GH	-0.21	-0.36*	-0.13	-0.10	-0.08	-0.37*	-0.08	-0.33*	
VT	-0.34*	-0.23	0.04	-0.04	-0.09	-0.03	0.03	-0.20	
SF	-0.27	-0.12	0.18	-0.14	0.08	-0.07	0.12	-0.16	
RE	-0.32	-0.28	0.01	-0.04	0.00	-0.04	0.13	-0.21	

MH	-0.01	0.03	0.12	-0.03	0.23	0.01	0.20	0.04
PCS	-0.51**	-0.34*	-0.12	-0.12	-0.23	-0.09	-0.13	-0.33*
MCS	-0.03	-0.10	0.07	-0.07	0.08	-0.16	0.12	-0.10

Boldface letters mean statistically significant. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

	C	Spearman's rho							
Cytokine	Serum		Distontion			Social	Emotional		Total
Cytokine		Reflux		Fecal soilage	Diarrhea			Constipation	GIT
	pg/mL		/Bloating			functioning	well-being		score
TNF-α	8.2±3.1	0.41*	-0.05	-0.26	-0.12	-0.10	-0.11	-0.11	-0.02
IL-6	6.5±7.2	0.41*	-0.06	-0.35	-0.08	-0.23	-0.12	0.12	-0.03
IL-10	4.2±2.2	-0.09	-0.23	-0.18	-0.31	-0.17	-0.21	-0.18	-0.27
IL-27	196±68	-0.34	-0.13	0.04	-0.22	0.18	0.07	0.06	-0.09
VEGF	94±35	0.01	-0.01	-0.02	0.09	0.41*	0.12	0.48*	0.11
IFN-γ	36±19	0.12	-0.18	-0.15	-0.18	-0.26	-0.17	-0.24	-0.19

Table 4. Association between serum cytokine levels and the UCLA SCTC GIT scores.

IL-31	62±31	-0.15	-0.06	0.11	0.06	-0.26	0.00	0.00	-0.09
IL-1α	9.4±4.1	0.06	-0.29	-0.26	-0.21	-0.31	-0.16	-0.20	-0.26
IL-4	102±30	0.06	-0.28	-0.19	-0.18	-0.30	-0.17	0.18	-0.24
IL-17	4.9±1.3	-0.33	-0.38	-0.14	-0.18	-0.14	-0.25	0.00	-0.38
BAFF	920±269	0.14	-0.17	-0.13	-0.13	-0.22	-0.10	-0.18	-0.15
IL-13	354±106	0.01	-0.06	-0.02	-0.19	0.21	0.05	0.36	-0.01
IFN-α	3.3±1.0	0.11	0.04	0.16	0.19	-0.09	0.21	-0.02	0.10
IL-23	413±166	0.07	-0.29	-0.19	-0.28	-0.18	-0.25	-0.09	-0.26

Boldface letters mean statistically significant. * P < 0.05.

It is made available under a CC-BY 4.0 International license .

Matsuda KM et al. Figure 1

It is made available under a CC-BY 4.0 International license .

Matsuda KM et al. Figure 2