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Abstract 
Early detection of human disease is associated with improved clinical outcomes. However, 
many diseases are often detected at an advanced, symptomatic stage where patients are past 
efficacious treatment periods and can result in less favorable outcomes. Therefore, methods 
that can accurately detect human disease at a presymptomatic stage are urgently needed. 
Here, we introduce “frequentmers”; short sequences that are specific and recurrently observed 
in either patient or healthy control samples, but not in both. We showcase the utility of 
frequentmers for the detection of liver cirrhosis using metagenomic Next Generation 
Sequencing data from stool samples of patients and controls. We develop classification models 
for the detection of liver cirrhosis and achieve an AUC score of 0.91 using ten-fold cross-
validation. A small subset of 200 frequentmers can achieve comparable results in detecting liver 
cirrhosis. Finally, we identify the microbial organisms in liver cirrhosis samples, which are 
associated with the most predictive frequentmer biomarkers. 
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Introduction 
Early detection and diagnosis of human disease is essential for enhancing patient outcomes 
and reducing mortality rates (Lee, Huang, and Zelen 2004), as it enables timely efficacious 
intervention strategies. However, current modalities of detecting disease often lack the 
sensitivity and specificity required to capture presymptomatic stages of disease progression 
accurately. Therefore, there is an urgent need to establish novel methods that identify unique 
biological markers of disease which precede the manifestation of symptoms.  
 
Sequencing has provided the opportunity to investigate the molecular insights of disease 
mechanisms and potentially identify unique changes between healthy and affected individuals. 
Kmers, contiguous DNA subsequences of length k, have been successfully implemented across 
multiple research problems including in the construction of genome alignments (Rahman et al. 
2018), for the generation of genome assemblies (Rhie et al. 2020), in understanding 
evolutionary relationships between species (Yang et al. 2020) and the construction of 
phylogenies (Bussi, Kapon, and Reich 2021) among other applications. Additionally, a number 
of algorithms have been developed for the faster and more efficient derivation of kmers and 
their occurrences, such as Jellyfish (Marçais and Kingsford 2011) and BBDuk (Bushnell, Rood, 
and Singer 2017). Kmers have been previously used to describe new features or characteristics 
of an organism related to the presence or absence of a specific contiguous subsequence. For 
example, the subset of kmers that do not appear in a genome are referred to as nullomers 
(Acquisti et al. 2007; Georgakopoulos-Soares, Yizhar-Barnea, et al. 2021; Koulouras and Frith 
2021) and the subset of kmers that are found in a single species are referred to as quasi-primes 
(Mouratidis et al. 2023). Using kmer strategies, we may efficiently mine the human genome for 
differences that distinguish patients with disease from healthy individuals in effort to establish 
unique biological signatures. 
 
Liver cirrhosis is a major health burden across countries, affecting 5.2 million people globally 
and causing 1.48 million deaths in 2019 alone (Y.-B. Liu and Chen 2022). The proportion of liver 
cirrhosis deaths as a fraction of total deaths in the population has increased in the last decade, 
indicating the need for early detection and intervention, including lifestyle changes and 
treatments (GBD 2017 Cirrhosis Collaborators 2020). Metagenomic Next Generation 
Sequencing (mNGS) is a powerful tool that enables researchers and clinicians to identify and 
characterize microbial pathogens, antimicrobial resistance, and virulence markers from various 
samples, which can facilitate early disease detection and diagnosis. In a study conducted by 
Qin et al. (Qin et al. 2014), a cohort of 123 patients with liver cirrhosis and 114 healthy 
individuals was studied using mNGS data from stool samples (Qin et al. 2014). Qin et al. trained 
a disease classifier using leave-one-out cross-validation on 98 patient and 83 healthy control 
samples to identify gene markers enriched either in patients or controls. The computational 
complexity of this cross-validation approach informed the decision of the authors to only use 
fifteen gene markers as features for the Support Vector Machine (SVM) model, achieving an 
AUC value of 0.836. Improvements in the performance of such a model would be required for 
the clinical implementation of mNGS for liver cirrhosis detection. 
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Here we describe a feature selection approach for machine learning models based on a novel 
feature termed frequentmers. We define frequentmers as kmers that are present in multiple 
samples from one group but completely absent from the other group. We extracted 
frequentmers across the mNGS dataset from the liver cirrhosis study, utilizing them to train a 
machine learning model that achieves an AUC of 0.91 with 10-fold cross-validation. We 
demonstrated that a small number of 200 frequentmers can result in comparable classification 
accuracy. We also identified specific microbial species that are informative for the detection of 
liver cirrhosis. Frequentmers are transferable to other diseases and sequencing assays, 
representing a novel method for biomarker development and for the detection of human 
diseases. 
 
Results 
 
Derivation of frequentmers 
We have derived a new type of algorithm that identifies highly informative and specific 
sequences to enable the early detection of human diseases (Figure 1). First, we identified the 
set of kmer sequences that are observed in each patient and each control sample. Next, we 
calculated the number of samples in which each kmer sequence is present. We removed 
sequences that are present in both patient and control samples, hypothesizing that these 
sequences are less likely to reflect differences between the two groups, and to serve as 
biomarkers. The subset of sequences that are found in multiple healthy control samples and not 
in patient samples is termed “control frequentmers” and similarly the subset present in multiple 
patient samples and absent from healthy control samples is termed “patient frequentmers”. The 
aforementioned process is performed using ten-fold cross-validation. For each fold, 90% of the 
samples are used as a training set and the remaining 10% is used as a test set. Frequentmers 
are derived independently from the training set of each fold. The mathematical formulation is 
provided below. 
 
Definitions 
Let us define alphabet � �  ��, �, �, 	
 representing adenine, thymine, cytosine, and guanine 
respectively. Metagenomic Next Generation Sequencing reads can be represented as a 
nucleotide string � � ������. . . ��  over this alphabet. We can then represent the entirety of an 
individual’s sequenced metagenome as a collection of strings � �  ���, �� , . . . , ��
 .   

 
A nucleotide kmer � is defined as a short nucleotide sequence of length k over alphabet � and 
can be represented as � �  ������ . . . �� . A kmer � is said to belong to a read �, � � ��,  if and 
only if ��, � �  �1, . . . , �
: � � � � � � 1 � ������ . . . ��  � ������ . . . ��. Note that � � � � � � 1 implies 

the kmer is comprised of exactly � nucleotides. 
 
A kmer � is said to belong to an individuals metagenome � if and only if ��: � � ��  � �� � � . 
 
The samples used for training our algorithm can further be subdivided into two distinct groups, 
mNGS sequencing of samples taken from healthy control samples and mNGS sequencing 
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taken from individuals with liver cirrhosis. Let us name the two groups � �  ���, �� , �� , . . . , �	} 

and � �  ���, ��, �� , . . . , �

 of controls and patients respectively. 
 
A kmer � is said to be a healthy control frequentmer of recurrency � if and only if: 
 

����, ��, ��, . . . , �� � �1, . . . ,  
: !�, � � �1, . . . , �
 �� " ��  � � � ���
# � �! $ � �1, . . . , %
: � &  �# 

 
In other words, a kmer � is said to be a healthy control frequentmer of recurrency r if and only if 
this k-mer appears in at least r control samples and does not appear in any patient samples. 
 
Similarly, a kmer � is said to be a patient frequentmer of recurrency r if and only if: 
 

����, ��, ��, . . . , �� � �1, . . . , %
: !�, � � �1, . . . , �
 �� " ��  � � � ���
# � �! $ � �1, . . . ,  
: � &  �# 

 
In other words, a kmer � is said to be a patient frequentmer of recurrency r if and only if this 
kmer appears in at least r patient samples and does not appear in any control samples. 
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Figure 1: Visualization of frequenter extraction pipeline and inference. Two groups of
samples are examined, the first group is composed of healthy control samples and serves as
the control and the second group contains patient samples, for the disease that is investigated.
mNGS data are analyzed to determine the number of kmers found in each sample and
subsequently the kmers unique to only one group (healthy controls or patients) are identified.
Frequentmers represent the recurrent kmers found only in patient samples or only in healthy
control samples, but never in both. Frequentmers that are found in multiple samples of only one
group are used as features to train a machine learning algorithm to perform binary classification
on unseen data. 
 
 
A disproportionate number of liver cirrhosis-specific kmers is detected  
We implemented our algorithm in metagenomic Next Generation Sequencing (mNGS) data
derived from fecal samples of liver cirrhosis patients and healthy controls (Qin et al. 2014). In
total, we examined 123 patients with liver cirrhosis and 114 matched healthy controls. We
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extracted every sixteen base-pair (bp) kmer found in each sample and split samples in ten 
groups or folds, with the proportion of cases over the total samples in each fold being 
maintained. The choice of kmer length was informed from previous studies in which we found 
that the performance of the kmer-based models increased as a function of kmer length up to 
sixteen bp length (Georgakopoulos-Soares, Barnea, et al. 2021). For each fold, we examined 
which subset of the total kmers detected constituted frequentmers, using the number of samples 
in which each kmer was found as the recurrency threshold (see Methods). Thus, we estimated 
the number of healthy control and patient frequentmers as a function of the recurrence among 
liver cirrhosis patients and healthy controls, respectively.  
 
First, we find that the number of frequentmers recovered decreases as a function of the 
recurrency threshold used (Supplementary Figure 1a-c). We also find that as the recurrency 
threshold for the number of samples a frequentmer is present in increases, there is a larger 
proportion of the total frequentmers being patient frequentmers relative to control frequentmers 
(Figure 2a-b; Supplementary Figure 2; Pearson correlation: r = 0.975, p-value<e-9). 
Specifically, we observe that for the recurrency threshold of five samples, there is 8.92-fold 
more patient than healthy control frequentmers, whereas at recurrence of twenty samples there 
is 306.5-fold more patient than healthy control frequentmers (Figure 2b; binomial test, p-value = 
0), indicating an imbalance between the number of healthy control and patient frequentmers 
identified. These differences likely stem from changes in the microbiome of liver cirrhosis 
patients, which are observed recurrently across multiple liver cirrhosis patients and which are 
not normally observed in healthy microbiomes.  
 
Next, we examined what proportion of frequentmers observed in the training cohort was also 
identifiable in the test cohort. We find that the proportion of frequentmers observed in the test 
cohort is correlated with the recurrence threshold (Figure 2c; Supplementary Figure 3; 
Pearson correlation: r = 0.964, p-value<2.03e-9). We also observe that for recurrence threshold 
of fifteen samples, 86% of frequentmers are recovered, with the proportion of frequentmers that 
is recovered leveling off around this recurrence threshold (Figure 2c). Importantly, the number 
of patient frequentmers detected in the test set is significantly larger in samples from liver 
cirrhosis patients relative to healthy controls across the recurrency thresholds examined (Figure 
2d; Mann-Whitney U, p-value=0). Additionally, we find that healthy control frequentmers from 
the training set are 6.49-fold more likely to be found in healthy control samples in the test set 
(Figure 2e; Mann-Whitney U, p-value<0.00016). Similarly, liver cirrhosis frequentmers derived 
in the training set are 9.04-fold more likely to be found in liver cirrhosis samples in the test set 
(Figure 2e; Mann-Whitney U, p-value<9.1e-5), providing further support for efficacy of our 
methodology. Therefore, we find that across the ten folds that were independently evaluated, 
there are frequentmers that are consistently detected and that are either liver-cirrhosis specific 
or only derived from healthy control samples. 
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Figure 2: Characterization of frequentmers associated with liver cirrhosis. A. The number
of liver cirrhosis frequentmers and healthy control frequentmers identified as a function of the
number of samples in which they were detected (recurrency). B. Stacked barplot showing the
proportion of the total frequentmers being patient and healthy control frequentmers. C. Bar plot
displaying the frequency with which frequentmers identified in the training set are observed in
the test set, for recurrency thresholds 5-20. Results shown represent the mean across the ten
folds. D. Number of frequentmers detected in the test set for healthy control and liver cirrhosis
frequentmers for recurrency threshold of fifteen across folds. Results shown represent the mean
across the ten folds. E. Number of healthy frequentmers in the training set also detected in the
test set of healthy control and patient samples (left). Number of liver cirrhosis frequentmers in
the training set also detected in the test set of healthy control and patient samples (right).
Frequentmers of the recurrency threshold of fifteen samples were used. 
 
 
Identification of kmers associated with HBV infection and high alcoholic consumption 
Liver cirrhosis is linked to both high alcohol intake and HBV infection (Scaglione et al. 2015).
For liver cirrhosis, we investigated if there were differences in the samples that are Hepatitis B
virus (HBV) positive, regarding the frequentmers detected.  
 
Among the liver cirrhosis frequentmers of recurrency fifteen, we find that 55,789 are specific to
liver cirrhosis patients that are HBV positive and are completely absent from HBV negative
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patients, for recurrency (Figure 3a; Supplementary Figure 3). Similarly, we examined samples 
from alcohol-related liver cirrhosis patients and observed that 5,004 are specific to them for 
recurrency threshold of five (Figure 3b; Supplementary Figure 4). The recurrency threshold of 
five and fifteen were selected as they represent an approximately equal proportion of the total 
number of samples that are alcohol-related and HBV positive, which are 34 and 99 respectively. 
Therefore, we conclude that we can detect healthy control frequentmers, general liver cirrhosis 
frequentmers and frequentmers that reflect viral exposure (HBV) and lifestyle (alcohol 
consumption) differences. We find that the majority of frequentmers originate primarily from 
HBV positive samples, which is to be expected as they constitute the majority of our patient 
samples. However, there are differences in the distribution of frequentmers, with some tending 
to be found more in either HBV positive or alcohol-related samples (Figure 3c).  
 
We examined the number of frequentmers of recurrency fifteen shared in HBV positive patients 
relative to patients that were HBV negative and observed that the two groups were dissimilar in 
their frequentmer profile (Mann-Whitney U, p-value<0.0143). Similar results were observed for 
samples that were derived from high alcohol intake patients relative to other patients (Mann-
Whitney U, p-value<3.49e-6). We conclude that differences in the exposures of samples are 
reflected in their frequentmer profile. 
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Figure 3: Characterization of liver cirrhosis frequentmers in relationship to HBV infection
and alcohol consumption. A. Histogram displaying the number of frequentmers and the
corresponding proportion of HBV-positive patient samples they were detected. B. Histogram
displaying the number of frequentmers and the corresponding proportion of alcohol samples in
which they were detected. C. Frequentmer distribution in samples that are HBV-positive (n=99),
have high alcohol intake (n=34),  are both HBV-positive and have high alcohol intake (n=23) or
are not associated with either (n=13). 
 
 
Principal Component Analysis reflects differences in frequenter profiles 
Next, we examined if liver cirrhosis and healthy control samples are linearly separable. A
principal component analysis (PCA) was used to examine the information that healthy control
and liver cirrhosis frequentmers can capture to separate samples from the two groups. We
observe that a large fraction of the variance can be explained by the first twenty principal
components (PCs), with the first PC alone capturing 22.46% of the variance (Figure 4a).
Additionally, we observe that the first three PCs can separate the liver cirrhosis and control
samples (Figure 4b-c). These findings provide evidence that frequentmers can capture
differences in the mNGS profile of liver cirrhosis patients and healthy controls. 
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Figure 4: A. Proportion of variance explained by twenty principal components. Mean score of
the explained variance ratio across the ten folds is shown. Error bars show standard deviation.
Line plot indicates the cumulative explained variance across the twenty first principal
components. B-C. Scatter plot displaying the separation of patient and control samples by the
first three principal components. Results shown for B. PC1 versus PC2 and C. PC1 versus PC3.
 
A predictive model based on frequentmers can accurately detect liver cirrhosis 
The early detection of liver cirrhosis is critical for intervention and improved clinical outcomes of
patients (Trivedi and Tapper 2018). We therefore developed machine learning classification
models to examine if frequentments can accurately predict liver cirrhosis patients from healthy
controls. The first model we examined was a logistic regression model, which has inherent
advantages such as interpretability and determinism. We examined the performance of the
model using multiple recurrency thresholds for the number of samples in which each
frequentmer was found in the training set. We observed that when increasing the sample
recurrency threshold, the performance of the model increased (Supplementary Figure 6),
which is likely due to removing features that were less informative. We also report that the
logistic model has an AUC of 0.91 for recurrency threshold of fifteen samples (Figure 5a-b),
indicating that it can accurately detect liver cirrhosis. The performance of our model was
superior to that obtained from the original article (Qin et al. 2014). We also find that the top
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features are liver cirrhosis frequentmers (Supplementary Figure 7-8). From the 1,000 most 
informative coefficients (as measured by absolute coefficient score) of the logistic regression 
model 993 were liver cirrhosis frequentmers, which was significantly more than expected by 
chance (Binomial test, p-value<1.4e-07; Figure 5c, Supplementary Figure 7). As a result, we 
conclude that our feature selection is largely reflected in what the logistic regression model 
learns and is primarily based on liver cirrhosis frequentmers. 
 
To examine non-linear patterns between frequentmers we also implemented an XGBoost 
classification model. Extreme Gradient Boosting is a classification framework based on training 
a sequence of decision trees and utilizing their combined predictions to make the final 
classification (T. Chen and Guestrin 2016). We observe that across the different sample 
recurrency thresholds the model performs comparably to the logistic regression model 
(Supplementary Figure 9, Figure 5d). At low recurrency thresholds, for which the number of 
features is extremely large and the noise in the system increases, XGBoost outperforms logistic 
regression (Supplementary Figure 6, Supplementary Figure 9). However, for a frequentmer 
recurrency threshold of fifteen samples we obtained an AUC score of 0.90, suggesting that the 
ensemble model did not perform better than the logistic regression model. 
 
Additionally, we were interested to find if we can perform similarly in detecting liver cirrhosis 
using only a small fraction of the frequentmers. We therefore investigated how the number of 
frequentments used in the classification model influenced the performance. To achieve this we 
identified the most informative features from the training set of each fold in the logistic 
regression using the absolute value of each logistic regression coefficient for each frequentmer 
(Figure 5c) and re-trained the logistic regression model for the same samples in the training 
set. We then tested the performance of our model. This process was repeated, examining 
between 25 and 1,000 frequentmers. We observe that even with roughly 200 frequentmers we 
achieve comparable performance to the original model that used all frequentmers (Figure 5a, 
e). These results indicate that with a small number of frequentmers we can be used to generate 
a classification model that can accurately detect liver cirrhosis. 
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Figure 5: Machine learning based liver cirrhosis detection. A. ROC curve displaying the
AUC for the logistic regression model for recurrency threshold of fifteen. B. Confusion matrix
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showing the percentage of samples that were correctly and incorrectly classified as liver 
cirrhosis patients or healthy controls, for recurrency threshold of fifteen. C. Logistic regression 
classification coefficients. D. ROC curve displaying the AUC for the XGBoost classification 
model, for recurrency threshold of fifteen. E. AUC score relative to number of top frequentmers  
used for logistic regression. Gray lines display the confidence intervals from the ten folds. The 
blue line shows the mean AUC score across the ten folds. 
 
Identification of microbial species driving the classification models 
Utilizing the coefficients of the logistic regression performed at recurrency threshold fifteen, 
which corresponded to the best performing model, we identified the 100 frequentmers with the 
highest positive regression coefficient and the 100 frequentmers with the lowest negative 
regression coefficient averaged over all ten folds. Within this group, the 100 frequentmers with a 
positive coefficient were patient frequentmers and the 100 frequentmers with a negative 
coefficient were healthy control frequentmers.  
 
We then extracted the sequencing reads from which those frequentmers originated, identifying a 
total of 41,944 reads. On average, these frequentmers were present in 210 reads (mean: 
209.72, standard deviation: 256.50), with some significant outliers skewing the variance (Figure 
6a). Patient frequentmers were found in significantly more reads than healthy frequentmers (t-
test, p-value X). The distribution of samples and the number of patient and healthy frequentmers 
supports a clear separation between patient and control samples (Figure 6b).  
 
We further identified the microbial species from which the frequentmers were derived from. 
Interestingly, we find a set of bacterial species that are highly enriched for frequentmers (Figure 
6c-d), including Prevotella copri, Haemophilus parainfluenzae, Faecalibacterium prausnitzii and 
Klebsiella pneumoniae, multiple of which have been previously associated with liver cirrhosis 
(Dong et al. 2020) or other liver-associated diseases such as liver abscess (Y. Liu, Wang, and 
Jiang 2013), and Nonalcoholic Fatty Liver Disease (Hu et al. 2022). Therefore, we conclude that 
we can identify the microbial species from which the frequentmers were derived, showcasing 
the interpretability of our approach. 
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Figure 6: Frequentmer containing reads. Top and bottom 100 most informative frequentmers 
based on logistic regression with recurrency threshold fifteen. A. The corresponding number of 
reads originated from. B. Their distribution across patient and healthy control samples. C.  
Taxonomic assignment for the top frequentmer reads across microbial organisms. D. Krona 
Radial space-filling plot showing the identified microbial species abundance. 
 
 
 
Discussion 
In this work, we describe the development of a method that enables the identification of kmer 
sequences that are specific to patient and healthy control samples, which we term patient and 
healthy control frequentmers, respectively. We show that frequentmers can be used as disease 
detection biomarkers, by demonstrating their utility for the detection of liver cirrhosis using 
mNGS data, in which we outperform previously published models and achieve an AUC score of 
0.91 (Qin et al. 2014). 
 
The integration of other biomarkers, clinical information and risk factors can result in further 
improvements of our models for the early detection of human disease. Furthermore, a major 
strength of our method is the interpretability of our logistic regression model and we provide 
evidence that we can directly infer the microbial species from which the frequentmers are 
derived from. We show that the majority of high importance frequentmers originate from 
microorganisms known to be associated with liver cirrhosis, such as Prevotella copri, 
Faecalibacterium prausnitzii and Klebsiella pneumoniae, multiple of which have been previously 
associated with liver cirrhosis (Dong et al. 2020; Y. Chen et al. 2021; Yuan et al. 2019). These 
results demonstrate the ability of the method to discover new associations between microbial 
species in the gut microbiome and disease. Investigation of the biological function of these 
microbial species and their roles in liver damage and cirrhosis are of particular interest for future 
work. Therefore, frequentmers can provide insights into microbial changes specific to the 
development of liver cirrhosis which could result in mechanistic insights for the role of the 
microbiome in this disease. 
 
Examination of fecal samples using mNGS data is a non-invasive procedure that can be used 
for the early detection of liver fibrosis, before the manifestation of symptoms associated with 
liver cirrhosis. A small set of frequentmers suffices to achieve high predictive power in detecting 
liver cirrhosis (Figure 5e), which is another important advantage of our method. As a result, the 
detection of a small set of frequentmers could enable novel diagnostics based on short DNA 
sequences from mNGS data. For instance, CRISPR-based detection tools could be used to 
target frequentmers in detection assays (Kellner et al. 2019) or sequencing-based approaches 
such as adaptive sampling (also known as selective sequencing), which can enrich for specific 
sequences (Loose, Malla, and Stout 2016), can be applied to reduce detection costs. 
 
A number of human diseases are associated with changes in the human microbiome, including 
cancer (Helmink et al. 2019) neurodegenerative diseases (Romano et al. 2021), metabolic 
diseases (Fan and Pedersen 2021), autoimmune disorders (De Luca and Shoenfeld 2019; 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.19.23295771doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295771


Franzosa et al. 2019) and various infections (Whiteside et al. 2015; Natalini, Singh, and Segal 
2023; Honda and Littman 2012). Therefore, machine learning models based on frequentmers 
could be applicable towards the detection of multiple other diseases as well as for pathogen 
detection. Furthermore, our methodology can be transferred across different experimental 
assays beyond mNGS, and it will be of interest to investigate its utility for cfDNA and cfRNA 
based diagnostics. The origin of the biological material can also vary and in future work it will be 
of interest to develop frequentmer based classification models for urine, saliva and blood 
samples. 
 
In summary, we provide a novel methodology for the derivation of disease detection biomarkers 
and showcase their utility in the detection of liver cirrhosis from mNGS data obtained from fecal 
samples. Future work is required to analyze additional datasets and expand our findings in a 
multi-disease detection assay that is based on disease-specific frequentmers.  
 
 
Methods 
 
Retrieval and preprocessing of mNGS data 
mNGS data from fecal samples of 123 liver cirrhosis patient samples and 114 healthy control 
samples were derived from (Qin et al. 2014). Across all samples, sequencing reads were 
examined as single-end. For samples with multiple sequencing runs, the sequencing reads 
across the runs were merged. 
 
Train-test split 
In order to properly validate our results given our limited number of samples we performed ten-
fold cross-validation. To that effect, we created ten different folds assigning 90% of the samples 
to the training and 10% in the test sets. Each fold consisted of liver cirrhosis  patients and 
healthy control samples.  
 
Identification of kmers in each sample 
For each sample, kmers of sixteen bp length were extracted using the Jellyfish package 
(Marçais and Kingsford 2011). If a kmer appeared only once in a sample it was discarded from 
downstream sequencing analysis as a potential sequencing error.  
 
Derivation of frequentmers 
We defined two groups, the first consisted of only healthy control samples and the second 
consisted only of liver cirrhosis patient samples. Frequentmers of recurrency r were defined as 
kmers that appeared in a minimum of r samples of the same group  and were absent from every 
sample of the other group. To avoid over-fitting, the extraction of frequentmers was performed 
for each fold separately.  
 
Identification of HBV or high alcohol consumption associated frequentmers was performed by  
analyzing the frequentmers present in HBV-positive samples or samples of individuals with high 
alcohol consumption.  
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To measure if the frequentmer profile between patient samples that were HBV positive or had 
high alcoholic intake differed from other patient samples we estimated the jaccard index based 
on the number of shared frequentmers between patient samples and examined the jaccard 
index distribution across all pairs in the two groups using paired t-tests. 
 
Frequentmer analysis 
Recurrency thresholds of zero, three, five, ten and fifteen samples were examined. Analyses 
were performed independently for each recurrency threshold. For each recurrency threshold,  
results were averaged across the ten folds. 
 
Majority voting, if it was found in more healthy control samples or more liver cirrhosis samples in 
the test set, was used to classify frequentmers found in the test set and calculate Mann-Whitney 
U statistic. 
 
Principal Component Analysis 
To examine if frequentmers can linearly separate the liver  cirrhosis patient samples from the 
healthy control samples we implemented principal Component Analysis with 90 components. 
The first three principal components were used to visually inspect the separation of the patient 
and the control samples. Principal Component Analysis was performed with the scikit-learn 
package (Pedregosa et al., n.d.). 
 
Classification models 
Logistic regression was performed using healthy control and liver cirrhosis frequentmers as 
features with the scikit-learn package , using the parameters: penalty: Ridge (L2), max_iter: 
2000 and C (the inverse regularization strength): 0.01. For each frequentmer, the coefficient 
score was derived and distribution histograms were generated for healthy control and liver 
cirrhosis frequentmers separately. The XGB-boost classification model was generated using the 
package from https://github.com/dmlc/xgboost with the parameters: max_depth=11, 
gamma=0.3, eta=0.2, alpha=6 (T. Chen and Guestrin 2016). 
 
To examine how the number of frequentmers used to train the logistic regression model affected 
the performance of the model, we used the absolute value of the logistic regression coefficients 
in the training set to re-train a model with the same sample split into training and test sets. The 
number of features examined ranged between 25 and 1,000 and performance was measured 
with the AUC score of each model. This process was repeated separately for each fold from 
which we derived the mean AUC score and confidence intervals across the ten folds. 
 
Frequentmer identification in microorganisms 
Kraken2 taxonomic classification (Wood, Lu, and Langmead 2019) using the standard reference 
database was performed for the reads containing the frequentmers with the highest and lowest 
coefficients from the logistic regression model. The standard reference database was built using 
adjusted parameters --kmer-len 16 --minimizer-len 15 --minimizer-spaces 3. An alluvial 
plot/sankey diagram was generated using Pavian (Breitwieser and Salzberg 2020). Using the 
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taxonomy labels generated from Kraken2, Bracken was performed to produce estimates of 
species- and genus- level abundance of each species (Lu et al. 2022). The KrakenTools suite 
was used to calculate statistics and format the output from Bracken for visualization with Krona 
(Ondov, Bergman, and Phillippy 2011). Krona was used to generate an RSF display that 
visualizes the Bracken output of the species- and genus- level relative abundance.  
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