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Objective: Brain metastases (BM) are associated with poor prognosis and increased mortality rates, making
them a significant clinical challenge. Therefore, studying BMs can aid in developing better diagnostic tools for
their early detection and monitoring. Systematic comparisons of anatomical distributions of BM from different
primary cancers, however, remain largely unavailable.

Methods: To test the hypothesis that anatomical BM distributions differ based on primary cancer type, we
analyze the spatial coordinates of BMs for five different primary cancer types along principal component (PC)
axes which optimizes their largest spread along each of the three PC axes. Data used in this analysis is taken from
the International Radiosurgery Research Foundation (IRRF) and all patients underwent gamma-knife radiosurgery
(GKRS) for the treatment of BMs which are labeled based on the primary cancer types Breast, Lung, Melanoma,
Renal, and Colon. The dataset consists of six features including sex, age, target volume, and stereotactic Cartesian
coordinates X, Y, and Z of a total of 3949 intracranial metastases. We employ PC coordinates to reduce the
dimensionality of our dataset and highlight the distinctions in the anatomical spread of BMs between various
cancer types. We utilized different Machine Learning (ML) algorithms: Random Forest (RF), Support Vector
Machine (SVM), and TabNet Deep Learning (DL) model to establish the relationship between primary cancer
diagnosis, spatial coordinates of BMs, age, and target volume.

Results: Our findings demonstrate that the first principal component (PC1) exhibits a greater alignment with
the Y axis, followed by the Z axis, with a minimal correlation observed with the X axis. Based on our analysis of
the PC1 versus PC2 plots, we have determined that the pairs of Breast and Lung cancer, as well as Breast and
Renal cancer, exhibit the most notable distinctions in their anatomical spreading patterns. In contrast, we find
that the pairs of Renal and Lung cancer, as well as Lung and Melanoma, were most similar in their patterns.
Our ML and DL results indicate high accuracy in distinguishing the distribution of BM for different primary
cancers, with the SVM algorithm achieving a 97% accuracy rate when using a polynomial kernel and TabNet a
96% accuracy. The RF algorithm ranks PC1 as the most important discriminating feature.

Conclusions: Taken together, the results demonstrate an accurate multiclass machine learning classification with
respect to the distribution of brain metastases.
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I. INTRODUCTION

It is well established that different primary cancer
types, and different molecular subtypes distribute metas-
tases preferentially to different locations [1–8], although
a quantitative understanding of the spatial distribution
of metastatic disease, and the temporal ordering of when
these metastases first appear at the different locations re-
mains far less understood [3]. Although metastases to the
brain are not usually the location of the first metastatic
site for any primary cancer type [4], the presence of BMs
portend poor prognosis for the patient, regardless of can-
cer subtype. The advancements in treatment regimens,
including the development of immunologic therapies have
increased life expectancies for a number of primary can-
cers, and brought new importance to the study of BMs,
their natural progression and causes for growth.

Recently, progress has been made in quantifying the
spatial distribution of brain metastases for breast can-
cer patients of different molecular subtypes [9], showing
quantitively distinct patterns in some categories. The
underlying hypothesis rests on the notion that different
cancers require different environments for growth [10, 11],
and therefore are more or less likely to metastasize in cer-
tain regions of the brain. We aim to expand on the work
performed by our group in prior studies [1–9], by explor-
ing the predictive ability of a machine learning model
to determine the primary subtype of cancer given spa-
tial information about its three-dimensional location, as
well as age at treatment and target volume. The po-
tential ability for machine learning models to accurately
identify the primary cancer type from these small set of
features would indicate that these differences are distinct
enough to be discerned, which might further motivate the
search for underlying biological explanations for these dif-
ferences.

We demonstrate that using spatial data as the pri-
mary means of input, a machine learning model can ac-
curately parse out the primary cancer subtype from a
large dataset of brain metastases from a national brain
tumor metastasis registry.

II. METHODS

A. Dataset

Data used in this analysis is taken from IRRF and
all patients underwent GKRS for the treatment of brain
metastases which are labeled based on the primary cancer
types Breast, Lung, Melanoma, Renal, and Colon. The
dataset consists of six features including sex, age, target
volume, and stereotactic Cartesian coordinates X, Y, and
Z of a total of 3949 intracranial metastases. See the data
summarized in Table I and Table II.

TABLE I. Number of brain metastases and proportion of sex
subgroupings for different primary cancer types.

Diagnosis Sex Total number of mets
Breast Female 550

Male 0
Colon Female 56

Male 56
Lung Female 478

Male 588
Melanoma Female 646

Male 1242
Renal Female 66

Male 267

B. Principal component analysis (PCA)

The principal component coordinates are a data driven
orthogonal coordinate system intended to highlight the
directions of the greatest spread of the data, with PC1 as
the direction of the largest variance and PC2 and PC3
as the directions that capture the remaining variations
orthogonal to the first principal component and to each
other. PCA is used to identify patterns in a dataset and
as a method of dimensionality reduction for high dimen-
sional datasets by identifying new uncorrelated features
(PC), which allows better visualization of the dataset
[12]. We use PCA from the Scikit-learn library in Python
for our analysis [13].

C. Synthetic Minority Over-sampling Technique
(SMOTE)

In essence, SMOTE is a data augmentation method
used to address a class imbalance in supervised ma-
chine learning problems. Class imbalance occurs when
one class of a classification problem has significantly
fewer samples than the other classes, which can lead to
poor performance of the classifier on the minority class.
SMOTE creates synthetic samples of the minority class
by interpolating between existing minority class samples.
The method selects a minority class sample and identi-
fies its k nearest neighbors in the feature space. SMOTE
then creates a new sample by randomly selecting one of
the ”k” nearest neighbors and creating a synthetic sam-
ple between the original sample and each of its neighbors
that is a linear combination of the original and selected
neighbors. The process repeats until the desired balance
between the classes is achieved. The synthetic samples
created by SMOTE increase the size of the minority class,
making it more representative and improving the classi-
fier’s ability to learn the patterns in the minority class
[14].
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TABLE II. Characteristics of the study population

X (mm) Y (mm) Z (mm) PC 1 PC 2 PC 3 Age at Treatment (yrs) Target volume (cm3)
Total number of mets 3949 3949 3949 3949 3949 3949 3949 3949

mean 99.39 88.94 112.96 0.00 0.00 0.00 57.57 3.44
median 99.50 85.30 112.90 0.12 -0.65 -0.47 58.00 0.61
std 28.39 36.09 31.27 37.85 29.18 27.76 13.07 13.13
min 32.70 4.50 20.60 -95.40 -72.59 -72.66 13.00 0.00
max 188.80 190.10 199.70 102.03 101.71 81.79 90.00 357.90

D. Dataset Preprocessing

PCA is sensitive to the scaling of the variables in the
dataset. Variables that have larger magnitudes will dom-
inate the variance and may obscure the contribution of
other variables that have smaller magnitudes. Scaling
the variables to a common scale ensures that all variables
are equally important in the analysis. Different variables
in the dataset have different units of measurement, and
these units can affect the calculation of the principal com-
ponents. Scaling the variables to unit variance (i.e., stan-
dardizing) removes the units of measurement and allows
the components to be calculated based on the correla-
tions between the variables. In order to ensure that the
result of the PCA is representative of the underlying pat-
terns in the data, we scale our features before performing
the PCA. We use the StandardScaler from the Scikit-
learn package in Python which set the mean to zero and
the variance to one [13]. In order to reduce the effect of
class imbalance in the dataset, we use the Synthetic Mi-
nority Over-sampling Technique using the SMOTE from
the imbalanced-learn library in Python [15]. We split up
the dataset into 90% training and 10% testing. The re-
ported evaluation metrics in Table III correspond to the
testing dataset.

E. Random Forest (RF)

Random Forest is a supervised machine learning al-
gorithm for classification and regression tasks. It is an
ensemble learning method that combines multiple deci-
sion trees to make a final prediction. During the training
process, Random Forest builds a large number of decision
trees by using a randomly selected portion of the training
data along with a randomly selected subset of the avail-
able features. Each tree is built independently, and at
each split, the algorithm selects the best feature to split
on among a random subset of features. This random-
ness helps reduce overfitting and improves the model’s
generalization performance. Once the trees are built, the
Random Forest algorithm combines their predictions to
make a final prediction. In classification tasks, the class
with the most votes is selected, and in regression tasks,
the mean or median of the individual tree predictions
is taken [16]. A random forest classifier is built based
on RandomForestClassifier from the Scikit-learn package

[13].

F. Support Vector Machine (SVM) and
One v. All (OvA)

The linear SVM algorithm aims to find a hyperplane
that separates two tumor classes to maximize the dis-
tance between the hyperplane and the nearest samples
from each class. In order to determine the maximum
separation distance between classes, the dot products of
support vectors and the classes must be computed [17].
The main concept behind this is identifying the largest
margin between the classes. In cases where the data is
not linearly separable, SVMs can use a kernel function to
transform the data into a higher dimensional space that
a hyperplane can separate. The kernel functions used in
this study are linear, polynomial, and radial basis func-
tions. For transitioning from binary to multiclass clas-
sification, we adopt a One-vs-All (OvA) approach [18].
The OvA strategy involves training multiple binary clas-
sifiers, each distinguishing one class from all the others.
For each class, a binary classifier is trained to distinguish
between that class and all the other classes combined.
This results in a set of binary classifiers, one for each
class. The classifier with the highest confidence score
is selected as the predicted class during prediction. This
study uses three different kernels: Radial Basis Function,
Polynomial, and Linear kernel. For our analysis, we uti-
lize the SVC algorithm from the Scikit-learn library in
Python [13].

G. TabNet

Deep learning algorithms have generally been success-
ful in classifying images or audio but not tabular data
[19]. TabNet, a deep neural network (DNN) tailored
for learning from tabular data, employs a distinctive ar-
chitecture known as the TabNet encoder [20]. In this
architecture, sequential multi-steps (Nsteps) are a piv-
otal component. Each step, denoted as i, leverages pro-
cessed information from the previous step (i − 1) to
make decisions regarding feature utilization. These de-
cisions culminate in processed feature representations,
which, in turn, play a critical role in the overarching
decision-making process. Notably, the model ingests a
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dataset characterized by a specific batch size (B) and
D-dimensional features as input without applying global
feature normalization. Subsequently, the data undergoes
batch normalization (BN) before being channeled into a
feature transformer. Within the feature transformer, il-
lustrated in Figure 4c of the original paper [20], several
gated linear unit (GLU) blocks are employed (a total
of n). Each GLU block encompasses three essential lay-
ers: fully connected (FC), batch normalization (BN), and
GLU. In cases where four GLU blocks are used, two are
shared, and two operate independently, contributing to
the model’s robustness and parameter-efficient learning.
A skip connection is also established between consecu-
tive blocks. Following each block, a

√
0.5 normalization

process ensues, ensuring stability by maintaining vari-
ance. Subsequently, the feature transformer processes
the batch-normalized features and transfers this infor-
mation to the attentive transformer of the current step
through a split layer. The attentive transformer, visu-
alized in Figure 4d of the original paper [20], comprises
four layers: FC, BN, prior scales, and sparsemax. It
accepts input from the split layer, applies FC and BN
layers, and then employs the prior scales layer to con-
solidate the magnitudes of features utilized in preced-
ing decision steps. This consolidation is governed by the

equation P [i] =
∏i

j=1(γ−M [j])where γ denotes a relax-
ation parameter. The primary function of the attentive
transformer is to compute the mask layer for the current
step, utilizing the outcomes from the previous step. The
learnable mask (M [i]) is instrumental for sparse selection
of the most pertinent features, thereby enhancing param-
eter efficiency by prioritizing relevant features. The mul-
tiplicative masking process involves the attentive trans-
former to derive masks using processed features from the
prior step (a[i− 1]). This process is detailed in the equa-
tion M [i] = sparsemax(P [i− 1].hi(a[i− 1])) where P [i]
is the priori scale and hi some trainable function. These
masks contribute to model interpretability, with TabNet
offering both local and global explanations. Local in-
terpretability is achieved by utilizing TabNet’s decision
masks. TabNet is designed to provide a comprehen-
sive framework for feature selection and efficient learning
from tabular data, and its unique encoder architecture,
featuring sequential multi-steps and attentive transform-
ers, contributes to its effectiveness in these tasks.

III. RESULTS

In figure 1 we show 2D scatter plots of BM locations
for five different primary cancer types (Breast, Lung,
Melanoma, Renal, and Colon) plotted with their PC1
component versus each of the (X, Y, Z) Cartesian coor-
dinates in 3D space. Figure 1(a) shows that PC1 cor-
relates most strongly with the Y coordinate (front-to-
back), next, figure 1(b) shows the correlation with the Z
coordinate (top-to-bottom), while figure 1(c) shows there
is very little linear correlation with the X coordinate

(side-to-side). See [9] Figure S1 for a more detailed plot
of the coordinate systems used with the Gamma Knife ra-
diosurgery (GKRS) stereotactic headset which measures
BM locations. Our conclusion from these comparisons is
that the (PC1, PC2) plane offers an optimal [12] reduced
dimension plane that most accurately will depict the dif-
ferences in the spatial distributions of BMs for the five
different cancer types, in addition to the other features
from the data set. The side-to-side X coordinate distri-
bution is the least important of the three, reflecting the
fact that the five cancers all distribute their BMs more
or less symmetrically across the midline. Given that it is
the (Y, Z) coordinate plane that mostly captures the im-
portant differences in Cartesian BM locations, we show
in figure 2 PC1 for each of the primary cancer types pro-
jected onto this plane. Both the means (the base of each
coordinate arrow) and the directions of each PC1 vector
are different for each primary cancer type as can easily
be seen.

Note the similarity, however, between the direction of
the PC1 axis associated with lung and renal cancers, with
only the mean basepoint shifting between the two.

In figure 3 we focus on depicting the BM locations
in the PC1 vs. PC2 planes (the optimal reduced-order
plane). In figures 3(a), 3(b) we show the distributions of
the two cancer types that are most distinct with respect
to their spatial distributions: Breast vs. Lung (3(a)), and
Breast vs. Renal (3(b)). We indicate these differences by
plotting the linear curve fits to each of the cancer types
on the same plots, showing both their means and orien-
tation of the linear curves are very distinct. By contrast,
figures 3(c), 3(d) show the distributions that are most
similar: Lung vs. Melanoma (3(c)), and Lung vs. Re-
nal (3(d)). Note the similarity of their means and linear
curve fits as compared with those in figures 3(a), 3(b).
The linear curve fits in these four plots are not intended
to indicate that the data closely follows a linear regres-
sion model, but only meant to show the most apparent
differences/similarities in the spread of points along the
regression line (i.e a useful visual guide).

We now use three different Machine Learning, and
Deep Learning algorithms: Random Forest model, Sup-
port Vector Machine (SVM) and TabNet to see how well
each can distinguish between the BM spatial distribu-
tions associated with the five primary cancer types. See
discussions of these algorithms in the Methods section.

The first important observation is shown in figure 4
where we plot the relative importance of the top 8 most
important features from the data. PC1 is identified as
the most important feature, followed by the Z coordi-
nate, the Y coordinate, then PC2, PC3, followed by Age
at treatment, X coordinate, and Target volume. Taken
together, our conclusion is consistent with our previous
observations, that (PC1, PC2) are a more efficient co-
ordinate system to use than (Y,Z) given that the PC1
direction captures most of the spread in the (Y,Z) plane.
In addition, Age at treatment seems to be a more impor-
tant variable than Target volume in distinguishing spa-
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(a) (b) (c)

FIG. 1. Brain metastases scatter plots for five different primary cancers along Principal Component 1 axis (PC1) vs. X, Y,
and Z coordinates showing strongest linear correlation between Y axis and PC1 axis. a) 2D projection of data onto (PC1, Y)
plane and linear curve fit; b) 2D projection of data onto (PC1, Z) plane and linear curve fit; c) 2D projection of data onto
(PC1, X) and linear curve fit.

FIG. 2. 2D projection of scatter plot of all cancer metastatic
brain tumors onto (Y, Z) plane showing the Principal compo-
nent 1 axis for each cancer type separately and with respect
to all cancer types together. Violet crosses indicate the means
of each cancer and the yellow cross indicates the mean of all
data points.

tial BM distributions. Table III summarizes key metrics
(Accuracy, Precision, Recall, F1-score) associated with
the Random Forest (RF) method, and three different
Support Vector Machine (SVM) methods: SVM-linear;
SVM-poly; and SVM-rbf as well as TabNet. With all

TABLE III. Evaluation metrics for different machine learning
and deep learning models.

Model Accuracy Precision Recall F1-score
RF 89% 89% 89% 89%
SVM-linear 71% 78% 71% 72%
SVM-poly 97% 97% 97% 97%
SVM-rbf 94% 94% 94% 94%
TabNet 96% 97% 96% 96%

metrics, the SVM-poly method performs best, scoring at
97% on the test data in each category. In Table III, Pre-
cision is the number of correctly identified members of
a class divided by the number of times the model pre-
dicted that class; Recall is the number of members of
a class that the classifier identified correctly divided by
the total number of members in that class; and F1-score
is a combination of Precision and Recall combined into
one single metric. By contrast, SVM-linear performs the
poorest in each category.

IV. DISCUSSION

The primary objective of this study was to analyze
the spatial distribution of brain metastases (BMs) across
several primary cancers to test whether machine learning
models can discern differences among them. The results
demonstrated that the first principal component (PC1)
exhibits a significant alignment with the Y and Z axes,
with minimal correlation observed with the X axis. Fur-
thermore, our machine learning models achieved high ac-
curacy in distinguishing spatial distributions of BMs for
different primary cancers, with the Support Vector Ma-
chine (SVM) algorithm using a polynomial kernel achiev-
ing a 97% accuracy rate using all the standard metrics. In
this discussion, we will interpret the principal component
analysis, compare the primary cancer types, discuss the
machine learning analysis, explore clinical implications
and applications, and address limitations and future re-
search directions.

A. Interpretation of Principal Component Analysis

The principal component analysis (PCA) performed
in this study aimed to reduce the dimensionality of
the dataset in an optimal way [12], allowing for easier
visualization and interpretation of the spatial distribu-
tion of BMs across the different primary cancer types.
Preparing the data using PCA is key to achieving
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(a) (b)

(c) (d)

FIG. 3. Scatter plot of pair cancer types onto (PC1, PC2) axes. The black line indicates the linear curve fit is not meant to
imply that the data is spread linearly, but is useful to draw attention to differences in the two data sets being compared. Yellow
and green crosses show the means. a, and b plots have the most distinct brain metastasis distributions (lung vs. breast cancers,
and breast vs. renal cancers), c, and d have the most similar brain metastasis distributions (lung vs. melanoma cancers, and
lung vs. renal cancers).

high metrics for the machine learning models. The
importance of the first principal component (the axis
of the largest spread of the data) in distinguishing
the spatial distribution of BMs was demonstrated by
its strong correlation with the Y and Z axes (figures
1(a), 1(b)), which represent the front-to-back and
top-to-bottom dimensions of the brain, respectively.

In contrast, the X axis, representing the side-to-side
dimension, showed minimal correlation with PC1 (figure
1(c)) or utility as a distinguishing feature (figure 4)
presumably due to the similarities in the left-right sym-
metries in the distributions for all of the primary cancer
types. By contrast, as shown in figure 4, PC1 was iden-
tified as the most important feature of the RF algorithm.
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FIG. 4. Bar plot showing the feature importance of the Ran-
dom Forest model. (PC1,PC2,PC3) coordinate features are
collectively more important than (X,Y,Z) coordinate features.
Age at Treatment is a more important non-coordinate feature
than Target volume.

The use of the (PC1, PC2) plane as an optimal reduced
dimension plane allowed us to best depict the differences
in the spatial distributions of BMs for the five different
primary cancer types (Breast, Lung, Melanoma, Renal,
and Colon). The (PC1, PC2) plane not only captured
the important differences in Cartesian BM locations but
also proved to be more efficient than the (Y, Z) coordi-
nate plane which is not surprising due to the fact that
the principal coordinate system is the optimal data-based
coordinate system that captures the primary directions
of spread (standard deviations) in the data.

B. Comparison of Primary Cancer Types

Our analysis revealed distinct differences in the spatial
distributions of BMs for Breast vs. Lung and Breast vs.
Renal cancer types of cancers [21]. The linear curve fits
for each of these cancer types on the (PC1, PC2) plane
(figures 3(a), 3(b)) showed differences in both their
means and orientations. These findings suggest that
the spatial distribution of BMs may be more specific
to the primary cancer type. We have similarly demon-
strated these types of differences in genetic subtypes of
breast cancer [9], but further exploration is required to
understand the cellular or genetic mechanisms which
may explain these spatial differences as discussed, for
example in [11].

In contrast, the spatial distributions of BMs for Lung
vs. Melanoma and Lung vs. Renal cancer types were
found to be most similar of the ones we compared, as ev-
idenced by the similarity of their means and linear curve
fits on the (PC1, PC2) plane (figures 3(c), 3(d)). These
similarities suggest that BMs originating from these pri-

mary cancer types may share common mechanisms or
pathways in their development and progression, although
this remains to be fleshed out.

C. Machine Learning Analysis: Distinguishing
Primary Cancer Subtypes

The application of machine learning algorithms,
namely Random Forest (RF), Support Vector Machine
(SVM), and TabNet deep learning, allowed us to
assess their ability to accurately distinguish between
the subtypes of primary cancers based on the spatial
distribution of brain metastases (BMs). The high accu-
racy achieved by these models in most cases not only
suggests the presence of distinct differences in the spatial
distribution of BMs across primary cancer types but also
indicates that the translation of these distributions onto
the first principal component (PC1) further enhances the
differentiation capabilities as indicated by its standing
as the most important feature in the RF algorithm.
This observation implies that utilizing the PC1, which
already highlights differences in spatial distribution, can
be a robust approach for parsing out these distinctions
among primary cancer subtypes and should be an impor-
tant component in using ML methods on larger data sets.

The downstream effects of developing ML and DL
models for BM subtyping could be multifold. For one,
while patients with BM often have known primary can-
cer diagnoses, there are often instances where neuro-
logic symptoms and brain MRI are the first scans which
demonstrate tumor burden. A high-fidelity test could at
the minimum, key in radiologists and oncologists to look
out for a particular subtype. Second, by addressing phe-
notypic, tumoral behavior characteristics (e.g. where it
metastasizes), and exploring molecular traits which have
overlap irrespective of primary cancer subtype (i.e. where
it came from), we may unlock new options for therapeu-
tic targets that are shared between seemingly disparate
cancer subtypes.

V. CONCLUSIONS

For the purposes of distinguishing the spatial distribu-
tion of brain metastases associated with the five primary
cancer types under study, we find that the optimal data-
designed coordinates PC1 vs. PC2, as opposed to the
Cartesian Y-Z coordinate plane offers the best reduced
dimensional projection in which to highlight differences
in the spread of the BM data. As a variable in our
feature-based machine learning approaches, PC1 emerges
as the single most important feature to distinguish the
spatial patterns. Instead of the (X,Y,Z) features in our
ML approaches, the best set of features to use are (PC1,
PC2, PC3), with Age at Treatment being more impor-
tant than Target volume, but less important than the PC
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variables. The SVM-poly ML method performs very well
(97% on test data by all metrics) in distinguishing among
the five cancer types based on their BM distributions. We
believe with more data, and better optimization of the
ML and DL pipelines, ML and DL methods offer a very
promising approach towards discerning potentially subtle
differences in BM distributions associated with primary
tumor type.
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