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Abstract 

Based on past experiences of the Center for Augmented Intelligence in Imaging (CAII) 

[Department of Radiology, Mayo Clinic Florida], depending on the project, 10 to 20 months has 

typically been required to realize the successful creation (data curation and algorithm 

development), and utilization (integration, testing, and operationalization) of an AI algorithm 

[Figure 1].  

                  

Figure 1: AI algorithm evolution typically requires 10 to 20 months, consisting of four consecutive phases: 
1. data identification and extraction; 2. data cleansing and labeling; 3. algorithm development with training 

and tuning; and 4. Implementation and integration with testing and operationalization.  

This manuscript delineates the related challenges and opportunities for greater efficiency in 

completing the clinical workflow implementation and integration of an AI algorithm. Strategies 

exploiting conventional data standards in facilitating the completion of such deployment and 

utilization goals within the operations of a busy Radiology practice are described. Methodologies 

and techniques employed during this initial phase of the CAII-Siemens D&A AI collaboration to 
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address the previously mentioned challenges and opportunities are depicted with use-case 

examples. 

Background 

Data contributing to the evolution of an AI algorithm may potentially come from multiple sources 

and change over time. Accordingly, the supporting framework must be able to: 1. ingest the 

output from a previous module; 2. provide physically meaningful data augmentation; 3. expand 

to incorporate new image and non-image data types; and 4. recycle previously curated data and 

developed algorithms.  

Regardless of whether they are vendor-based or locally developed, data-flow leading to the 

creation of an AI algorithm or to AI-algorithm implementation and integration may have to contend 

with complex demands. These demands are best met via an IT architecture facilitating 

interoperability by incorporation of common data standards (e.g., HL7 [1] and DICOM [2]) along 

with IHE [3] profiles that describe how these standards can be used to interconnect applications 

for efficient regular clinical workflow [Figure 2].  

 

Figure 2: Basic Radiology workflow, modeled after IHE Scheduled Workflow. Shown are: 1. an order 

being generated; 2. image-data being acquired during patient scanning; 3. produced images being 

evaluated by a radiologist; and 4. a report being generated by the image interpreter and sent back to the 

clinician for review. AI-sprocket symbols indicate examples of AI use-cases. 

Understanding the interoperability potential within a given workflow pattern is the first step in 

considering AI integration touchpoints. The types of workflows are described in the IHE AI in 

Imaging White Paper [4], which references AI Workflow for Imaging (AIW-I) [5] and AI Results 

(AIR) [6], two interoperability profiles (including boundaries and transactions) tailored for AI 

applications.  
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Examples of AI application to clinical workflows are varied [e.g., Figure 2 illustrated by the AI-

sprocket symbol] and relate uniquely to AIW-I and AIR [Table 1]. 

Steps Common Workflow Theme AIW-I and AIR Described 

Boundaries 

Covered 

Steps 

1 

When a clinician orders an imaging examination in 
the HIS/RIS, they may be guided by a Clinical 
Decision Support System (CDSS) to ensure its 
appropriateness. Depending on the clinical setting, 
the order may contain a clinical-status priority code 
(e.g., "stat") 

AI applications (CDSS) may 
make recommendations as to 
the types of procedures that 
should be ordered, based on 
the patient's condition and 
record. 

 

2 

Once the patient examination is scheduled for a 
date and location, an entry is created on the "study 
worklist" of the scanner (or another imaging device). 
In some instances, an entry is also created on a 
"protocoling worklist," where a radiologist 
determines the specific imaging techniques to be 
used (e.g., scanning details, contrast-agent 
type/amount/administration route) during the 
diagnostic imaging study or image-directed 
procedure. 

AI applications may make 
recommendations on the type 
of protocol to be used on the 
scanner. 

 

3 

Once the examination is completed, images are 
reconstructed into a human-interpretable format and 
sent to a DICOM-router to be forwarded to the 
appropriate destinations, including a PACS and/or 
VNA for management or storage. Once the 
organized images (original and/or post-processed) 
are ready to be evaluated by the radiologist, the 
examination description appears on the radiologist's 
"reading worklist". 

AI applications may 
(automatically) post-process 
images, identify QA issues 
prior to the patient leaving the 
department, and prepare 
classifications and 
segmentations in advance of 
the radiologist's evaluation. AI 
results may also influence the 
reading priority of the exam. 

X 

4 

Radiologists assess the examination images on their 
diagnostic viewer and dictate their interpretation 
(typically into a voice recognition-based reporting 
system). 

AI applications may provide 
insights to be included 
alongside the images in the 
radiologist's display.  

X 

5 

The dictated report is sent to the HIS/RIS. If 
actionable critical and/or non-critical findings are 
identified, radiologists may invoke additional 
workflows to alert the ordering clinician and issue 
the final examination report. 

The workflow may include 
emergent insights provided by 
AI applications, for 
consideration of the ordering 
physician. 

X 

6 
Final examination reports become available in the 
HIS/EHR, along with the images in the PACS or 
clinical viewers. 

Pre-populate the radiologist's 
report with draft insights to be 
considered by the radiologist. 

 

Table 1: IHE Profiles and Workflow Steps Covered in Initial Phase of CAII-Siemens D&A AI collaboration. 
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Methods 

General Principles: 

Several AI applications were implemented for research purposes in the secure CAII IT test 

environment [7].  

 

The Siemens Healthineers AI Rad Companion (AIRC) Chest X-Ray application was deployed in 

the cloud and integrated into CAII research systems as per the workflow [Figure 3].  

 

Figure 3: Workflow Steps 

Other AIRC applications (e.g., Chest CT) were made available using the same infrastructure.  

 

Locally developed AI applications (e.g., MRI-safety screening algorithm for leadless electronic 

implanted device detection and identification on Chest X-ray) were similarly deployed while 

running on-premises [7], thereby obviating the need for the DICOM gateway Siemens 

Healthineers Teamplay Receiver (TPR). With several locally developed algorithms already 

deployed and operational, coordinated integration with a vendor-based solution maintained 

existing workflows and interoperability. 

Implemented Workflow for Outside Vendor Integrations: 

The workflow steps followed by a given study within the CAII infrastructure includes: 

1.  An exam is scheduled when Clinical Team orders an imaging study. This triggers an 

update on Study Worklist (e.g., Modality Worklist) 
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2.  When Imaging Team works on scheduled exam, a "begin exam" message is sent to 

HIS/RIS (Epic). 

3.  Acquired images are sent to DICOM Router used locally (i.e., Laurel Bridge (LB)). 

4.  LB sends acquired images to combined clinical and non-clinical PACS/VNA. 

5.  When image acquisition is fully completed, a "study complete" message is sent to HIS/RIS. 

6.  Applicable AI workflows are triggered: Based on exam codes, LB sends a copy of acquired 

images to Siemens Healthineers TPR, a DICOM gateway application. Considered exam 

codes were for the following procedures: DX Chest 1 View, DX Chest 2 Views, DX Chest 

AP or PA. 

7.  TPR (operating on-premises and managed by local Imaging Informatics Team Members) 

de-identifies the images and forwards them to Siemens Healthineers AIRC (AIRC). 

8.  AIRC (operating on cloud) runs inference on forwarded images and returns DICOM results 

to TPR. These results follow formats recommended within IHE AIR profile (e.g., DICOM SR 

TID1500). 

9.  TPR re-identifies produced DICOM results and returns them to LB. 

10.  LB forwards results to a research/non-clinical PACS/VNA (replica of institution's clinical 

PACS i.e., Visage) as well as to the CAII adjudication viewer DICOM node. The CAII 

viewer offers capabilities to display AI results along with original images, and to interact 

with these results (e.g., to edit them). 

11.  A custom program executed on LB (written in C#) creates HL7 message (based on DICOM 

SR content) to trigger an event on a test instance (non-clinical) of institution's HIS/RIS (i.e., 

Epic Radiant), if a given result is expected to produce a priority message (e.g., Radiology 

reading worklists can be re-sorted or color-coded using this mechanism). 

This approach can be summarized in the following pseudo-code: 

AI-Results-Handling (Image Studies) 

 Check each exam for matching exam descriptions 

 If (matching exam found) { 

 /*LB and STP Running inside the institutional firewall*/ 

 LB to STP 

STP to De-identify the studies  

 /*AIRC Running outside the institutional firewall*/ 

 STP to send studies to AIRC 

 /*Results in the form of DICOM SC and DICOM SR*/ 

 AIRC to return results to STP 

 STP to Re-identify the studies 

STP to Return Results to LB 

 LB to Forward the DICOM SC and DICOM SR to Viewers 

/*Using Custom C# based DICOM SR parsing to produce an XML 

template to provide mapping during HL7 conversion by LB*/ 

LB to Produce HL7 from DICOM SR  

LB to Send HL7 message to Interface Engine for HIS for 

Prioritization 
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Worklist Management 

The worklist re-prioritization was achieved by parsing the resulting DICOM SR content and 

generating a simple HL7 message using the following example template (i.e., pneumothorax 

detection), filling the necessary fields either by rule-based hardcoding or by fetching content 

from DICOM metadata: 

MSH|^~\&|AI Product 

Name{AIRC}|HIS{HIS_TEST}|||Timestamp||ORM^O01|GUID|T|2.5.1 

PID|||patient ID^^^MC^MC||Patient last name^Patient first name||Patient DoB 

ORC|XO||||||||Datetime of transaction 

OBR|1||Accession number|Study code^Study description^IMAGEID^^Short study 

description|||Study Date|||||||||||||||Study Date 

OBX|1|ST|AI_PRIORITY_type of evaluation{AI_PRIORITY_PTX}||priority 

level{HIGH} 

OBX|2|ST|AI_DETECTION_type of evaluation{AI_DETECTION_PTX}||detection{POS} 

Usage Ramp-Up and First-Level Integration Test 

Although the focus of the project was on Chest X-ray use, several applications from the AIRC 

collection were also used to establish the feasibility of integration of several applications into a 

single viewing environment based on a variety of standard display and structured formats.  

Such was the case with AIRC Chest CT, which was successfully and easily integrated into the 

existing infrastructure based on the locally developed CAII Viewer [7] using existing DICOM 

Secondary Capture and DICOM SR TID1500 outputs, the last providing more interaction 

capabilities with the AI results [Figure 4]. Connecting different AIRC applications to the same 

infrastructure was a helpful step in assessing the robustness of the established connections.   

 

Figure 4: In addition to cross-platform deployment and display capabilities, common standards-based 

algorithm results enable user feedback capabilities across platforms supporting these formats, as 

illustrated on the locally developed CAII Viewer and AIRC (DICOM Secondary Capture and DICOM SR, 

on the right-hand-side, of results). 
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Results 

AI Processing at Scale for Enterprise 

The Siemens Healthineers AIRC Chest X-Ray algorithm was deployed within the CAII test 

environment using the previously described framework and methods. AIRC Chest X-ray was 

activated for over five months (January 1, 2023 to May 31, 2023), during which imaging studies 

were sent to AIRC from 20 different digital X-ray machines operating with the Mayo Clinic 

Florida Department of Radiology and representing a range of manufacturers (i.e., Siemens 

Healthineers 79%, Samsung 16%, Carestream 5%).  

During the trial period, a total of 22,885 Chest X-ray images (approximately 17,000 individual 

exams) were received by AIRC. The discrepancy reflects the fact that an exam may contain 

more than one image matching input image requirements of AIRC (e.g., a Chest X-Ray study 

with several retake images, with each image suitable for AIRC processing); therefore, the 

number of individual images analyzed by AIRC exceeds the count of individual exams over the 

same period. 

In the trial, AIRC processing of an image could potentially end in one of three results: 

● Successful Processing: The algorithm ran successfully, and an inference was produced. 

● Failed: There was an error in algorithm execution, and no inference was produced. 

● Unsupported Input: The received image was not suitable for processing, and 

consequently, no result was produced. 

The details of processing activity (Figure 5) and results statistics (Table 2) follow:  

 

 

Figure 5: Distribution of Daily Processing Activity Over Trial Period. 
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Result of Processing Count 
% of Total Images 
Received by AIRC 

Average # 
Images 

Received  
per Day 

Comments 

Processed Successfully 22,382 97.80% 154/day 
Results available within 3 minutes after 

image reception by TPR 

Failed Processing 
(No Results Created) 

2 0.01% <<1/day  

Unsupported Input 
(No Results Created) 

501 2.19% 3/day 
Reasons include unsupported image 

types, patient demographics (age), other 
check on DICOM attributes 

Total Number of 
Images Received 

by AIRC 
22,885 100% 158/day 

Corresponding to 113 individual 
exams/day 

 

Table 2: Processing Statistics Achieved with AIRC Chest X-Ray in CAII Infrastructure Over Trial Period. 

 

In this project, we showed that by using a common standards-based architecture and workflow 

the ability to deploy algorithms, whether vendor-based (commercial products or prototypes) or 

locally developed [7], can carry significant advantages. This approach enables support of 

complex operational requirements and allows both types of solutions to coexist in the same 

environment. As a result, end-users can benefit from concurrent AI support of multitude of tasks, 

including the adjudication of AI results (e.g., for algorithm continuous learning, data collection, 

product improvement) to more operational uses of AI results (e.g., for reading worklist 

management). 

Worklist Management 

We demonstrated that worklist re-prioritization was possible using standard-based outputs 

(DICOM SR) and appropriate middleware systems (e.g., a DICOM router and custom parsing 

logic for HL7 message generation). Worklist re-prioritization was successfully observed for 

patients with AI-suspected pneumothorax and could be visualized (Figure 6) using the CAII 

infrastructure. 

Figure 6: An HIS Interface Example Demonstrating Reading Worklist Prioritization Based on AI Findings. 
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Statistical View of AIRC-Processed Images 

 

Over the trial period (January 1, 2023 to May 31, 2023), from 22,382 successfully processed 

images, AIRC produced 33,090 automated image annotations (detected findings or no findings 

detected). Close to 80% of the annotations produced by AIRC related to a detected disease; the 

remaining 20% were for images flagged with "none of the findings detected" by AIRC.  

A detailed breakdown of this data (Table 3), and a corresponding diagram using a Sankey 

diagram (Figure 7) follow. Consolidation was the most frequently detected abnormality, followed 

by no detected abnormality.   

 

 

Disease 
Annotations 

# of 
Annotations 

% of 
Annotations 

# of Unique Images 
with Disease 

% of Unique Images 
with Disease 

Consolidation 21,844 66.0% 13,469 55.8% 

Atelectasis 1,360 4.1% 1,199 5.0% 

Lesion 1,287 3.9% 1,098 4.5% 

Pleural Effusion 1,076 3.3% 889 3.7% 

Pneumothorax 874 2.6% 836 3.5% 

No detected finding  
(None of 5 above) 

6,649 20.1% 6,649 27.5% 

Total 33,090 100.0% 24,140 100.0% 

 

Table 3: Diseases Detected by AIRC Over Trial Period.  

The first column shows annotations produced by AIRC (e.g., one analyzed image can contain more than 

one disease annotation at one location, as well as different diseases at different locations). The last two 

columns indicate the frequency of unique images identified as having at least one annotation per disease 

(an image can have one or more diseases, allowing an image to appear in more than one category). 
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Figure 7: Sankey Diagram Representing the Breakdown of Disease Annotations Generated by AIRC 

Chest X-Ray During Trial Period. 

 

Comparison against radiologist "gold standard" reporting, to draw conclusions on the AI 

algorithm accuracy (i.e., correct diagnosis) and utility (e.g., for use-cases like worklist 

management and pneumothorax flagging), was not evaluated, as this project was focused on 

workflow integration and informatics/deployments aspects rather than on algorithm 

performance. Accordingly, exam-based clinical conclusions cannot be made as only statistics 

per image (one exam potentially having more than one image) have been computed. Similarly, 

images identified as "no finding detected" may not be considered to be "normals". "No finding 

detected" only indicates the perceived absence of the 5 diseases under consideration (i.e., 

pneumothorax, lesion, atelectasis, consolidation, pleural effusion); other findings not addressed 
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by the algorithm(s) running may actually be present in the images. However, such investigations 

may be performed in the future to expand on this project. 

Viewing Infrastructure: Interacting with AI Inference Results Based on Standardized Outputs 

The CAII Viewer employed in this project successfully demonstrated that standards-based AI-

result reporting offers the ability to capture feedback from user adjudication (accept, reject, edit) 

(Figure 8 and Figure 9a-c) from a single source, but more importantly from multiple from 

different sources (e.g., different algorithms, whether vendor-based or locally developed) in a 

single viewing environment. For example, this was shown using the AIRC Chest X-Ray results 

(vendor product) and a locally developed leadless implanted electronic device detection and 

localization algorithm for determination of MRI safety based on Chest X-Rays; both algorithms 

were able to run in parallel on the same datasets, and inference results from both (transmitted in 

the form of DICOM SR TID1500) could be visualized simultaneously in the CAII Viewer (Figure 

10). 

 

Figure 8: Being able to capture standards-based user feedback enables database-driven algorithm 

development and enhancement, as well as easy and structured data capture. This is illustrated with a 

locally developed algorithm for leadless implanted electronic device algorithm for determination of MRI 

safety based on Chest X-Rays [7]. This algorithm is trained to recognize potentially MRI-unsafe devices 

using two cascading AI models (the results of the first model for detection based on a fast R-CNN then 

feed into the second model for identification based on a multi-class CNN). 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 20, 2023. ; https://doi.org/10.1101/2023.09.19.23295729doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295729
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 

Figure 9a: AIRC Chest X-ray results showing a subtle lung lesion as displayed in the locally developed 

CAII Viewer [7]. The CAII Viewer can display a wide range of DICOM formats, including non-editable 

Secondary Captures (as shown here), as well as DICOM SR outputs (left-hand-side menu) for more 

control by the end-user. 
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Figure 9b: AIRC Chest X-Ray multi-finding case as displayed using the locally developed CAII Viewer. 

Like Figure 8a, the Secondary Captured annotations are not editable. 

 

Figure 9c: AIRC Chest X-Ray multi-finding case as displayed using the locally developed CAII Viewer 

(same patient as Figure 9b). The CAII Viewer displays DICOM SR TID1500-based annotations supporting 

post-inference adjudication workflow (accept/delete/edit options), as well as comprehensive, structured 

insights about these results (e.g., confidence score, comments extracted from the DICOM SR). A DICOM-

SR-only workflow (e.g., not producing any DICOM Secondary Capture outputs) is possible in our 

environment. 
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Figure 10: The standards-based CAII Viewer (exploiting formats like DICOM SR TID1500 according to 

IHE AIR) can allow the simultaneous display of inference results from different algorithmic processing of 

the same dataset. This is illustrated with the demonstrated results from AIRC Chest X-Ray (bilateral 

consolidation) and a locally developed algorithm for detection and identification of potentially MRI-unsafe 

leadless implanted electronic devices on Chest X-Rays. 
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Conclusion 

In this project, we have shown that algorithms, either vendor-based (e.g., Chest X-Ray AI 

solutions) or locally developed, can be simultaneously deployed and supported in parallel 

through a common standards-based architecture and workflow, even with complex operational 

requirements. Deployments of both types of solutions can co-exist in the same environment and 

provide concurrent AI support to end-users for a variety of tasks, including: image interpretation, 

inference result adjudication (for data collection, product improvement, or other purposes), or 

worklist management.  

 

We successfully demonstrated that standards-based inference result production (e.g., as IHE-

compliant DICOM SR TID1500), as well as result consumption by downstream applications, 

was possible. These capabilities could enable medical institutions to: 

1) Gain control over AI results with which they interact (e.g., by providing edit/delete 

functionalities in appropriate viewing environments, therefore enabling adjudication of AI 

results). 

2) View and interact with AI results from different sources (e.g., vendor-provided or locally 

developed algorithms) 

3) Influence their reading workflow, if products cleared for that purpose are used (e.g., to 

flag time-sensitive cases in their worklist to promote timely reading and reporting). This 

could happen either by using middleware (parsing information from standard formats to 

transmit data points to a HIS/RIS worklist into a specific message format), as shown in 

this project, or by relying on existing functionalities of the HIS/RIS to ingest IHE-AIR-

compliant datapoints.  

With the implemented workflow based on several AI applications (different providers), we 

demonstrated that a viewer, such as our locally developed CAII Viewer, can deal with a variety 

of results (provided that both the viewer and the results adhere to certain standards). We 

illustrate two fundamental aspects of the IHE AIR profile, including that: 

1) Following formats and result primitives recommended by IHE AIR can facilitate image 

display combined with baseline data-handling and presentation capabilities, making it 

"AI-ready" for supporting of a wide range of incoming results without the need for custom 

implementation; 

2) It is beneficial for AI result generators (like the commercial and locally developed 

applications presented in this report) to support these data formats defined in IHE AIR, 

so that the produced results are compatible with a variety of displays and site workflows. 

Using AI-results integration standards allowed us to have a successful implementation and 

timely installation of commercial products (e.g., AIRC) along with locally developed algorithms. 

Being able to track algorithm performances during testing, as well as being able to provide 

feedback on the results, helped us verify reliability and robustness prior to deployment. A formal 

evaluation is to be performed in a clinical trial setting and was not within the scope of this 

project. However, our initial impressions, which were very positive in terms of algorithm 

durability, were verifiable through performance data captured during this test phase.   
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