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Abstract9

Introduction: Covert tobacco advertisements often raise regulatory measures. This10

paper presents that artificial intelligence, particularly deep learning, has great potential for11

detecting hidden advertising and allows unbiased, reproducible, and fair quantification of12

tobacco-related media content.13

Methods: We propose an integrated text and image processing model based on deep14

learning, generative methods, and human reinforcement, which can detect smoking cases15

in both textual and visual formats, even with little available training data.16

Results: Our model can achieve 74% accuracy for images and 98% for text. Further-17

more, our system integrates the possibility of expert intervention in the form of human re-18

inforcement.19

Conclusions: Using the pre-trained multimodal, image, and text processing models20

available through deep learning makes it possible to detect smoking in different media21

even with few training data.22
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1 Introduction27

The WHO currently estimates that smoking causes around 8 million deaths a day. It is the28

leading cause of death from a wide range of diseases, for example, heart attacks, obstructive29

pulmonary disease, respiratory diseases, and cancers. 15% of people aged 15 years and over30

smoke in the OECD countries and 17% in the European Union. 1 Moreover, of the 8 million31

daily deaths, 15% result from passive smoking.2 The studies3,4 below highlight the influence of32

smoking portrayal in movies and the effectiveness of health communication models. However,33

quantifying media influence is complex. For internet media like social sites, precise ad statistics34

are unavailable. Furthermore, calculating incited and unmarked ads poses a significant difficulty35

as well. Therefore, accurate knowledge of the smoking-related content appearing in individual36

services can be an effective tool in reducing the popularity of smoking. Methods for identifying37

content include continuous monitoring of advertising intensity,5 structured data generated by38

questionnaires,6 and AI-based solutions that can effectively support these goals. The authors39

of the article ”Machine learning applications in tobacco research”7 point out in their review that40

artificial intelligence is a powerful tool that can advance tobacco control research and policy-41

making. Therefore, researchers are encouraged to explore further possibilities.42

Nonetheless, these methods are highly data-intensive. In the case of image processing, an43

excellent example of this is the popular ResNet8 image processing network, which was trained44

on the ImageNet dataset9 containing 14,197,122 images. Regarding text processing, we can45

mention the popular and pioneering BERT network 10 trained by the Toronto BookCorpus 11 was46

trained by the 4.5 GB of Toronto BookCorpus. Generative text processing models such as GPT 1247

are even larger and were trained with significantly more data than BERT. For instance, the train-48

ing set of GPT 3.0 was the CommonCrawl 13 dataset, which has a size of 570 GB.49

The effective tools for identifying the content of natural language texts are topic modeling 1450

and the embedding of words, 15–17 tokens, sentences, 18 or characters 19 clustering.20 For a more51

precise identification of the content elements of the texts, we can use the named-entity recogni-52

tion21 techniques. In image processing, we can highlight classification and object detection to53

detect smoking. The most popular image processing models are VGG,22 ResNet,8 Xception,2354

EfficientNet,24 Inception,25 and YOLO.26 Moreover, there are architectures like CAMFFNet,2755

which are specifically recommended for smoking detection. The development of multimodal56

models also is gaining increasing focus,28,29 which can use texts and images the solve the57
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tasks at the same time. For movies, scene recognition is particularly challenging compared58

to images.30 Scene recognition is also linked to sensitive events such as fire, smoke, or other59

disaster detection systems,31 but there are attempts to investigate point-of-sale and tobacco60

marketing practices32 as well.61

We concluded that there is currently no publicly available specific smoking-related dataset that62

would be sufficient to train a complex model from scratch. Hence, we propose a multimodal63

architecture that uses pre-trained image and language models to detect smoking-related con-64

tent in text and images. By combining image processing networks with multimodal architec-65

tures and language models, we leverage textual and image data simultaneously. This offers a66

data-efficient and robust solution that can be further improved with expert input. This paper67

demonstrates the remarkable potential of artificial intelligence, especially deep learning, for68

the detection of covert advertising, alongside its capacity to provide unbiased, replicable, and69

equitable quantification of tobacco-related media content.70

2 Methods71

2.1 Model Architecture72

As illustrated in Figure 1 by a schematic flow diagram, our solution relies on pre-trained language73

and image processing models and can handle both textual and image data.74

The first step of our pipeline is to define the incoming data format because need to direct the75

data to the appropriate model for its format. The video recordings are analyzed with multimodal76

and image processing models, while the texts are analyzed with a large language model. In the77

case of video recordings, we applied the CLIP-ViT-B-32 multilingual33,34 model. The model has78

been developed for over 50 languages with a special training technique.33 The model supports79

Hungarian, which was our target language. We use the CLIP-ViT-B-32 model as a filter. After80

filtering, to achieve more accurate results, we recommend using the pre-trained EfficientNet B581

model, which we fine-tuned with smoking images for the classification task.82

To process texts, we use name entity recognition to identify smoking-related terms. For this83

purpose, we have integrated into our architecture an XLM-RoBERTa model35 that is pre-trained,84

multilingual, and also supports the Hungarian language, which is important to us.85
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Figure 1: Schematic flow diagram of the architecture.

2.2 Format check86

The first step in processing is deciding whether the model has to process video recordings or87

text data. Since there are many formats for videos and texts, we chose the simple solution of88

only supporting mp4 and txt file formats. The mp4 is a popular video format, and practically89

all other video recording formats can be converted to mp4. We consider txt files utf8-encoded90

raw text files that are ideally free of various metadata. It is important to emphasize that here91

we ignore the text cleaning processes required to prepare raw text files. The reason is that we92

did not deal with faulty or txt files requiring further cleaning during the trial.93

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.19.23295710doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295710
http://creativecommons.org/licenses/by-nc/4.0/


2.3 Processing of videos and images94

The next step in the processing of processing video footage is to break it down into frames by95

sampling every second. The ViT image encoder of the CLIP-ViT-B-32 model was trained by its96

creators for various image sizes. For this, they used the ImageNet9 dataset in which the images97

have an average size of 469×387 pixels.98

The developers of CLIP-ViT-B-32 do not recommend an exact resolution for the image encoder.99

The model specification only specifies a minimum resolution of 224×224. In the case of Effi-100

cientNetB5, the developers have optimized an image size of 224×224. For these reasons, we101

have taken this image size as a reference and transformed the images sampled from the video102

recordings to this image size.103

2.4 Multimodal filtering104

The images sampled from the video recordings were filtered using the CLIP-ViT-B-32 multilin-105

gual v1 model. The pre-trained CLIP-ViT-B-32 multilingual v1 model consists of two main com-106

ponents from a ViT36 image processing model and a DistilBERT-based37 multilingual language107

model. We convert into a 512-long embedded vector 16 the images and texts with CLIP-ViT-108

B-32. The embedded vectors for texts and images can be compared based on their content109

meaning if we measure cosine similarities between the vectors. The cosine similarity is a value110

falling in the interval [-1,1], and the similarity of two vectors will be larger the closer their cosine111

similarity is to 1.112

Since we aimed to find smoking-related images, we defined a smoking-related term. We con-113

verted it to a vector and measured it against the embedded vectors generated from the video114

images. The term we chose was the word ”smoking”. We can use more complex expressions,115

which could complicate the measurement results interpretation.116

The cosine similarity of the vectors produced by embedding the images always results in a scalar117

value compared to the vector created from our expression related to ”smoking”. However, the118

decision limit between the distances measured between the vectors produced by the CLIP-ViT-119

B-32 model is not always clear. Namely, even in the case of images with meanings other than120

”smoking”, we get a value that is not too distant.121

We had to understand the distribution of the smoking images to eliminate this kind of blurring122
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of the decision boundary. To this end, we examined the characteristics of the distribution of123

the images. It is clear from Figure 2 that because the images with a semantic meaning closer124

to smoking appear randomly in a video recording, it is difficult to grasp the series of images125

that can be useful for us. Figure 2 is actually a function whose vertical axis has the cosine126

similarity values belonging to the individual images. At the same time, the horizontal axis shows127

the position of the images in the video. To solve this problem, we introduced the following128

procedure. If we put the cosine similarity values in ascending order, we get a function that129

describes the ordered evolution of the cosine similarity values.130

Figure 2: The cosine similarity of the images obtained from the video recording in chronological

order.

The ordered function generated from Figure 2 can be seen in Figure 3. As shown in Figures 2131

and 3, we found that if we take the similarity value of the images sampled from the given sample132

to the word ”smoking”, their average results in a cutting line, and we can use it as a filter.133
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Figure 3: The images are in an orderly manner based on the cosine similarity values.

Furthermore, considering the specifics of the video recordings, we consider that the average134

can be corrected with a constant value. In this mean, the constant value can thus also be defined135

as the hyperparameter of the model. We chose the 0 default value for the correction constant136

because of more apparent measurements. Because the choice of the best constant value may137

differ depending on the recording type and may distort the exact measurement results.138

2.5 Fine-tuned image classification139

After filtering the image set with a multimodal model, we applied an image processing model140

to classify the remaining images further to improve accuracy. Among the publicly available141

datasets on smoking, we have used the ”smoker and non-smoker”38 for augmented39 fine-142

tuning. We selected the following models for the task. EfficientNet, Inception, ResNet, VGG,143

and Xception. The EfficientNet B5 version was the best, with an accuracy of 93.75%. Table S1144

of the supplemental contains our detailed measurement results concerning all models.145
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2.6 Processing of text146

In the case of detecting smoking terms in texts, we approached the problem as an NER task and147

focused on the Hungarian language. Since we could not find a dataset containing annotated148

smoking phrases available in Hungarian. Therefore, to generate the annotated data, we used149

the generational capabilities of ChatGPT, the smoking-related words of the Hungarian synonyms150

and antonyms dictionary,40 and prompt engineering. Accordingly, we selected words related151

to smoking from the synonyms and antonyms dictionary and asked ChatGPT to suggest further152

smoking-related terms besides words from the Hungarian dictionary. Finally, we combined the153

synonyms and the expressions generated by ChatGPT into a single dictionary.154

We created blocks of a maximum of 5 elements from the words in our dictionary. Each block155

contained a random combination of a maximum of 5 words. The blocks are disjoint, so they do156

not contain the same words. This mixing step was done 10 times. This means that, in one itera-157

tion, we could form 8 blocks of 5-element disjunct random blocks from our 43-word dictionary.158

By doing all these 10 times, we produced 80 blocks. However, due to the 10 repetitions, the159

80 blocks were no longer disjoint. In other words, if we string all the blocks together, we get a160

dictionary in which every synonym for smoking appears a maximum of 10 times.161

We made a prompt template to which, by attaching each block, we instructed ChatGPT to gen-162

erate texts containing the specified expressions. Since ChatGPT uses the Hungarian language163

well, the generated texts contained our selected words by the rules of the Hungarian language,164

with the correct conjugation. An example of our prompts is illustrated in Table 1.165

Table 1: A 3 elements example prompt for ChatGPT.

Generate a short text about smoking.

The text strictly contains the following words in the different sentences:

smoking, tobacco, cigar

We did not specify how long texts should be generated by ChatGPT or that every word of a166

5-element block should be included in the generated text. When we experimented with Chat-167

GPT generating fixed-length texts, it failed. Therefore, we have removed the requirement for168

this.169
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Using this method, we created a smoking-related corpus consisting of 80 paragraphs, 49000170

characters, and 7160 words. An English example of a generated text is presented in Table171

2.172

Table 2: An example paragraph generated by from the prompt of Table 1.

Smoking is a widespread and addictive habit that involves inhaling

and exhaling the smoke produced by burning tobacco. Whether it’s

a hand-rolled cigar or a manufactured cigarette, the act of

smoking revolves around the consumption of tobacco. Despite the well-known

health risks, many individuals continue to engage in smoking due

to its addictive nature. The allure of a cigar or

a cigarette can be strong, making it challenging for people

to quit smoking even when they are aware of its

detrimental effects. Education and support are crucial in helping individuals

break free from the cycle of smoking and its associated

harms.

To find the best model according to the possibilities of our computing environment and the sup-173

port of the Hungarian language, we tested the following models: XLM RoBERTa base and large,174

DistilBERT base cased, huBERT base,41 BERT base multilingual,42 Sentence-BERT.43 The best175

model was the XLM RoBERTa large one, which achieved 98% accuracy and 96% F1-score on the176

validation dataset and an F1-score of 91% with an accuracy of 98% on the test dataset.177

2.7 Human reinforcement178

In the architecture we have outlined, the last step in dealing with the lack of data is to ensure179

the system’s continuous development capability. For this, we have integrated human confirma-180

tion into our pipeline. The essence is that our system’s hyperparameters should be adjustable181

and optimizable during operation and that the data generated during detection can be fed back182

for further fine-tuning. The cutting line used in multimodal filtering is a hyperparameter of our183

model. As a result, a more accurate result can be achieved by using human confirmation during184

the operation. The tagged images and annotated texts from the processed video recordings185

and texts are transferred to permanent storage in the last step of the process. This dynam-186

ically growing dataset can be further validated with additional human support, and possible187

errors can be filtered. So, False positives and False negatives can be fed back into the training188

datasets.189
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3 Results190

We collected video materials to test the image processing part of our architecture. The source191

of the video materials was the video-sharing site YouTube. Taking into account the legal rules192

regarding the usability of YouTube videos, we have collected 5 pieces short advertising films193

from the Malboro and Philip Moris companies. We ensured not to download videos longer than194

2 minutes because longer videos, such as movies, would have required a special approach195

and additional pre-processing. Furthermore, we downloaded the videos at 240p resolution and196

divided them into frames by sampling every second. Each frame was transformed to a resolution197

of 224×224 pixels. We manually annotated all videos. The downloaded videos averaged 64198

seconds and contained an average of 13 seconds of smoking.199

With the multimodal filtering technique, we discarded the images that did not contain smoking.200

Multimodal filtering found 25 seconds of smoking on average in the recording. The accuracy201

of the identified images was 62%. The multimodal filtering could filter out more than half202

of the 64-second, on average, videos. We also measured the performance of the fine-tuned203

EfficientNet B5 model by itself. The model detected an average of 28 seconds of smoking with204

60% accuracy. We found that the predictions of the two constructions were sufficiently diverse205

to connect them using the boosting ensemble44 solution. By connecting the two models, the206

average duration of perceived smoking became 12 seconds with 4 seconds on average error207

and 74% accuracy. The ensemble solution was the best approach since the original videos208

contained an average of 13 seconds of smoking. We deleted the videos after the measurements209

and did not use them anywhere for any other purpose.210

We created training and validation datasets from Hungarian synonyms for smoking using Chat-211

GPT. We trained our chosen large language models until their accuracy on the validation dataset212

did not increase for at least 10 epochs. The XLM-RoBERTa model achieved the best perfor-213

mance on the validation dataset with an F1-score of 96% and 98% accuracy. For the final214

measurement, we created test data from an online text related to smoking by manual annota-215

tion.45 The text of the entire test data is included in the Table S20 supplemental. The fine-tuned216

XLM-RoBERTa model achieved 98% accuracy and 0.91 F1 score on the test dataset.217
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4 Conclusions218

Multimodal and image classification models are powerful for classification tasks. In return,219

however, they are complex and require substantial training data, which can reduce their ex-220

plainability and usability. In turn, our solution showed that pre-trained multimodal and image221

classification models exist that allow smoking detection even with limited data and in the mat-222

ter of low-resource languages if we use the potential of human reinforcement, generative, and223

ensemble methods. In addition, we see further development opportunities if our approach is224

supplemented with an object detector, which can determine the time of occurrence of objects225

and their position. Moreover, with the expected optimization of the automatic generation of226

images in the future and the growth of the available computing power, our method used for227

texts can work in the case of images.228
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