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Abstract:  Recent data indicate that non-Plasmodium falciparum species may be more 18 

prevalent than previously realized in sub-Saharan Africa, the region where 95% of the world’s 19 

malaria cases occur. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium 20 

vivax are generally less severe than P. falciparum, treatment and control are more challenging, 21 

and their geographic distributions are not well characterized. In order to characterize the 22 

distribution of malaria species in Mainland Tanzania (which has a high burden and 23 

geographically heterogeneous transmission levels), we randomly selected 3,284 samples from 24 

12,845 samples to determine presence and parasitemia of different malaria species. The 25 

samples were collected from cross-sectional surveys in 100 health facilities across ten regions 26 

and analyzed via quantitative real-time PCR to characterize regional positivity rates for each 27 

species. P. falciparum was most prevalent, but P. malariae and P. ovale were found in all 28 

regions except Dar es Salaam, with high levels (>5%) of P. ovale in seven regions (70%). The 29 

highest positivity rate of P. malariae was 4.5% in Mara region and eight regions (80%) had 30 

positivity rates ≥1%. We also detected three P. vivax infections in the very low-transmission 31 

Kilimanjaro region. While most samples that tested positive for non-falciparum malaria were co-32 

infected with P. falciparum, 23.6% (n = 13/55) of P. malariae and 14.7% (n = 24/163) of P. ovale 33 

spp. samples were mono-infections. P. falciparum remains by far the largest threat, but our data 34 

indicate that malaria elimination efforts in Tanzania will require increased surveillance and 35 

improved understanding of the biology of non-falciparum species. 36 
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Introduction: 40 

 Sub-Saharan Africa (SSA) accounted for 95% of malaria cases and 96% of malaria 41 

deaths in 2021[1]. Although Plasmodium falciparum is the most prevalent and deadliest human 42 

malaria species in the SSA region, four other species are present (P. vivax, P. malariae, P. 43 

ovale curtisi, and P. ovale wallikeri). Furthermore, recent research suggests that these four 44 

species are more prevalent than previously thought and their prevalence may increase in the 45 

context of intensive P. falciparum control/elimination[2–8]. This possibility is particularly salient 46 

in light of current malaria elimination goals stemming from the WHO Global Technical 47 

Strategy[9], which aims by 2030 to reduce the global malaria burden by 90% from 2015 levels. 48 

Non-falciparum malaria species have notably different biology than P. falciparum and are not 49 

necessarily controlled by the same measures, due to the potential for transmission by different 50 

vectors, differing seasonality[10], potentially earlier gametocytogenesis[11–13], presence of 51 

hypnozoite stages/persistent infection[12,14], generally lower levels of parasite 52 

carriage/density[15,16], and greater asymptomatic infection and transmission[10]. 53 

 P. vivax is the most widely distributed human malaria species globally[17]. The strength 54 

of Duffy selection with rapid sweep across SSA is testament to the morbidity and mortality that 55 

P. vivax has caused in the past[18]. Although generally less severe than P. falciparum[19], it 56 

can be more difficult to control and treat due to the presence of the relapsing hypnozoite stage 57 

in the liver[20]. Outside of Africa, e.g., in the Western Pacific, P. vivax has increased as P. 58 

falciparum control has succeeded[1]. The prevailing dogma for decades was that P. vivax was 59 

largely absent from Africa due to high prevalence of the Duffy-negative trait, which is 60 

widespread in most SSA populations[21]. However, recent evidence across Africa indicates 61 

increased P. vivax detection in Duffy-negative patients[22–24]. Nonetheless, it is still much less 62 

prevalent than P. falciparum and the clinical significance and management strategies of such 63 

infections are still unknown. 64 

 P. malariae and P. ovale spp. are much less studied than either P. falciparum or P. 65 

vivax. They have both been detected throughout Africa, but usually at much lower prevalence 66 

than P. falciparum[25]. Both are frequently detected in co-infections with P. falciparum rather 67 

than as mono-infections[15,25–28], although exceptions have been noted[29]. P. ovale spp. 68 

infections are generally found at low-density, while P. malariae infections can cause higher 69 

parasitemia[15]. P. ovale spp. have relapsing stages like P. vivax, which likely means that their 70 

control and elimination will be more difficult, as is true of P. vivax[12]. P. malariae is thought to 71 

be more prevalent than P. ovale, particularly in West Africa[5,6,14,15]. It does not have a liver 72 

stage, but can cause long-term persistent infection[14]. 73 

 While there are data to suggest that non-falciparum malaria is widespread in sub-74 

Saharan Africa[4,26,28,30], and that these prevalences may be increasing[3,5,31], rapid 75 

diagnostic tests (RDTs) currently deployed in Africa are better at detecting falciparum malaria 76 

than other species[32,33]. Given the preponderance of both low-density infections and multiple 77 

species co-infections with non-falciparum malaria species, as well as the lower likelihood of 78 

severe disease, these species are less likely to be detected during surveillance activities or at 79 

the point-of-care. While molecular diagnostics such as qPCR are readily capable of detecting 80 

both falciparum and non-falciparum Plasmodium spp., these tools are highly technical and 81 

resource-prohibitive, so are rarely used outside of laboratory research activities. 82 
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 Tanzania has the third highest malaria burden in the world, accounting for 4.1% of global 83 

malaria deaths in 2021[1]. Malaria transmission in Tanzania is predominantly P. falciparum and 84 

highly heterogeneous by region and season (Figure 1A)[34]. Transmission is high and endemic 85 

along the coast and the Lake Zone, and low, unstable, and seasonal in large urban areas and 86 

highland regions, while the rest of the country is subject to moderate seasonal transmission[34].  87 

Previous work has looked at prevalence of non-falciparum malaria among asymptomatic 88 

school children, finding surprisingly high rates of P. ovale spp. infection[8]. However, data from 89 

symptomatic cases for Tanzania is based primarily on sporadic convenience samples and does 90 

not provide broad geographic information about the distribution of non-falciparum malaria. To 91 

address the distribution of non-falciparum malaria in symptomatic individuals from all age 92 

groups, we conducted a survey of symptomatic malaria cases across ten different regions of 93 

Mainland Tanzania with varying transmission intensity. We present a molecular analysis of 94 

malaria species positivity rates within this national dataset.  95 

  96 

Figure 1 – A) National map of regional malaria prevalence in 2021 as determined by a combination of blood slide 97 
positivity rates and Pfhrp2/LDH mRDT positivity rates. Data courtesy of National Malaria Control Programme, 98 

Dodoma. B) Map of Tanzania highlighting study regions. 99 

  100 

Methods: 101 

Ethics:  102 

The Molecular Surveillance of Malaria in Tanzania (MSMT) study protocol was approved by the 103 

Tanzanian Medical Research Coordinating Committee (MRCC) of the National Institute for 104 

Medical Research (NIMR) and involved approved standard procedures for informed consent 105 

and sample deidentification. Additional details are described elsewhere[35]. Deidentified 106 

samples were considered non-human subjects’ research at the University of North Carolina and 107 

Brown University. In addition, publicly available aggregate data on malaria prevalence from all 108 

regions of Tanzania was provided by the National Malaria Control Programme (NMCP) for 2021 109 

in order to map regional malaria prevalence. 110 

Sample collection:  111 
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A random subset of 3,284 samples were drawn from 12,845 samples collected during 112 

the MSMT project[35] in 2021. Briefly, samples were collected in the MSMT Plasmodium 113 

falciparum histidine-rich protein 2 and 3 (Pfhrp2/3) gene deletion survey in ten regions: Dar es 114 

Salaam, Dodoma, Kagera, Kilimanjaro, Manyara, Mara, Mtwara, Njombe, Songwe, and 115 

Tabora[35], with additional samples collected in these regions for population genetic studies of 116 

malaria parasites. Additional details on study site selection are given in Rogier et al.[35]. 117 

Surveys were conducted according to the WHO protocol[36] and included ten regions (Figure 118 

1B) which are distributed across mainland Tanzania with variable malaria transmission levels. 119 

Regions were assigned to four transmission strata ranging from very low to high based on 120 

NMCP data from 2020[34] (Table 1).  121 

Table 1 – Summary of study regions and number of samples analyzed 122 

Region Transmission Strata Samples 

Kilimanjaro Very Low 897 

Manyara Very Low 223 

Njombe Very Low 211 

Subtotal Very Low 1,331 

Dar es Salaam Low 213 

Dodoma Low 274 

Songwe Low 145 

Subtotal Low 632 

Mara Moderate 335 

Tabora Moderate 267 

Subtotal Moderate 602 

Kagera High 417 

Mtwara High 302 

Subtotal High 719 

Overall All 3,284 

 123 

Dried blood spots (DBS) were collected from patients with malaria-like symptoms. Most 124 

individuals (n = 3,234) were tested with a standard Pfhrp2/ pan-Plasmodium lactate 125 

dehydrogenase (pLDH) mRDT while some (n = 1,942) were also administered a PfLDH-based 126 

mRDT[35]. Samples were considered malaria-positive if any mRDT was positive. 127 

Molecular speciation assays:  128 

DNA from three 6mm DBS punches[37], representing approximately 25 μl of blood[8] 129 

was extracted using Chelex into a final usable volume of approximately 100 μl. Quantitative real 130 

time PCR assays targeting the 18S ribosomal subunit were performed according to published 131 

protocols (Supplemental Table 1)[28]. A separate qPCR assay was run for each species: P. 132 

falciparum, P. malariae, P. ovale spp. (detecting both P. o. curtisi and P. o. wallikeri), and P. 133 

vivax. Detection and parasitemia quantification were based on standard curves generated using 134 

dilutions of plasmids from MR4 (MRA-177, MRA-178, MRA-179, MRA-180; BEI Resources, 135 

Manassas, VA). Plasmids were quantified using a Qubit fluorometer, then normalized to a 136 

standard concentration of 0.1 ng/µL before serial dilutions. Three ten-fold dilution concentrations 137 

(0.001 ng/µL, 0.0001 ng/µL, 0.00001 ng/µL) were used for qPCR standard curves. Semi-138 

quantitative parasitemia was estimated based on the assumption of six 18S rRNA gene copies 139 

per parasite genome[28], then multiplied by four to account for the dilution of eluted DNA 140 

relative to initial blood volume[8]. P. malariae assays used 42 cycles, while all other assays 141 
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used 45 cycles to detect low-density infections[28]. This approach has been previously validated 142 

as highly sensitive and specific[28,38]. 143 

Statistical analysis:  144 

Positivity rates were calculated for each region, as the data are biased toward 145 

individuals with both clinical symptoms and mRDT positivity and therefore do not represent true 146 

prevalence inclusive of asymptomatic infections. Regional-level maps of positivity rate for each 147 

species were created using the R package sf (version 1.0-9) based on shape files available 148 

from GADM.org and naturalearthdata.com accessed via the R package rnaturalearth (version 149 

0.3.2)[39]. 150 

Variation in species-specific positivity rates by region, transmission strata, individuals’ 151 

age, and age group (young children <5 years, school-aged children 5-16 years[8,40], and adults 152 

>16 years) was assessed for significance with generalized linear models or ANOVA, as 153 

appropriate, in R. Given there is no consensus for an age range for school aged children, we 154 

used the age range of the 2017 Tanzania National School Children Survey[8,40]. 155 

Results: 156 

Study Population: 157 

Within this subset of 3,284 patients, the median age was 12 (IQR 3–28) years with a range 158 

of 6 months to 87 years. Children (≤16 years old) constituted 56.4% of participants (n = 1,853), 159 

while adults (>16 years old) constituted the remaining 43.6% (n = 1,431). Young children (<5 160 

years old) comprised 58.3% (n = 1,081) of the child participants, while the remaining 41.7% (n = 161 

772) were school-aged (5 – 16 years old). Gender identifications were available for 3,196 162 

participants and female-skewed, with 1,754 female (54.9%) and 1,442 male participants (45.1%). 163 

Sample sizes for each region are given in Table 1. 53.7% (n = 1,763) of sampled individuals 164 

tested positive by any mRDT.  165 

qPCR Positivity by Species: 166 

 Across all individuals sampled, P. falciparum was detected in 56.8% (n = 1,865, 95% CI: 167 

55.1% – 58.5%), P. malariae in 1.7% (n = 55, 95% CI: 1.3% – 2.2%), P. ovale spp. in 5.0% (n = 168 

163, 95% CI: 4.3% – 5.8%), and P. vivax in 0.09% (n = 3, 95% CI: 0.02% – 0.2%). 169 

 Mixed-species infections were common (Table 2). The majority of P. malariae infections 170 

were mixed with P. falciparum (56.4%, n = 31), although P. malariae mono-infections were also 171 

common (23.6%, n = 13), as were three-species infections with P. malariae, P. falciparum and P. 172 

ovale spp (18.2%, n = 10). The vast majority of P. ovale spp. infections were also mixed with P. 173 

falciparum (78.5%, n = 128, Table 2). As with P. malariae, single-species infections occurred and 174 

were more common than either three-species infections or mixed infection with P. ovale and P. 175 

malariae only. Of the three P. vivax infections detected, all were mixed with P. falciparum (Table 176 

2). This small sample size precluded further statistical analyses. 177 

   178 

  179 

  180 
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Table 2 – Infection composition proportions for non-falciparum infections 181 

Infection Type Count Proportion 
Pm 13 23.6% 
Pm/Pf  31 56.4% 
Pm/Po 1 1.8% 
Pm/Pf/Po 10 18.2% 
All Pm Infections 55 

 

Po 24 14.7% 
Po/Pf  128 78.5% 
Pm/Po 1 0.6% 
Pm/Pf/Po 10 6.1% 
All Po Infections 163 

 

Pv 0 0% 
Pv/Pf  3 100% 
All Pv Infections 3 

 

*Sum of proportions may not equal 100% due to rounding. 182 

Parasite Density: 183 

 Parasitemia as determined by semi-quantitative qPCR based on standard dilutions of 184 

plasmid varied significantly (ANOVA p < 0.001) by species, with P. falciparum parasitemia the 185 

highest at median (IQR) 1,226,000 p/µL (23,280 – 13,090,000 p/µL), followed by P. malariae at 186 

389,920 p/µL (19,364 – 2,147,000 p/µL), and P. ovale spp. having the lowest median parasitemia 187 

at 3,970 p/µL (396 – 54,000 p/µL). A Tukey post hoc test detected a significant difference in 188 

parasitemia (p < 0.001) between P. falciparum and P. ovale spp., but not between the other 189 

species pairs. Parasitemia did not differ significantly between single and mixed-species infections 190 

(Supplemental Figure 1). The three P. vivax infections (parasitemia of 70, 4,704, and 61,400 p/µL) 191 

were not analyzed. 192 

Variability by Region and Transmission Strata: 193 

 P. falciparum was detected in every region sampled (Figure 2A) with variable positivity 194 

rates (Table 3). P. malariae and P. ovale spp. were detected in every region except for Dar es 195 

Salaam (Figure 2B, 2C). P. vivax was only detected in Kilimanjaro region (Figure 2D). 196 
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 197 

Figure 2 – Species positivity rate maps across Tanzania for A) P. falciparum, B) P. malariae, C) P. ovale spp., and D) 198 
P. vivax. Shaded regions represent only positivity rates among health facility samples and should not be assumed to 199 

represent true regional prevalences. 200 

 201 

Table 3 – Positivity Rates by Region 202 

Region 
Pf Positive 
Samples 

Pm Positive 
Samples 

Po Positive 
Samples 

Pv Positive 
Samples 

Total 
Samples 

Dar es Salaam 161 (75.6%) 0 (0%) 0 (0%) 0 (0%) 213 

Dodoma 174 (63.5%) 5 (1.8%) 15 (5.5%) 0 (0%) 274 

Kagera 261 (62.6%) 13 (3.1%) 24 (5.8%) 0 (0%) 417 

Kilimanjaro 209 (23.3%) 2 (0.2%) 4 (0.4%) 3 (0.3%) 897 

Manyara 144 (64.6%) 3 (1.4%) 14 (6.3%) 0 (0%) 227 

Mara 240 (71.6%) 15 (4.5%) 51 (15.2%) 0 (0%) 335 

Mtwara 238 (78.8%) 3 (1.0%) 10 (3.3%) 0 (0%) 302 

Njombe 124 (58.8%) 6 (2.8%) 15 (7.1%) 0 (0%) 211 

Songwe 93 (64.1%) 3 (2.1%) 14 (9.7%) 0 (0%) 145 

Tabora 221 (82.8%) 5 (1.9%) 16 (6.0%) 0 (0%) 267 
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 P. falciparum was most abundant in Tabora (82.8%, n = 221/267, Table 3) and Mtwara 203 

(78.8%, n = 238/302), while it was least abundant in Kilimanjaro (23.3%, n = 209/897). P. malariae 204 

was most abundant in Mara (4.5%, n =15/335) and Kagera (3.1%, n = 13/417) and least abundant 205 

in Kilimanjaro (0.2%, n = 2/897) and Mtwara (1.0%, n = 3/302). P. ovale spp. positivity rates 206 

surpassed 5% in seven regions, with the highest abundance in Mara (15.2%, n = 51/335), Songwe 207 

(9.7%, n = 14/145), and Njombe (7.1%, n = 15/211). It was rare in Kilimanjaro (0.4%, n = 4/897). 208 

In all ten regions, P. ovale positivity rates were higher than P. malariae. Positivity rates varied 209 

significantly by region for all three species (ANOVA p < 0.001). Overall, transmission strata had 210 

a highly significant (ANOVA p < 0.001) effect on the positivity rates of all three species. Tukey 211 

post hoc analysis between strata is shown in Figure 3.  212 

 213 

Figure 3 – Tukey Analysis of Malaria Species Positivity Rate by Transmission Strata. A total of 1,331, 632, 602, and 214 
719 samples were available in the very low, low, medium, and high transmission strata, respectively. The number of 215 
positive samples per strata for each species is shown in the X-axis labels. Level of significance is shown as follows: * 216 
p<0.05, ** p<0.01, *** p<0.001, or **** p<0.0001. Panel A shows P. falciparum parasite rates by strata. There were 217 
significant differences between most strata in pairwise comparison, therefore the only nonsignificant comparison is 218 
shown (NS). Panel B shows the P. malariae parasite rate by strata. Pairwise comparisons of strata with significant 219 

differences in parasite rate are shown (*). Panel C shows P. ovale spp. parasite rate by strata. Pairwise comparisons 220 
of strata with significant differences in parasite rate are shown (*). 221 

 222 

Transmission strata had a significant effect on the likelihood of P. falciparum co-infection 223 

by ANOVA (p = 0.002) for P. ovale spp. A Tukey post hoc test indicated 24.6% (95% CI: 2.5% – 224 

46.7%) fewer co-infections in very low vs. high transmission strata (p = 0.02) as well as 28.9% 225 

(95% CI: 0.97% – 48.1%) fewer co-infections in very low vs. moderate strata (p < 0.001). There 226 

was also a nearly significant (p = 0.06) reduction in co-infections between the very low and low 227 

transmission strata. By contrast, there was no significant effect on the likelihood of P. malariae 228 

co-infection with P. falciparum.  229 

Variability by Age Group 230 

 No significant difference in P. malariae prevalence by age in years was detected (GLM p 231 

= 0.24). In contrast to P. malariae, age significantly correlated with P. ovale spp. infection (GLM 232 

p = 0.001). Children had significantly more P. ovale spp. infections (6.5%, n = 120/1,853) than 233 
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adults (3.0%, n = 43/1,431). When splitting participants into three age groups (Figure 4), overall 234 

significant correlations by ANOVA were observed with qPCR positivity for P. falciparum (p < 235 

0.001), P. malariae (p = 0.004), and P. ovale spp. (p < 0.001) (Figure 4). For P. falciparum, a 236 

Tukey post hoc test indicated significant variation (p < 0.001) between young children (<5 years), 237 

school children (5 - 16 years), and adults (>16 years), with children more likely to be positive than 238 

adults and school children more likely to be positive than young children. School children were 239 

also more likely to be positive for P. malariae than either adults (p = 0.003) or young children (p 240 

= 0.03), but no significant differences were detected between young children and adults. For P. 241 

ovale spp., school children were again more likely to test positive than either adults (p < 0.001) or 242 

young children (p = 0.04), and young children were more likely to test positive than adults (p = 243 

0.01). 244 

 245 
Figure 4 – Tukey Analysis of Malaria Species Positivity Rate by Age Strata. A total of 1,081, 772, and 1,413 246 

individuals were in the Young Children (<5 years), School Children (5-16 years) and Adult (>16 years) strata, 247 
respectively. The number of positive samples per age strata for each species is shown in the X-axis labels. Level of 248 
significance is shown as follows: * p<0.05, ** p<0.01, *** p<0.001, or **** p<0.0001. Panel A shows P. falciparum 249 

parasite rates by age strata. Pairwise comparisons of strata with significant differences in parasite rate are shown. All 250 
other pairwise comparisons were nonsignificant. Panel B shows the P. malariae parasite rate by strata. Pairwise 251 
comparisons of strata with significant differences in parasite rate are shown. All other pairwise comparisons were 252 

nonsignificant. Panel C shows P. ovale spp. parasite rate by strata. Pairwise comparisons of strata with significant 253 
differences in parasite rate are shown. All other pairwise comparisons were nonsignificant. 254 

 255 

Discussion: 256 

This study presents a comprehensive picture of the geographic distribution of different 257 

malaria species among symptomatic patients within Mainland Tanzania across all ages and in 258 

different transmission strata. It establishes a snapshot of the epidemiological landscape in 2021 259 

that will enable effective longitudinal tracking of non-falciparum malaria. Plasmodium falciparum 260 

remains by far the most prevalent malaria species in Tanzania. Nonetheless, P. malariae and 261 

especially P. ovale spp. are much more abundant than previously acknowledged, with multiple 262 

regions approaching or surpassing (in the case of P. ovale spp.) 5% positivity rates. P. vivax is 263 

rarely detected and was found only in Kilimanjaro. 264 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 20, 2023. ; https://doi.org/10.1101/2023.09.19.23295562doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295562


10 
 

Our findings support a recent report of high rates of P. ovale infection among 265 

asymptomatic school aged children in 2017[8]. Direct comparison between the studies is not 266 

possible due to the significant methodological differences (e.g. clinic-based symptomatic versus 267 

school-based asymptomatic). However, we see predominately low density P. ovale infections 268 

that are over-represented in the school aged individuals in this study. Though the 2017 study 269 

identified P. ovale spp. primarily as mono-infections[8], we identified mostly mixed infections 270 

with P. falciparum (Table 2).This discrepancy is most likely explained by our inclusion of 271 

symptomatic patients in the study, as infection with P. falciparum likely led them to seek medical 272 

care, while school children with P. ovale spp. mono-infections are more likely to be 273 

asymptomatic[15]. Indeed, they constitute a major asymptomatic infectious reservoir[41–43].  274 

The relatively high (> 5%) P. ovale spp. positivity rates in seven regions point to the 275 

necessity of active surveillance for these species, particularly given data from Tanzania and 276 

elsewhere showing increased incidence[3,5,7,31]. As was seen by the 2017 study[8], we found 277 

P. ovale spp. mono-infections to be more frequent in areas of low P. falciparum transmission, 278 

even though our samples came from symptomatic patients reporting to health facilities. The 279 

presence of these infections suggests that measures developed for P. falciparum will not 280 

completely control malaria in these regions. Since P. ovale spp. develops hypnozoites which 281 

can cause relapse, and which are not treated by standard schizonticidal regimens[12], its 282 

control is more complicated than that of P. falciparum. While major aspects of its biology, 283 

including major vectors, are poorly understood, transmission may be seasonal and 284 

asynchronous with P. falciparum[10]. Proactive monitoring will allow the NMCP and other 285 

decision makers to regularly monitor incidence and implement P. ovale-specific control 286 

measures as appropriate to support malaria control and elimination efforts. 287 

While P. malariae was less abundant than P. ovale spp. in our study, it is nonetheless 288 

present throughout Tanzania and also warrants regular surveillance. We identified few 289 

significant differences in P. malariae positivity by transmission strata and no effect of 290 

transmission strata on likelihood of co-infection with P. falciparum, but these results may stem 291 

from small sample sizes (55 total P. malariae infections and 13 mono-infections). The relatively 292 

low P. malariae levels detected in our study are also consistent with those found in other 293 

surveys of Tanzania as well as Malawi and Western Kenya[8,28,44]. Taken together, these 294 

results suggest that P. malariae is less of a concern than P. ovale spp. in East Africa. However, 295 

transmission of P. malariae, likeP. ovale spp., has been noted to increase as P. falciparum 296 

transmission reduces throughout East Africa[2,3,5,16]. If these trends continue and both 297 

species become more abundant, effective malaria control will increasingly hinge upon their 298 

surveillance.  299 

While there was significant regional variation in P. malariae and P. ovale spp. 300 

abundance in our study, it did not consistently correspond with transmission strata defined by P. 301 

falciparum data. In both P. malariae and P. ovale spp., the moderate transmission strata had the 302 

highest positivity rate, largely stemming from the high rates of both in Mara region. While P. 303 

malariae was equally likely to be co-infected with P. falciparum in all transmission strata, P. 304 

ovale spp. was more likely to occur as a single-species mono-infection in the very low 305 

transmission strata. 306 

Based on our data, P. vivax remains a minimal concern in Tanzania. However, as with 307 

the other species, its incidence could increase as P. falciparum’s decreases and like P. ovale 308 

spp., it would require specialized treatment and control measures. Other studies have also 309 
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detected P. vivax at low levels in Kagera, Mara, and Mwanza[8,45], the coastal regions of 310 

Mtwara and Tanga[8], and on the Zanzibar archipelago[16,46]. The fact that we did not detect 311 

P. vivax in multiple regions is consistent with its characteristically low prevalence of ≤1%. 312 

Because of its low prevalence, more intensive and targeted surveillance will be necessary to 313 

understand the biology of P. vivax in Tanzania, but its clinical impact is likely minor compared to 314 

the other species. 315 

Case-based surveillance pilots targeting malaria elimination have been implemented 316 

within the very low transmission regions of Kilimanjaro and Manyara, with the goal of expanding 317 

to other very low transmission regions[47]. While our results suggest that non-falciparum 318 

species are present at low prevalence within Kilimanjaro, and therefore unlikely to present major 319 

barriers to elimination in that region, Manyara has P. ovale spp. positivity rates > 5%, meaning 320 

that elimination efforts within that region will need to account for the specific surveillance, 321 

treatment, and control challenges presented by this species. Standardized treatment protocols 322 

currently employed in Tanzania do not incorporate “radical cure” with primaquine or tafenoquine 323 

to treat the liver-stage hypnozoites that cause relapses in P. ovale spp.[48]. As such, while ACT 324 

treatment may clear blood-stage parasites, relapses will continue to occur. 325 

This study has several limitations. Given the sampling scheme of using only people 326 

presenting to the clinic with symptoms (whether they had mRDT-positive malaria or not) we are 327 

unable to determine true prevalence rates for each species and report parasite rate. This is due 328 

to the fact that mRDT-positive individuals are likely over-enrolled and the asymptomatic 329 

reservoir is not sampled. The addition of community surveys could help alleviate this. 330 

Parasitemia estimates are also relative given the use of plasmids as the control and a multi-331 

copy gene for detection. Better controls are needed for accurate quantification of non-falciparum 332 

malaria using molecular methods. Lastly, while encompassing large regions of the country, the 333 

survey is not fully nationally representative and misses one crucial pre-elimination area, 334 

Zanzibar, where data on non-falciparum malaria may be very beneficial for elimination plans. 335 

Non-falciparum malaria, particularly P. ovale spp. and P. malariae, is present throughout 336 

mainland Tanzania. In order to achieve effective control and elimination of malaria, it will be 337 

necessary to conduct further surveillance and research on these species. Ongoing research as 338 

part of MSMT will enable both longitudinal epidemiological study and genomic characterization 339 

of the non-falciparum malaria landscape in Tanzania, as nationwide samples from 2022 and 340 

2023 will be available, allowing a fuller picture of the abundance of P. malariae, P. ovale spp., 341 

and P. vivax within Tanzania, as well as an indication of temporal trends that are not detectable 342 

in the work presented here. In addition, efforts to sequence high parasitemia P. malariae and P. 343 

ovale spp. samples collected in 2021 are ongoing and will grant us a deeper and more 344 

comprehensive picture of the Tanzanian populations of these species.  345 
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Supplemental Table 1 – qPCR Reactions 575 

(uploaded as separate Excel sheet) 576 

 577 

 578 

Supplemental Figure 1 – Parasitemia for Mixed Infections with P. falciparum vs. Single-Species Mono-Infections for 579 
A) P. malariae and B) P. ovale spp. No significant difference was detected between mixed and mono-infections. 580 
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