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TITLE  

Location of joint involvement differentiates rheumatoid arthritis into different clinical subsets.  

 

ABSTRACT 

Objectives 

To aid research on etiology and treatment of the heterogeneous rheumatoid arthritis (RA) 

population, we aimed to identify phenotypically distinct RA subsets using baseline clinical data. 

Method  

We collected hematology, serology, joint location, age and sex of RA-patients from the Leiden 

Rheumatology clinic(n=1,387). We used deep learning and clustering to identify phenotypically 

distinct RA subsets. To ensure robustness, we tested a) cluster stability, b) physician impact, c) 

association with remission and methotrexate failure, d) replication in clinical trial data 

(n=307) and independent secondary care (9 clinics, n=515). 

Results  

We identified four subsets: Cluster-1) arthritis in feet, Cluster-2) seropositive oligo-articular disease, 

Cluster-3) seronegative hand arthritis, and Cluster-4) polyarthritis. We found high cluster stability, no 

physician influence, significant difference in methotrexate failure(P<0.001) and occurrence of 

remission(P=0.007). The MTX-failure rates were recurrent in both replication sets(both P<0.001). 

The hand-Cluster-3 showed best outcomes, especially compared to Cluster-4 (P<0.001) and Cluster-1 

(P=0.003). The MTX-failure difference was largest in the ACPA-positive stratum (Cluster-3 versus 

Cluster-1 (HR:0.3 (0.15-0.60) P<0.001), Cluster-3 versus Cluster-4 HR:0.33 (0.15-0.72) P=0.005). We 

observed this for Cluster-4 in all sets, and for Cluster-1 in two out of three. This was independent of 

baseline disease activity and symptom duration. The clusters significantly improved the MTX failure 

model on top of traditional risk factors. 

Conclusions 

We discovered and replicated four phenotypic subgroups of RA at baseline characterized by hand 

and foot involvement that associate with treatment response. Such knowledge on disease subgroups 

could enhance studies to the treatment and the mechanisms underlying RA. 
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KEY MESSAGES 

What is already known about the subject? 

- Rheumatoid arthritis is a heterogeneous disease and clinicians have not completely 

identified the disease differentiating patterns in clinical practice. 

- Data-driven unsupervised techniques are able to identify hidden structures in big data.  

 

What does this study add? 

- We identified four RA clusters at baseline: feet involvement, oligo-articular disease, hand 

involvement and polyarthritis (both feet and hand involvement). The hand cluster shows a 

good treatment response, especially when compared to the polyarthritis and feet group. 

- The difference in treatment success between hands vs foot clusters was largest in the ACPA-

positive stratum.  

 

How might this impact on clinical practice or future developments?.  

- This research supports future endeavors in identifying etiological mechanisms and tailored 

treatment solutions. 

- Feet involvement at disease presentation can be considered a risk factor for less successful 

treatment. 

- Depending on the location of inflamed joints at first presentation, RA-patients might need 

different treatment.  
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INTRODUCTION 

Rheumatoid arthritis (RA) is a heterogeneous disease. The current classification criteria for RA were 

developed to approximate the decision to start early treatment and the exclusion of other diseases. 

At clinical presentation, patients vary in the number and pattern of joints involved, presence of extra 

articular manifestations and abnormalities in blood and synovial fluid [1, 2]. The heterogeneity of RA 

also manifests in clinical outcomes, namely prognosis, treatment response and comorbidities. This 

evident diversity likely impacts the interpretation of treatment effect and etiologic factors such as 

genetics and downplay their importance altogether [3]. If phenotypic subsetting into more 

homogeneous groups is possible, there is a potential for better research into the etiology and 

enhancing the treatment of RA.  

 

For centuries, pattern recognition on clinical variables by doctors has been the driving force of 

disease identification and examination of the underlying etiologic mechanisms. Thus far clinicians 

have not identified the relevant (sub)patterns in RA. The presence of ACPA [4, 5, 6, 7] and the age of 

onset [8, 9, 10] have been raised as possible dichotomous disease subsetting features. However, 

neither of these markers in isolation adequately addresses the heterogeneity and complexity of the 

disease. This suggests there are other factors involved.  

 

Cluster analysis combining a high number of factors has demonstrated its effectiveness in 

categorizing complex diseases (such as diabetes type II, asthma, osteoarthritis) into subtypes that 

differ in clinical outcomes or biological background [11, 12, 13]. In the context of RA, there is quite 

some focus on molecular phenotyping such as done by Lewis et al [14], who discovered patterns in 

synovial tissue at baseline, with the lymphoid-myeloid pathotype being a predictor for a poor 

outcome at disease onset [15]. Others used clinical and comorbidity information for clustering and 

identified four subsets, including one that exhibited a higher likelihood for biological DMARD 

initiation [16]. Likewise, Curtis et al [17] used clinical variables, though not exclusively at baseline, 

and identified five clusters that differed in disease activity, RA-duration and type of comorbidities. 

These outcomes are typically highly influenced by treatment decisions and events that occur 

independent of the specific RA type. Furthermore, detailed clinical information such as the pattern 

of involved joints may be relevant for disease differentiation as exemplified by psoriatic arthritis 

[18], yet none of the previous studies capitalize on this information for clustering. 

 

Electronic Health Records (EHR) data provides a powerful asset for clustering as it encompasses a 

wide variety of data types (laboratory values, clinical examination, demographics) that each offer a 

unique perspective on the patient’s condition. The EHRs are collected as routine clinical care, and 

thus resemble the true patient population more closely than a study population collected with a 

particular hypothesis in mind. The diversity of data types does however pose a methodological 

challenge due to structural differences between the data modalities. The recent surge of deep 

learning tools [19], offers the possibility to combine different EHR-layers into a patient 

representation by extracting the (hidden) factors that capture most variation in the data. At present, 

there exist many machine learning (ML) techniques to learn the relevant (clinical) patterns, and 

encode patients accordingly. These embeddings can be used to detect patients' subgroups, identify 

patterns, build predictive models or assist in making disease classifications. The literature reports 

that clustering on top of these embeddings typically outperforms conventional techniques in the 

case of high dimensional or complicated data [20, 21, 22].  
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In this study we aimed to illuminate the clinical heterogeneity within RA by using the symptoms at 

initial presentation so before external factors such as treatment interfere. We hypothesize that the 

location of the involved joints and the inflammatory patterns observed in the blood play a role in 

subsetting RA, similar to their significance in distinguishing PsA from RA [18]. To achieve this we 

make use of state-of-the-art data-driven techniques to identify the disease-differentiating signatures 

of RA using baseline clinical variables. 

 

METHODS 

Patients 

Our study comprises two different phases (Fig. S1): a developmental phase to identify the subtypes 

at baseline in a training set (set A) and a validation phase that uses historic trial data (set B) and 

external data from regional centers (set C). 

 

Set A consisted of RA patients that visited the rheumatology outpatient clinic of the Leiden 

University Medical Centre (LUMC) for the first time between August 29th, 2011 till December 1st 

2022. RA diagnosis was based on the physician’s diagnosis within 1 year since first visit.[23, 24].  

 

Set B concerned RA patients from the IMPROVED trial that were recruited between March 2007 till 

September 2010 [25]. This trial recruited undifferentiated arthritis and early RA with less than 2 

years of symptoms. We selected only those patients who met the ACR2010 criteria within one year 

after inclusion. All patients received MTX at baseline and were randomized into two arms of 

treatment intensification if they did not reach remission after 4 months.  

 

Set C consisted of RA-patients from the Reumazorg Zuid West Nederland (RZWN) from January 2015 

till December 1st 2022 from 9 different hospitals across the south west of the Netherlands. Herein, 

the diagnosis of RA was defined as having an ICD-code for RA and starting with a conventional 

DMARD.  

 

Across all sets, a minimum follow-up of 1-year was required to ascertain the diagnosis of RA. Prior to 

conducting the study, we acquired approval from the ethics committee of the LUMC. Patients and 

public were not involved during the development, execution, and dissemination of the study. 

 

Selection of phenotypic variables 

To construct patient phenotypic profiles, we extracted information on serology (RF and ACPA), 

location of joint involvement (tender- and swollen joints (TJC and SJC)), demographics, blood profiles 

(hemoglobin, hematocrit, leukocyte- and thrombocytes levels) and ESR at baseline (Table S1).  

Baseline was defined as the first visit to the clinic (set A&C) or the moment of inclusion in the trial 

(set B). Patients with missing lab or joint location variables were dropped (Fig. S2).  

 

Construction of the clusters 

We combined the different data types from the EHR to construct a low dimensional representation 

of the patients (i.e. a patient embedding) with a multi-modal autoencoder (MMAE) [19]. We used 

PhenoGraph[26] to further organize the patients into subcommunities based on their similarities in 
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clinical parameters. PhenoGraph was preferred over traditional methods like K-means, since it is 

better at handling sparse data with many variables (see the supplemental material).  

 

Cluster interpretation 

For each cluster, we examined the characteristics and visualized the phenotype on a pictorial 

mannequin with an integrated heatmap to demonstrate the number of involved joints. We used a 

surrogate ML-technique to model the cluster assignment and subjected this model to a SHAP 

(SHapley Additive exPlanations) [27] analysis to retrospectively identify the most important variables 

per cluster. The SHAP plots show the strength and direction of impact of that variable for each 

patient (also those who are not assigned to that cluster). 

 

Cluster validation 

To confirm that our identified clusters comprised a stable and relevant partitioning, we performed a 

number of validation checks. We examined cluster stability by measuring how often patients co-

cluster across 1000 random subsets of the data and assessed possible factors influencing the 

partitioning.  Next, we conducted a Local Inverse Simpson's Index analysis [28] to assess whether 

physicians were evenly distributed across the clusters or whether there was a batch effect (see 

supplemental material).  

To infer the clinical relevance, clinical outcomes were evaluated using a Cox regression model, 

including: time to MTX-failure (defined by replacement of- or adding an additional DMARD to MTX) 

and remission (DAS44 < 1.6) within one year. Moreover, we evaluated the replicability on an 

external dataset (set B & set C), where individuals were assigned to clusters in accordance with the 

previously learned patient embedding (see supplemental material). Finally, we checked whether the 

new cluster labels improved the regression model on top of the known poor prognostic factors; 

ACPA-positivity, RF-positivity, sex and age.  

 

Statistical tests  

When comparing more than two groups, we used Kruskal Wallis and post-hoc Dunn’s test. For 

survival analysis we used the log-rank test to examine the overall trend and a univariate Cox-

regression [29] to quantify the cluster differences. We inferred the DAS-remission status during the 

survival analysis, carrying the last observation forward if it was missing (effectively the same as time 

to event). The proportional hazards assumption was verified by examining the Schoenfeld residuals 

[30]. We examined the additive value of the clusters on top of known predictors by adjusting the Cox 

regression model for MTX-response on covariates. The statistical significance was inferred with 

ANOVA. All of our scripts are publicly available online at Github [31].  

 

RESULTS 

Patients 

We retrieved 2,691 RA patients for training set A of whom, 1,387 were included in our study based 

on the availability of lab values and joint counts. For the replication, set B and set C had 364 and 

1,227 RA cases, of whom 307 and 515 had complete information (Table 1, Fig. S2). Each dataset 

captured a typical early RA population [32, 33]. In comparison to set A, patients in the replication 

sets exhibited higher rates of seropositivity and had fewer tender joints. On average, set B patients 

were younger and set C patients had less inflammation, with a median ESR of 16. We used the 

phenotypic variables (see methods) of set A to construct the patient embedding.  
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Table 1: Baseline table for the development set (set A) and the replication sets (set B and C) 

 Set A Set B Set C 

N 1387 307 515 

Sex, female Ɣ [N(%)] 894 (64.5) 211 (68.7) 333 (64.7) 

Age Ɣ (SD, yr) 60.0 (15.0) 53.1 (14.1) 60.9 (14.1) 

RF Ɣ [N(%)] 722 (52.1) 219 (71.3) 322 (62.5) 

ACPA Ɣ [N(%)] 676 (48.7) 201 (65.5) 272 (52.8) 

ESR Ɣ (IQR, mm/hr) 25 (11-45) 29 (15-42) 16 (8-27) 

DAS44(3) (IQR) 3.5 (2.7-4.3) 3.2 (2.8-3.8) 2.8 (1.9-3.9) 

SJC (IQR) 7 (4-12) 8 (4-12) 5 (1-13) 

TJC (IQR) 10 (5-17) 7 (5-11) 6 (2-14) 

DAS28(3) (IQR) 5.2 (4.3-6.2) 5.1 (4.5-5.8) 4.3 (3.4-5.5) 

Follow up (IQR, days) 1707 (858-2575) 1388 (1089-1811) 1568 (1012-2174) 

Symptom duration (IQR, days) 155 (62-512) 119 (56-214) n.a. 

Where SD= standard deviation; RF= Rheumatoid factor; ACPA= Anti-cyclic citrullinated peptide antibodies; 

ESR=erythrocyte sedimentation rate; IQR=interquartile range; DAS=Three component disease activity score 

(either 44 or 28 joint scheme); SJC=swollen joint count; TJC=tender joint count;  

 

[Place Figure 1 here] 

Figure 1: Two-dimensional Uniform Manifold Approximation and Projection (UMAP)-representation of the 

patient embedding. Here each patient is represented by a dot that is colored by the four clusters in the first 

plot and a gradient from high (blue) to low (red) in the subsequent plots. From left to right: dots are colored on 

corresponding cluster, Rheumatoid factor (RF) status, anti-cyclic citrullinated protein (ACPA) status, Age, 

disease activity score 28 (DAS28), erythrocyte sedimentation rate (ESR), Sex (1= Female, 0=Male). 
 

[Place Figure 2 here] 

Figure 2: Cluster summary plots showing the average joint involvement, the top 15 driving variables. The 

mannequin is formatted as a heatmap, showing the prevalence (red=100%, yellow=0%) of joint involvement 

(tender or swollen). In the SHAP plots, the most informative features for each cluster are listed in descending 

order. Here the x-axis shows the strength and direction of impact of that variable for each patient (represented 

by a dot). The colour of the dot shows the initial value of the clinical variable (pink=high, blue=low). Where 

ACPA=anti-cyclic citrullinated peptide antibodies; ESR=erythrocyte sedimentation rate; IP= interphalangeal; 

L=left, MCH=mean corpuscular hemoglobin; MCHC=mean corpuscular hemoglobin concentration; 

MCP=metacarpophalangeal; MTP=metatarsophalangeal; PIP=proximal interphalangeal; R=right; 
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Four clusters separated by joint location, serology and blood values 

The patient embedding showed four different clusters (Fig. 1, S3). These clusters were not driven by 

any single clinical variable, as indicated by the wide dispersion of values. The clusters exhibited 

variations in joint location, amount of inflammation, age and differences in seropositivity (Fig. 2, 

Table S2): 

● Cluster 1 (n=415) foot 

moderate number of involved joints, particularly feet joints, younger patients, low leukocyte 

and thrombocyte levels. 

● Cluster 2 (n=380) oligo-articular 

limited joint involvement and mostly seropositive patients. 

● Cluster 3 (n=323) hand 

elderly patients, symmetrical polyarthritis of hands, seronegative. 

● Cluster 4 (n=269) polyarthritis  

majority seronegative polyarthritis in hand and feet though with lower ESR. 

 

The clusters were stable with an average >80% of patients grouping together in the same cluster 

over the 1000 iterations in the stability analysis (Fig. S4&S5). In fact, the stability was better in our 

combined multi-modal approach than if we take each data type (numeric/categorical) separately 

(Fig. S6). The clusters were not driven by treating physicians (Fig. S7) and were generalizable across 

different validation sets (Table 2, Fig. S8&S9), showing similar joint involvement patterns (Fig. 3). 

Also, the identified patient clusters did not seem to represent different disease stages as the cluster 

with the longest symptom duration had the lowest joint count and vice versa. There were 

differences in cluster prevalence between the validation sets (Table S3&S4).  

 

Table 2: Baseline characteristics of the different patient clusters (set A + replication sets B & C) 

  C1-Foot C2-Oligo C3-Hand C4-Poly 

N 596 761 450 402 

Sex, female  ɣ [n(%)] 389 (65.3) 505 (66.4) 272 (60.4) 272 (67.7) 

Age ɣ (SD, yr) 56.6 (14.6) 59.5 (14.6) 66.4 (13.2) 54.7 (14.7) 

RF ɣ [n(%)] 370 (62.1) 497 (65.3) 200 (44.4) 196 (48.8) 

ACPA ɣ [n(%)] 355 (59.6) 449 (59.0) 162 (36.0) 183 (45.5) 

ESR ɣ (IQR, mm/hr) 22 (9-36) 24 (11-38) 28 (13-48) 22 (9-40) 

DAS44(3) (IQR) 3.8 (3.2-4.2) 2.5 (2.1-3.1) 3.6 (3.0-4.0) 4.7 (3.7-5.4) 

SJC (IQR) 8 (5-12) 2 (1-5) 10 (7-15) 15 (9-22) 

TJC (IQR) 11 (8-15) 3 (2-5) 11 (7-15) 22 (15-30) 

DAS28(3) (IQR) 5.1 (4.2-5.8) 3.9 (3.1-4.6) 5.5 (4.8-6.2) 6.1 (5.1-7.0) 

Follow up (IQR, days) 1307 (733-
2020) 

1428 (760-
2082) 

1127 (566-
1875) 

1512 (1012-
2246) 

Symptom duration * (IQR, 
days) 

143 (56-364) 186 (70-399) 101 (48-279) 147 (56-357) 

Where SD, standard deviation; RF, rheumatoid factor; ACPA, anti-cyclic citrullinated peptide antibodies; ESR, 

erythrocyte sedimentation rate; IQR, interquartile range; DAS, three component disease activity score (either 

44 or 28 joint scheme); SJC, swollen joint count; TJC, tender joint count; ɣ, clinical variables that were used for 

clustering (set A); *, symptom duration was only calculated for patients from set A and B. 
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[Place Figure 3 here] 

Figure 3: Pictorial mannequins for replication set B and C and their original counterpart (set A) to show the 

affected joints for each cluster with color and size to depict prevalence. Frequency is colored on a gradient 

from red (=100%) to yellow (=0%). When there is no colored dot, it signifies the absence of both swelling and 

pain at baseline for these patients. 
 

 

Validation on clinical outcomes beyond baseline 

In set A, 80% of patients received MTX as an initial drug across all clusters. The Kaplan Meier curves 

show a difference in MTX failure between the clusters: 27%, 23%, 16%, 30% (for cluster 1-4, P<0.001, 

Fig. 4a). The hand cluster (C3) had clearly the best prognosis, where patients were twice as likely to 

stay on MTX than the most severe disease subtype (C4) (HR 0.48 (95% CI 0.35-0.77), P<0.001). 

Additionally, the hand cluster (C3) did better than the foot cluster (C1) (HR:0.55 (0.37-0.82) 

P=0.003). 

 

Consistent with MTX response, we observed differences in remission rates: 44.3%, 47.4%, 55.7%, 

38.5% (for cluster 1-4, P=0.007, Fig. 4b) with the biggest difference between the hand C3 and 

polyarthritis group C4 (HR 1.65 (95% CI 1.2-2.29), P=0.002), also when corrected for baseline disease 

activity. Both the MTX and remission analyses remained significant when corrected for baseline DAS 

(Fig. S10).  

 

[Place figure 4 here] 

Figure 4: Downstream analysis depicting association of baseline clusters with methotrexate failure (A, B, C) - 

and remission (D, E) after 1 year. Here we generated Kaplan Meier survival curves for MTX-switch - and 

remission rates (DAS44<1.6) for survival time data or cross tabs for binary outcomes (i.e. set B had MTX switch 

integrated in protocol). Follow-up survival data is shown only for MTX-starters in set A (n=1,084; A), set B 

(n=273, B), set C (n=406; C) or patients with remission information in set A (n=676; D) and set B (n=295; E). 

Global trend was inferred with the log rank test for survival curves or chi-squared test for the cross tabs. 

 

 

ACPA within the clusters  

Since the literature reports that ACPA is indicative of persistent disease [34], we examined whether 

the ACPA status was the main factor driving the difference in MTX failure. In set A we found a higher 

treatment failure in ACPA positive than negative patients (27.6% versus 22.0%, Fig. 5, S11a), though 

it was not significant (P=0.057). Moreover, the association of ACPA with MTX-failure differed within 

the clusters (P<0.001, Fig. 5, S11b).   

 

The difference between the hand-cluster C3 with the foot clusters C4 and C1 was larger within the 

ACPA-positive stratum (C3 vs C1 (HR:0.3 (0.15-0.60) P<0.001), C3 vs C4 HR:0.33 (0.15-0.72) P=0.005) 

(Fig. 5b). For remission we could not find this difference in the ACPA-positive stratum (Fig. S12a). 

 

[Place figure 5 here] 

Figure 5: Kaplan Meier depicting the A) ACPA effect on MTX switch rates in general and stratified by cluster, 

B) local cluster differences between hand (C3) and foot clusters (C1 & C4) within the ACPA stratum. Here the 

dashed lines indicate the seropositive patients. Global trend was inferred with the log rank test for survival 

curves or chi-squared test for the cross tabs. 
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The good response in C3 raised the question whether this group overrepresented patients with 

parvovirus induced arthritis instead of RA, but none of our clusters were enriched for parvovirus 

positive patients (Fig. S13). 

 

Replication 

In set C, 79% of patients received MTX as the initial drug across all clusters, whereas in set B all 

patients were administered MTX. In both replication sets we again observed a better outcome of C3 

for MTX failure (global P<0.001, and P<0.001). Remission could only be tested in replication set B 

where it confirmed our previous finding (P<0.001). Consistent with the original finding, the 

difference between C3 and C4 was particularly strong in the ACPA positive stratum in both 

replication set B (OR: 0.22 (0.12-0.63) P=0.017) and set C (HR:0.38 (0.22-0.68) P<0.001). Within the 

ACPA positive stratum we also found the significant difference between C3 and C1 back in 

replication set C (HR:0.37 (0.15-0.93), P=0.034), though not in replication set B (OR: 1.03 (0.34-3.05) 

P=0.801). All the analyses remained significant when corrected for baseline DAS (Fig. S14b-c). 

 

Informative value of clusters beyond known risk factors for MTX failure 

To ascertain the additive value of our clusters, we added the cluster information to a Cox regression 

model of baseline variables known to associate with MTX failure (Fig. S15). Here, the addition of the 

clusters as a covariate significantly improved the fit of the model (P=0.013). The inclusion of other 

well-known contributing factors like differences in disease or symptom duration, delay in treatment 

or the number of affected joints (Table S5) did not diminish the additive value of clustering.  

 

When we encoded the joint location into two binary variables for a) foot involvement and b) hand 

involvement and added this to the initial model, the clusters no longer improved the model on MTX-

failure. Thus, the hand and feet count provided a proxy for cluster membership in this context (Fig. 

S16). 

 

DISCUSSION 

Through the application of deep learning and clustering, we identified four phenotypically distinct 

subtypes of RA at baseline visit. These were characterized by arthritis in feet (C1), seropositive 

oligoarticular disease (C2), seronegative arthritis in hands (C3) and polyarthritis (C4). We obtained 

these results using unsupervised pattern recognition on real world clinical data. Compared to the 

traditional, hypothesis based analysis, this approach has the potential to identify novel non-linear 

clinical signatures that tend to be overlooked. On the other side there is a risk of finding meaningless 

structure that is driven by noise or bias in the data. Therefore, we rigorously tested the credibility of 

our findings: demonstrating that our clusters are stable and not influenced by physicians or disease 

stage. Next, we validated the relevance of our clusters with one-year clinical outcomes and 

replicated both the clusters and clinical outcomes in two separate datasets.  

 

We noticed a clear difference in treatment success between the hand and foot clusters. Both foot 

clusters (C1,C4) showed higher MTX failure and less remission rates compared to the hand cluster 

(C3). Intriguingly, this difference in outcome was not explained by differences in number of involved 

joints nor symptom duration at baseline or initiation of treatment. The poor prognosis for inflamed 

feet was already suggested in a previous cross-sectional study [35]. In this study, researchers noted a 
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predominance of feet/ankle-involvement for patients that remained having active disease under 

treatment. However, this study did not analyze these differences in an untreated baseline 

population. To our knowledge we are the first to show that feet involvement at disease presentation 

is associated with less treatment success and that this is independent of disease activity or symptom 

duration. The risk of treatment failure in those with foot involvement was similarly bad as the 

presence of ACPA-positivity and is a risk factor independent of ACPA.   

 

This observation is relevant as foot complaints are quite common [35], yet many disease activity 

scores exclude the joints in the lower extremities. The problem of this was previously noted by 

patients and rheumatologists who called for methods that consider the lower extremities [36]. Our 

study further supports this notion. 

 

Interestingly, within the ACPA-positive stratum the difference in MTX success between the hand and 

foot clusters was strongest. Notably, in all replication sets we found a significant difference between 

the hand-cluster C3 versus the poly-cluster C4, and in 2 out of 3 datasets we also found an increase 

compared to the foot cluster of C1. Suggesting that arthritis in the feet has a worse response to MTX 

than arthritis in the hands. For remission we did not observe a stronger effect in the ACPA positive 

stratum for remission rates. This could be a result of the success of target therapies that suggest 

intensifying treatment rapidly, particularly for ACPA-positive patients. 

 

There are several possible explanations for the good outcome of patients in the hand cluster (C3). As 

shown, it is not explained by symptom duration or disease activity at baseline nor the lower 

prevalence of ACPA in that cluster. The short symptom duration combined with a high number of 

inflamed joints and low prevalence of seropositivity gives the impression of a self-limiting reactive 

arthritis[37,38]. We checked for parvo-virus positivity and did not find any difference in parvovirus 

positivity between the clusters. Still, C3 may depict a form of naturally more self-remitting disease 

and further research into this may provide novel treatment insights. An alternative option is that 

current drugs are selected on being successful for the C3 like patients, as drug trials frequently used 

outcome measures that ignore the lower extremities. Unfortunately, our study lacks power to test 

any treatment association beyond methotrexate. Clearly, further studies are needed to test these 

hypotheses.  

 

As a positive control, we looked for age related subsets. Consistent with previous literature, our 

clusters captured the elderly onset RA (EORA) cluster (C3) as previously described: casting higher 

inflammation (ESR and SJC), lower prevalence of women and lower prevalence of ACPA and RF 

compared to the total group of RA patients.[9, 10] Furthermore, our study uncovers more granular 

subtypes than just the distinction between EORA and young onset RA (YORA). There are younger 

people with a clinical pattern similar to the EORA in C3 and older people that cluster with younger 

seropositive patients.  

 

In contrast with the general assumption that ACPA divides RA into two sub entities, we did not find a 

clear ACPA dichotomy. Notably, previous studies that examine the disease at baseline do not find 

clear differences based on ACPA status either, as this was only observed in established 

disease[34,39]. We found that the prevalence of ACPA was lowest in the more RA typical clusters 

with polyarthritis (C3 and C4) and highest in the cluster with the lowest joint involvement (C2). In set 
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B and set C we observed a similar pattern of ACPA prevalence between the clusters as in set A 

though less prominent.  

 

The higher prevalence of ACPA in the oligo-articular subset could be a result of the RA classification 

criteria allowing an RA diagnosis when people have polyarthritis or are ACPA positive.[40] We aimed 

to reduce this effect by using the RA diagnosis over the course of a year, which overcomes most of 

the initial clinical misclassification. Also, for set A and C, we did not use the classification criteria, but  

the diagnosis of the physician instead.[24] Encouragingly, the findings were consistent between the 

three datasets. Our finding of C1 with high ACPA-positivity prevalence as well as a high number of 

inflamed joints also underlines that the clusters were not (completely) driven by criteria induced 

misclassification.  

 

Notably, this higher ACPA-positivity in the foot cluster-1 confirms the recent finding of the Leiden 

clinically suspect arthralgia cohort of an increased prevalence of feet in the ACPA positive RA 

population compared to the ACPA negative patients [41].  

 

There are some limitations to our study that merit closer inspection. First, we had to define MTX 

success based on adding or switching to a different drug. Probably some of the switches were due to 

side effects unrelated to efficacy. We do not expect this has led to false-positive results, as side 

effects are more likely to have been present in the elderly cluster (C3) where we observed the 

opposite, namely less treatment switches.  Secondly, the therapeutic approach likely differs from 

center to center, which may affect the outcome. For example, in the outpatient clinic of Leiden, 

rheumatologists appear to be less likely to switch at an early stage, whereas we found that in RZWN 

many switches already occurred in the first few months. These differences did not lead to a 

difference in the association of clusters with treatment success.  

 

Our study does not test the stability of the clusters over time. Previous literature describes the 

recurring presence of inflammation in identical joints over the course of the disease [42]. When 

considered alongside the observation that our subsets are partitioned based on joint involvement 

patterns, it suggests our clusters will be stable over time. This is also supported by the previously 

mentioned study that showed cross-sectionally that foot inflammation was associated with a 

decreased change of remission[35]. 

 

Important to underline is that our identified clusters are not set in stone. Though we observed a high 

robustness of our clusters, patients laid on a gradient (Fig. 2) and did not segregate in clearly 

separable modules. The cluster structure that we identified could also be summarized into more or 

fewer clusters and the clusters might become clearer when more layers of information are added. 

Such types of information could be genetics, gene expression patterns and molecular profiles from 

blood and synovial biopsies.[14, 43].  

 

Within these limitations, we demonstrated the power of unsupervised and data-driven tools to 

unlock hidden structures in the data. The integration of different EHR-modalities resulted in more 

stable clusters than clustering on categorical or numerical variables alone. In particular, the inclusion 

of joint involvement patterns appears to be a major axis of variation.  
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In conclusion, by clustering RA patients on their first presenting symptoms, we uncovered four 

baseline phenotypes characterized by hand and feet involvement that are associated with one-year 

clinical outcomes. Our data-driven approach offers a more granular picture of RA in the clinic than 

the dichotomous division by age or ACPA alone. The cluster differences in outcome and clinical 

presentation may be indicative of a distinct etiology. Inevitably, this necessitates future research to 

affirm a potential biological link.  
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