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Abstract 

The primary predictor of a disease outbreak and severity is the basic reproduction number 𝑅0, 

which represents the average number of secondary cases produced by introducing an infected 

individual into an entirely susceptible population. According to the classical SIS model, a 

disease with 𝑅0 less than one will eventually die out and persist if 𝑅0 is greater than one. Using 

the pair-approximation method, we reconstruct the classical SIS model by explicitly accounting 

for neighbourhood interactions between susceptible and infected individuals. Specifically, the 

disease can only be transmitted, with some transmission probability, if a susceptible individual 

is surrounded by at least one infected individual within its direct neighborhoods. Despite the 

simplicity of the SIS model present here, results produced by the pair-approximation model 

deviates significantly from predictions by the mean-field approximation model, particularly 

near the epidemic threshold. Contrasting the standard SIS model based on the mean-field 

approach, we find scenarios where the disease dies out even if 𝑅0 is greater than one. We 

suggest a crucial need for redefining the basic reproduction number on a smaller spatial scale 

and taking the average 𝑅0 over a global scale, rather than applying it globally to an entire 

population. However, in the realm of more intricate models of infectious diseases, it remains 

an open question to what extent mean-field approximation predictions diverge from predictions 

produced by models that consider neighborhood interactions. 
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1 Introduction 

The basic reproduction number 𝑅0 quantifies the average number of secondary infections 

produced by an infected individual when introduced into a completely susceptible population 

(Dietz, 1993). The basic reproduction number has long been considered as import predictor of 

a disease spread and severity, and often plays an important role for supporting decisions of 

public health officials and policymakers (Guerra et al., 2017; Zhao et al., 2020). Estimation of 

the basic reproduction number is typically complex as it depends on various biological and 

environmental factors (Delamater et al., 2019). However, in the simple classical susceptible-

infected-susceptible (SIS) model, the basic reproduction number emerges from just two key 

parameters and is defined as the average disease transmission rate divided by average recovery 

rate per an infected individual (Allen, 1994). It is commonly accepted that a disease with 𝑅0 

less than 1 will eventually die out and persist if 𝑅0 is greater than 1. The epidemic threshold, 

occurring at 𝑅0 equal to 1, represents the boundary between the extinction and sustained 

transmission of the disease. The outcome of a disease transmission away from the epidemic 

threshold might be intuitively straightforward, depending on the transmission complexity. 
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However, estimation of 𝑅0 for the same disease can vary as the model set up and complexity 

change. Depending on the method used to calculate 𝑅0, many diseases with an 𝑅0 value greater 

than 1 are predicted to die out and persist when 𝑅0 is less than 1, leading to a failure of 𝑅0 (Li 

et al., 2011). The basic reproduction number is primarily defined on a global scale, often 

disregarding the small local scale on which interactions between susceptible and infected 

individuals occur. In reality, an infected individual cannot infect a susceptible one if they are 

spatially distant. Nevertheless, it is commonly assumed by the mean-field approximation 

method that all individuals within a population do interact with one another, and this 

simplification has been widely accepted. Network and pair-approximation models of infectious 

diseases typically account for interactions between neighbouring pairs of individuals (Keeling, 

1999; Keeling and Eames, 2005; Payne, 2019). Such models often describe the dynamics of 

infectious disease more accurately than the mean-field approximation models. The pair-

approximation method has been employed to describe systems other than infectious diseases 

where neighborhood interactions are crucial determinants of the dynamics outcomes (Harada 

and Iwasa, 1994; Mohammed et al., 2023, 2018). This particular methodology correctly 

captures systems dynamics predicted lattice-based models, offering mathematical tractability. 

Using the pair-approximation method, we reconstruct the classical SIS model by explicitly 

accounting for neighborhood interactions among susceptible and infected individuals. The pair-

approximation approach assumes that a susceptible individual can only get infected if it is 

surrounded by at least one infected individual present in its direct neighbourhoods. That is a 

necessary condition for a disease transmission, but the transmission occurs with some 

probability, following an interaction between susceptible and infected individuals. The core 

object of this work is to assess whether the 𝑅0 concept applies when neighbourhood interactions 

are taken into account in infectious disease models. Although the SIS model presented here is 

simple, but results of the pair-approximation model deviates significantly from previous 

predictions by the mean-field approximation model. Contrasting the SIS model that based 

mean-field approximation, the pair-approximation model exhibits a scenario where a disease 

can die out even if 𝑅0 is greater than 1. This divergence in the predictions of the two models 

occurs mainly around the epidemic threshold. More complex models of infection diseases based 

on the mean-field approximation are thus expected to diverge more significantly from models 

that explicitly account for neighbourhood interactions. We suggest that estimations of the basic 

reproduction number should be redefined on a small neighbourhood scale, rather than on a 

global scale for the entire population. Estimation of the basic reproduction number might not 

be enough to inform public health officials about the current and future behaviour of the disease 

outbreak dynamics, and this fundamental concept of 𝑅0 can be misleading by omitting some of 

its important properties such as spatial scales. 

 

2 Methods 

2.1 Pair-approximation model of disease transmission 

Pair approximation is a method of constructing ordinary differential equation models, 

describing the dynamics of neighbouring pairs, the global and local dynamics of a given 

population (Harada and Iwasa, 1994). It provides an explicit description for neighborhood 

interactions among individuals and accurately capture the spatiotemporal dynamics predicted 

by lattice-based models (Mohammed et al., 2023).   

Here, we use the pair-approximation method to reconstruct the classical SIS model by explicitly 

considering neighbourhood interactions among susceptible and infected individuals (Keeling, 

1999; Payne, 2019). We denote by 𝑃𝑆 and 𝑃𝐼 the probabilities that a randomly chosen individual 

is susceptible and infected, respectively. These probabilities represent the global frequencies 
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(𝑆/𝑁) and (𝐼/𝑁) of susceptible and infected individuals, where 𝑆 and 𝐼 are the number of 

susceptible and infected individuals in a population of size 𝑁 = 𝑆 + 𝐼, with 𝑃𝑆 + 𝑃𝐼 = 1. The 

disease is transmitted locally when a susceptible individual comes into a direct contact with an 

infected individual present in its own neighborhood. The pair-approximation method describes 

the average local frequency of infected individuals present in the neighborhood of a susceptible 

individual. The number of nearest-neighbouring sites of a susceptible individual is quantified 

by the positive integer 𝑧. The average local frequency of infected individuals in the nearest 

neighborhoods of a susceptible individual is quantified by 𝑞𝐼|𝑆, representing the conditional 

probability that a randomly chosen individual in the neighborhood of a susceptible individual 

is infected (Harada and Iwasa, 1994). The local frequency of infected individuals is the number 

of infected individuals in the neighborhood of a susceptible individual, averaged over the 

number of nearest-neighbouring sites 𝑧. A susceptible individual can be infected if at least one 

of neighbours in the 𝑧 sites is infected. 

The disease transmission rate is denoted as 𝛽. The infected individual recovers at rate 𝛾 in a 

period of time 1/𝛾. In the SIS model, a susceptible individual is assumed to become susceptible 

again after recovery. 

The differential equations governing the global disease dynamics are described by 

𝑃𝑆̇ = −𝛽𝑞𝐼|𝑆𝑃𝑆 + 𝛾𝑃𝐼 ,                                                                                                                            (1) 

𝑃𝐼̇ = 𝛽𝑞𝐼|𝑆𝑃𝑆 − 𝛾𝑃𝐼 .                                                                                                                                (2) 

The first term in Eqns. (1) and (2) describes the neighborhood interaction between susceptible 

and infected individuals. The last term describes the overall recovery rate. The conditional 

probability 𝑞𝐼|𝑆 needs to be specified. It is mathematically defined as 𝑞𝐼|𝑆 = 𝑃𝑆𝐼/𝑃𝑆 (Harada and 

Iwasa, 1994), where the pair 𝑃𝑆𝐼 = 𝑃𝐼𝑆 represents the joint probability that a randomly chosen 

neighbouring pair of individuals are susceptible and infected. Notably, there are four 

possibilities of choosing a neighbouring pair of individuals at random: 𝑃𝐼𝐼, 𝑃𝑆𝐼, 𝑃𝐼𝑆, and 𝑃𝑆𝑆, 

with 𝑃𝐼𝐼 + 2𝑃𝑆𝐼 + 𝑃𝑆𝑆 = 1.    

Following (Keeling, 1999; Payne, 2019), we construct differential equations governing the 

dynamics of neighbouring pairs. The following transitions contribute to the dynamics of the 𝑃𝑆𝐼 

pair:      

1. A  pair of infected individuals 𝑃𝐼𝐼 contributes positively to the pair 𝑃𝑆𝐼 if one of the infected 

individuals in the 𝑃𝐼𝐼 pair has been recovered 

2. A  pair of susceptible individuals 𝑃𝑆𝑆 contributes positively to the pair 𝑃𝑆𝐼 if one of the 

susceptible individuals in the 𝑃𝑆𝑆 pair has been infected by one of its direct neighbour from 

outside the pair, i.e., from the remaining nearest-neighbouring sites (𝑧 − 1). 

3. A  pair of susceptible and infected individuals 𝑃𝑆𝐼 contributes negatively to the pair 𝑃𝑆𝐼 if 

the susceptible individual in the 𝑃𝑆𝐼 pair has been infected by its direct neighbour in the pair 

4. A  pair of susceptible and infected individuals 𝑃𝑆𝐼 contributes negatively to the pair 𝑃𝑆𝐼 if 

the susceptible individual in the 𝑃𝑆𝐼 pair has been infected by one of its direct neighbour 

from outside the pair, i.e., from the remaining nearest-neighbouring sites (𝑧 − 1). 

5. A  pair of susceptible and infected individuals 𝑃𝑆𝐼 contributes negatively to the pair 𝑃𝑆𝐼 if 

the susceptible individual in the 𝑃𝑆𝐼 pair has been recovered   

Using the pair-approximation approach (Harada and Iwasa, 1994; Keeling, 1999; Mohammed 

et al., 2023), the dynamics of the 𝑃𝑆𝐼 pair are thus described by  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.18.23295738doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295738
http://creativecommons.org/licenses/by/4.0/


𝑃̇𝑆𝐼 =  2𝛾𝑃𝐼𝐼 + 2
𝛽

𝑧
(𝑧 − 1)𝑞𝐼|𝑆𝑆𝑃𝑆𝑆 − 2

𝛽

𝑧
𝑃𝑆𝐼 − 2

𝛽

𝑧
(𝑧 − 1)𝑞𝐼|𝑆𝐼𝑃𝑆𝐼 − 2𝛾𝑃𝑆𝐼 .                          (3) 

To reduce the model complexity, we replace the neighbouring pair 𝑃𝐼𝐼 by (1 − 𝑃𝑆𝑆 − 2𝑃𝑆𝐼), and 

we only need to describe the 𝑃𝑆𝑆 pair dynamics to construct an equation for the average local 

frequency 𝑞𝐼|𝑆. In Eqn. (3), the first term indicates the transition from 𝑃𝐼𝐼 to either 𝑃𝑆𝐼 or 𝑃𝐼𝑆, 

thus the factor 2. In the subsequent term, the quantity 𝛽/𝑧 represents disease transmission rate 

per infected individual present in the neighborhood of a susceptible individual, and the 

transition from 𝑃𝑆𝑆 to either 𝑃𝑆𝐼 or 𝑃𝐼𝑆 will require an infected individual from the remaining 

neighbouring sites (𝑧 − 1), thus the multiplication by the conditional probability 𝑞𝐼|𝑆𝑆. This 

conditional probability would require the computation of higher-order frequencies, and would 

not allow to obtain a closed system of differential equations. Therefore, pair-approximation 

method ignores the effect of the neighbour-of-the neighbour (it assumes correlation is weaker 

with non-direct neighbours, i.e., correlation between sites decreases exponentially with the 

distance between them, (see, e.g., Harada and Iwasa, 1994) and approximates 𝑞𝐼|𝑆𝑆 ≈  𝑞𝐼|𝑆 and 

𝑞𝐼|𝑆𝐼 ≈  𝑞𝐼|𝑆. That is, correlations with non-nearest neighbours are approximately reconstructed 

from nearest neighbour correlations. Similar explanations apply to the other terms in Eqn. (3). 

The following transitions contribute to the dynamics of the 𝑃𝑆𝑆 pair:    

1. A  pair of susceptible and infected individuals 𝑃𝑆𝐼 contributes positively to the pair 𝑃𝑆𝑆 if 

the susceptible individual in the pair 𝑃𝑆𝐼 has been recovered 

2. A  pair of susceptible individuals 𝑃𝑆𝑆 contributes negatively to the pair 𝑃𝑆𝑆 if any of the 

susceptible individuals in the pair 𝑃𝑆𝑆 has been infected by its direct neighbour from outside 

the pair, i.e., from the remaining nearest-neighbouring sites (𝑧 − 1).    

The dynamics of the neighbouring pair 𝑃𝑆𝑆 are thus described by  

𝑃̇𝑆𝑆 =  2𝛾𝑃𝑆𝐼 − 2
𝛽

𝑧
(𝑧 − 1)𝑞𝐼|𝑆𝑆𝑃𝑆𝑆 .                                                                                                   (4) 

Using the definition of the local frequency of infected individuals 𝑞𝐼|𝑆 = 𝑃𝑆𝐼/𝑃𝑆, and taking the 

time derivative of both sides, the dynamics of the average local frequency of infected 

individuals in the neighborhoods of a susceptible individual are described by   

𝑞̇𝐼|𝑆 =  −𝑃𝑆𝐼𝑃̇𝑆/𝑃𝑆
2 + 𝑃̇𝑆𝐼/𝑃𝑆                                                                                                                 (5) 

Equations (1) – (5) represent the reconstructed SIS model under neighborhood interactions 

among susceptible and infected individuals present in the population. Equations (1) and (2) 

corresponds to the mean-field approximation model when 𝑞𝐼|𝑆 is replaced by 𝑃𝐼. 

 

2.2 The basic reproduction number 

As defined in the traditional SIS model (Daley and Gani, 2001), the basis reproduction number 

is given as 𝑅0 = 𝛽/𝛾. According to the mean-field SIS model, a disease with 𝑅0 < 1 will die 

out and persist if 𝑅0 > 1. The bifurcation point occurs at 𝑅0 = 1, separating the extinction and 

persistence regions of the disease.    
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2.3 Numerical analysis  

The numerical simulation of the pair-approximation and the mean-field approximation SIS 

models has been implemented in MATLAB. Parameter values used to simulate the model are 

provided in Table 1. 

 

Table 1: Variable and parameter descriptions, and numerical values used in the model.  

Symbol Description                                                                   Reference value Range 

𝑃𝑆 Global frequency of susceptible individuals    [0, 1] 

𝑃𝐼 Global frequency of infected individuals    [0, 1] 

𝑃𝑆𝑆 Global frequency of susceptible pair    [0, 1] 

𝑃𝐼𝐼 Global frequency of infected pair    [0, 1] 

𝑃𝑆𝐼 Global frequency of susceptible and infected 

pair   

 [0, 1] 

𝑞𝐼|𝑆 The average local frequency of infected 

individuals in the neighborhood of a 

susceptible individual  

 [0, 1] 

𝛽 Disease transmission rate  0.2 [0, ∞) 

γ Recovery rate 0.02-0.9 [0, ∞) 

𝑅0 The basic reproduction number 0.2-10 [0, ∞) 

𝑧 The number of nearest-neighbouring sites 4 [0, ∞) 

 

3 Results 

We showcased the SIS model simulation for the global frequencies of susceptible and infected 

individuals, 𝑃𝑆 and 𝑃𝐼, respectively. The dynamics of neighbouring pairs (𝑃𝑆𝐼 and 𝑃𝑆𝑆) and the 

average local dynamics of infected individuals present in the neighborhood of a susceptible 

individual, 𝑞𝐼|𝑆. We compared results produced by the pair-approximation model with previous 

predictions by the classical mean-field SIS model.   

In the pair-approximation model, the number of nearest-neighbouring sites of a susceptible 

individual 𝑧 reflects the potential number of susceptible and infected individuals present within 

the direct neighbourhood of a susceptible individual. In the mean-field approximation model, a 

susceptible individual has the same likelihood of interacting with all infected individuals 

present within a population. That is a very unlikely situation and can affect predictions of 

disease outbreaks. However, it is intuitive to assume that a susceptible individual can typically 

get infected when interacts with an infected individual present within its direct four 

neighbouring sites (i.e., 𝑧 = 4). 

We first restricted our model to four nearest-neighbouring sites. We found that results produced 

by the pair-approximation model significantly deviated from predictions by the mean-field 

approximation. This deviation occurred, particularly, close to the epidemic threshold, 𝑅0 = 2.5 

and 𝑅0 = 1.17 (Fig. 1b and c). For large and small values of 𝑅0 (10 and 0.8), corresponding to 

the sustained transmission and extinction of the disease, the two models produced very similar 

results (Fig. 1a and d). 
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Fig. 1. The temporal dynamics of the global frequencies of susceptible (𝑃𝑆) and infected (𝑃𝐼) individuals under four scenarios 

of the 𝑅0 value (10, 2.5, 1.17, and 0.8). The global frequencies of the pair-approximation (PA) model are represented by the 

bright-green and red curves, respectively, while the dark curves correspond to the mean-field approximation (MFA) model. 

The x-axis represents the simulation time, and the y-axis represents the global frequencies. The initial conditions: 𝑃𝑆(0) =

0.95, 𝑃𝐼(0) = 1 − 𝑃𝑆(0), 𝑃𝑆𝐼(0) = 0.05, 𝑃𝑆𝑆(0) = 0.8, and 𝑞𝐼𝑆(0) = 𝑃𝑆𝐼(0)/𝑃𝑆(0). Parameters used: 𝛽 = 0.2, 𝑅0 =

10, 2.5, 1.17, and 0.8, 𝛾 = 𝛽/𝑅0, and 𝑧 = 4.  

 

According to the classical mean-field SIS model, the disease can spread out and persist when 

𝑅0 = 𝛽/𝛾 > 1, and this principle has been widely accepted for this specific model. However, 

results of the proposed pair-approximation model demonstrated scenarios where the disease 

dies out even if  𝑅0 > 1 (Fig. 1c; and Fig. 3a ). This divergence is likely driven by the 

consideration of neighborhood interactions between susceptible and infected individuals in the 

pair-approximation model. In fact, this is the primary difference between the mean-field and 

the pair-approximation models presented in this work. 

 

Furthermore, we simulated the dynamics of the reconstructed SIS model for a large number of 

nearest-neighboring sites (𝑧 = 100) of a susceptible individual. This indicates that a susceptible 

individual can potentially interact with 100 individuals in its surroundings, an unlikely 

situation. Some of these 100 individuals can be infected and can transmit the disease to this 

susceptible individual at transmission rate 𝛽. By considering a very large number of individuals 

in the neighborhoods of a susceptible individual, the pair-approximation model corresponds to 

the mean-field approximation model. Therefore, our results demonstrated almost an identical 

behaviour of the disease outbreak dynamics, produced by the pair-approximation and the mean-

field approximation models (Fig. 2; and Fig. 3b). The two models approached the same long-

term attractor of the disease, with a small difference in the initial transient phase.  
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Fig. 2. The temporal dynamics of the global frequencies of susceptible (𝑃𝑆) and infected (𝑃𝐼) individuals under four scenarios 

of the 𝑅0 value (10, 2.5, 1.17, and 0.8). The description, initial conditions, and parameters used are the same as in the caption 

of figure 1, and 𝑧 = 100. 

 

We systematically assessed the influence of the basic reproduction number on the epidemic size 

and compared the corresponding results of the two models. Away from the epidemic threshold 

(𝑅0 = 1), the outcome of the disease transmission is intuitively straightforward. Of a particular 

interest is to predict the disease transmission near the epidemic threshold. Our findings 

underscored significant differences between the results of the two models (Fig. 3a), especially 

around the epidemic threshold.   

 

 

Fig. 3.  The equilibrium dynamics of the epidemic size (y-axis) as a function the basic reproduction number 𝑅0 (x-axis), 

predicted by the pair-approximation (PA) model (bright curve) and the mean-field approximation (MFA) model (dark curve). 

Initial conditions and parameter values are the same as in the caption of figure 1. 

 

At small to moderate values of 𝑅0, the epidemic size predicted by the pair-approximation model 

is lower than that predicted by the mean-field approximation model (Fig. 3a). More precisely, 

the epidemic size curve produced by the pair-approximation model is shifted forward, 

extending the disease extinction region. Notably, this forward shift emerged only under the 
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consideration of four nearest-neighbouring individuals (𝑧 = 4). The results of the two models 

produced the exact dependence of the epidemic size on the basic reproduction number 𝑅0 when 

the number of nearest-neighbouring sites is chosen to be very large, 𝑧 = 100 (Fig. 3b).  

The temporal dynamics for the average local frequency of infected individuals within the 

neighbourhood a susceptible individual, and the dynamics of neighbouring pairs are shown for 

a number of nearest-neighbouring sites 𝑧 = 4 (Fig. 4) and 𝑧 = 100 (Fig. 5). 

Results demonstrated that the average local frequency of infected individuals decreases as the 

basic reproduction number 𝑅0 increases (Fig. 4 and 5). A small number of infected individuals 

are present in the neighbourhoods of each susceptible individual when the basic reproduction 

number is small. Thus, the probability of choosing an infected individual from the 

neighbourhood of a susceptible individual is low. The average local frequency of infected 

individuals will also reflect the probability of choosing a neighbouring pair of susceptible and 

infected individuals. The probability of randomly choosing a neighbouring pair of susceptible 

and infected 𝑃𝑆𝐼 depends on the absolute difference between the global probabilities 𝑃𝑆 and 𝑃𝐼. 

The probability of choosing the pair 𝑃𝑆𝐼 is small when the absolute difference is high, and vice 

versa. The probability of randomly choosing the neighbouring pair 𝑃𝑆𝑆 typically increases as 

the global frequency 𝑃𝑆 increases. Thus, a small values of 𝑅0 will lead to higher probabilities 

of a neighbouring pair of susceptible individuals (Fig. 4). However, under the consideration of 

very large number of nearest-neighbouring sites, the probability of choosing an infected 

individual from the neighbourhood of a susceptible individual is relatively high when 𝑅0 is 

slightly greater than one (Fig. 5c).    

 

 

Fig. 4. The temporal dynamics of the average local frequency (𝑞𝐼|𝑆, pink curve), neighbouring pairs of susceptible and infected 

individuals (𝑃𝑆𝐼 , grey curve), and neighbouring pairs of susceptible individuals (𝑃𝑆𝑆, cyan curve) predicted by the pair-

approximation model under four scenarios of the 𝑅0 value (10, 2.5, 1.17, and 0.8). The x-axis represents the simulation time, 

and the y-axis represents the frequencies. The initial conditions: 𝑃𝑆(0) = 0.95, 𝑃𝐼(0) = 1 − 𝑃𝑆(0), 𝑃𝑆𝐼(0) = 0.05, 𝑃𝑆𝑆(0) =

0.8, and 𝑞𝐼𝑆(0) = 𝑃𝑆𝐼(0)/𝑃𝑆(0). Parameters used: 𝛽 = 0.2, 𝑅0 = 10, 2.5, 1.17, and 0.8, 𝛾 = 𝛽/𝑅0, and 𝑧 = 4.  
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Fig. 5. The temporal dynamics of the average local frequency (𝑞𝐼|𝑆, pink curve), neighbouring pairs of susceptible and 

infected individuals (𝑃𝑆𝐼 , grey curve), and neighbouring pairs of susceptible individuals (𝑃𝑆𝑆, cyan curve) predicted by the 

pair-approximation model under four scenarios of the 𝑅0 value (10, 2.5, 1.17, and 0.8). Initial conditions and parameter 

values are the same as in the caption of figure 4.  

 

4 Conclusion 

The basic reproduction number 𝑅0 has been used for several decades as an indicator of whether 

the disease will die out or persist. It is widely acknowledged that the disease is likely to die out 

if 𝑅0 < 1, while persist if  𝑅0 > 1.  In this work, we reconstructed the classical SIS model using 

the pair-approximation method (Harada and Iwasa, 1994; Keeling, 1999; Payne, 2019), and 

presented a theoretical evidence that a disease with 𝑅0 > 1 dies out in a simple SIS model. 

Despite this simplicity of the model, results produced by the pair-approximation model deviated 

pronouncedly from predictions by the mean-field approximation model. The advantage of the 

pair-approximation approach over the commonly-used mean-field approximation is that it 

explicitly accounts for neighborhood interactions among susceptible and infected individuals. 

However, a recent pair-approximation SIS model produced results in alignment with 

predictions by the classical mean-field SIS model, yet diverging from our findings in terms of 

the dependence of epidemic size on 𝑅0 (Payne, 2019). That model, while informative, solely 

focused on dynamics of pairs and did not consider the average local frequency dynamics of 

infected individuals; thus, overlooked the effect of the number of nearest-neighboring sites of 

a susceptible individual on the disease transmission dynamics. In the realm of more intricate 

models of infectious diseases, it remains an open question to what extent mean-field 

approximation predictions deviate from predictions produced by models that consider 

neighborhood interactions (Keeling, 1999). We suggest a crucial need for redefining the basic 

reproduction number on a smaller spatial scale and taking the average 𝑅0 over a global scale, 

rather than applying it globally to an entire population. This redefinition may depend on the 

average number of infected individuals within the neighbourhoods of a susceptible individual 

(Keeling, 1999). This fundamental epidemiological concept of 𝑅0 might otherwise be 

misleading (Li et al., 2011).       

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.18.23295738doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295738
http://creativecommons.org/licenses/by/4.0/


 

Data availability  

This study does not include or use data. 

 

Declaration of competing interest 

None. 

 

Declaration of funding 

None. 

 

 

References 

 

Allen, L.J.S., 1994. Some discrete-time SI, SIR, and SIS epidemic models. Mathematical 

Biosciences 124, 83–105.  

Daley, D.J., Gani, J., 2001. Epidemic Modelling: An Introduction. Cambridge University Press. 

Delamater, P.L., Street, E.J., Leslie, T.F., Yang, Y.T., Jacobsen, K.H., 2019. Complexity of the 

Basic Reproduction Number (R0). Emerg Infect Dis 25, 1–4.  

Dietz, K., 1993. The estimation of the basic reproduction number for infectious diseases. Stat 

Methods Med Res 2, 23–41.  

Guerra, F.M., Bolotin, S., Lim, G., Heffernan, J., Deeks, S.L., Li, Y., Crowcroft, N.S., 2017. 

The basic reproduction number (R0) of measles: a systematic review. The Lancet 

Infectious Diseases 17, e420–e428.  

Harada, Y., Iwasa, Y., 1994. Lattice population dynamics for plants with dispersing seeds and 

Vegetative propagation. Res Popul Ecol 36, 237–249.  

Keeling, M.J., 1999. The effects of local spatial structure on epidemiological invasions. 

Proceedings of the Royal Society of London. Series B: Biological Sciences 266, 859–

867.  

Keeling, M.J., Eames, K.T.D., 2005. Networks and epidemic models. Journal of The Royal 

Society Interface 266, 859-867. 

Li, J., Blakeley, D., Smith, R.J., 2011. The Failure of R 0. Computational and Mathematical 

Methods in Medicine 2011, 1–17.  

Mohammed, M., Brännström, Å., Landi, P., Dieckmann, U., 2023. Fruit harvesting: A potential 

threat to the persistence, spatial distribution, and establishment of plants. Preprint at 

https://arxiv.org/abs/2309.01711. 

Mohammed, M.M.A., Landi, P., Minoarivelo, H.O., Hui, C., 2018. Frugivory and seed 

dispersal: Extended bi-stable persistence and reduced clustering of plants. Ecological 

Modelling 380, 31–39.  

Payne, J.L., 2019. Pair Approximations, in: Hastings, A., Gross, L. (Eds.), Encyclopedia of 

Theoretical Ecology. University of California Press, 531–534.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.18.23295738doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295738
http://creativecommons.org/licenses/by/4.0/


Zhao, S., Lin, Q., Ran, J., Musa, S.S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., 

Wang, M.H., 2020. Preliminary estimation of the basic reproduction number of novel 

coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the 

early phase of the outbreak. International Journal of Infectious Diseases 92, 214–217.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.18.23295738doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295738
http://creativecommons.org/licenses/by/4.0/

