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ABSTRACT 27 

Background 28 

Efficiently detecting impaired glucose control abilities is a pivotal challenge in public health. 29 

This study assessed the utility of relatively easy-to-measure continuous glucose monitoring 30 

(CGM)-derived indices in estimating glucose handling capacities calculated from 31 

resource-intensive clamp tests. 32 

  33 

Methods 34 

We conducted a prospective, single-center, observational cohort study of 64 individuals 35 

without prior diabetes diagnosis. The study utilized CGM, oral glucose tolerance test, and 36 

hyperglycemic and hyperinsulinemic-euglycemic clamp tests. We validated CGM-derived 37 

indices characteristics using an independent dataset and mathematical model with simulated 38 

data.  39 

 40 

Findings 41 

A novel CGM-derived index, AC_Var, was significantly correlated with insulin sensitivity (r 42 

= –0.31; 95% CI: –0.52 to –0.06), insulin clearance (r = –0.31; 95% CI: –0.54 to –0.06), and 43 

disposition index (DI) (r = –0.31; 95% CI: –0.52 to –0.07) calculated from clamp tests. 44 

AC_Var was also significantly correlated with insulin resistance (r = 0.48; 95% CI: 0.23 to 45 

0.68) in an independent dataset. Multivariate analyses indicated AC_Var’s contribution to 46 

predicting reduced blood glucose control abilities independent from conventional 47 

CGM-derived indices. The prediction model’s accuracy utilizing CGM-measured glucose 48 

standard deviation and AC_Var as input variables, with clamp-derived DI as the outcome, 49 

closely matched that of predicting clamp- from OGTT-derived DI. Mathematical simulations 50 

also underscored AC_Var’s association with insulin clearance and DI. 51 

 52 
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Interpretation 53 

CGM-derived indices, including AC_Var, can be useful for screening decreased blood 54 

glucose control ability. We developed a web application that calculates these indices 55 

(https://cgm-ac-mean-std.streamlit.app/).  56 
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INTRODUCTION 67 

Pre-diabetes (pre-DM), a condition in which blood glucose controlling mechanisms are 68 

slightly disrupted, is a high-risk condition for the development of type 2 diabetes mellitus 69 

(T2DM) and its associated complications.1 Approximately 5–10% of patients with pre-DM 70 

develop T2DM annually,1,2 with up to 70% eventually developing T2DM.1,3 Despite lower 71 

blood glucose levels in pre-DM compared to T2DM, individuals with pre-DM are at elevated 72 

risk of chronic kidney disease4 and cardiovascular disease,5 which are common complications 73 

of diabetes. However, preventive measures through pharmaceutical or lifestyle interventions 74 

can impede the progression to T2DM and mitigate complications.1,6,7 Consequently, pre-DM 75 

screening followed by targeted interventions has demonstrated cost-effectiveness.8 76 

 Optimal methods for detecting the decreased ability to control blood glucose, 77 

however, have yet to be established. Hemoglobin A1c (HbA1c) and fasting blood glucose 78 

(FBG) have been recommended for screening for pre-DM, but they lack precision for 79 

prediabetes screening and even their combination has a diagnostic sensitivity of only about 80 

60%.9–11 The 2-h oral glucose tolerance test (OGTT) has long been the gold standard 81 

diagnostic method for pre-DM and T2DM.12 However, the cost, time, patient inconvenience, 82 

and lack of reproducibility of the OGTT make it impractical for patient care.12 Moreover, 83 

these indices lack information on glycemic variability and changes in glucose levels 84 

throughout the day, which are relevant to T2DM complications.13,14 Insulin sensitivity and 85 

insulin secretion impairment precede T2DM development, with insulin resistance emerging 86 

years prior and decreased β-cell function already present in pre-DM.1 Although 87 

hyperinsulinemic-euglycemic and hyperglycemic clamp tests have been the gold standards 88 

for assessing insulin sensitivity and insulin secretion,15 their resource intensiveness impedes 89 

practicality in screening. Consequently, the development of more accurate and accessible 90 

methods for detecting reduced glucose control abilities constitutes a pressing public health 91 

challenge. 92 
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 Continuous glucose monitoring (CGM) has emerged as a promising avenue for 93 

identifying individuals with reduced glucose handling capacity.16–18 CGM-derived indices 94 

identify individuals who are not identified as pre-DM by FBG, HbA1c, or OGTT, but who 95 

have high levels of postprandial glucose, a characteristic of pre-DM and even T2DM.19 A 96 

CGM-derived index has demonstrated the ability to identify individuals with a high risk of 97 

progressing to T2DM.20 Some CGM-derived indices also correlate with insulin secretion, 98 

insulin sensitivity, or the disposition index (DI).19,21–24 While various glycemic variability 99 

indices derived from CGM have been reported, their relationship to glucose handling 100 

capacity and their potential for identifying individuals with reduced glucose handling, 101 

particularly in a population predominantly composed of healthy individuals, remain unclear.  102 

Here, we assessed previously established CGM-derived indices19,25 and introduced 103 

two novel indices (AC_Mean and AC_Var) based on autocorrelation function of glucose 104 

levels. By examining the correlation between these indices and indices calculated from 105 

OGTT or clamp tests, we found that AC_Mean and AC_Var were significantly correlated 106 

with insulin clearance or the DI, unlike the other CGM-derived indices. In addition, 107 

multivariate analyses indicated that CGM-derived indices, including AC_Mean and AC_Var, 108 

contributed to the prediction of decreased blood glucose control abilities. A mathematical 109 

model with simulated data also indicated that AC_Mean and AC_Var were associated with 110 

insulin clearance and the DI.   111 

 112 

METHODS 113 

Subjects and measurements 114 

This study was conducted in accordance with the Declaration of Helsinki and its amendments, 115 

and was approved by the ethics committee of Kobe University Hospital (Approval No. 1834; 116 

Kobe, Japan). Written informed consent was obtained from all subjects. Study participants 117 

who had no previous diagnosis of diabetes and were over 20 years old were recruited from 118 
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Kobe University Hospital (Hyogo, Japan) from January 2016 to March 2018. Exclusion 119 

criteria were: 1) taking medications that affect glucose metabolism (e.g., steroids, β blockers); 120 

2) patients with psychiatric disorders; 3) pregnant or breast-feeding women; and 4) deemed 121 

unfit for any other reason by attending physicians. 122 

 The study participants initially underwent a 75-g OGTT in the morning after an 123 

overnight fast. Following the OGTT, they wore a CGM device (iPro; Medtronic, Minneapolis, 124 

MN, USA) for more than 72 h. Within 7 days after the OGTT, the participants underwent a 125 

consecutive hyperglycemic and hyperinsulinemic-euglycemic clamp test. Detailed procedures 126 

for the OGTT, consecutive hyperglycemic and hyperinsulinemic-euglycemic clamp, and 127 

CGM can be found in Supplementary Text 1. 128 

 A total of 70 participants were initially enrolled. One participant taking a β blocker, 129 

two participants with missing CGM data, two participants with protocol deviation, and one 130 

participant with missing OGTT and/or clamp data were excluded from the analysis. 131 

Consequently, data from 64 participants were used in the analysis (Fig. S1). The sample size 132 

of 64 participants closely aligned with the cohort of 57 individuals investigated in a previous 133 

study, where statistically significant correlations between CGM-derived indices and the 134 

ability to regulate blood glucose were demonstrated.19 Of note, with a type I error of 0.05, a 135 

power of 0.8, and an expected Spearman correlation coefficient of 0.35, a sample size of 66 136 

(Bonett and Wright’s method) or 64 (Caruso and Cliff’s method) was required to detect a 137 

significant difference from zero in the correlation coefficient. This sample size estimation 138 

was performed using SPSS version 29 (SPSS Inc.). 139 

 140 

Subjects and measurements of a previously reported dataset  141 

We also performed an analysis using publicity available data sets of CGM (Dexcom G4 142 

CGM System; Dexcom, Fort Lauderdale, FL, USA), OGTT, and steady state plasma glucose 143 

(SSPG) test outcomes from a previously reported study.19 The participants of that study, 144 
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recruited from the San Francisco Bay Area, had no previous diagnosis of diabetes.19 Among 145 

the study subjects (32 females and 25 males), 5, 14, and 38 individuals met their criteria of 146 

“type 2 diabetes” (HbA1c ≥ 6.5%, FBG ≥ 126 mg/dL, or 2-h glucose during 75-g OGTT ≥ 147 

200 mg/d), “pre-diabetes” (HbA1c > 5.7% and < 6.5%, FBG 100–125 mg/dL, or 2-h glucose 148 

during 75-g OGTT 140–199 mg/dL) and “normoglycemia” (glucose-related parameters 149 

below the diagnostic thresholds for pre-diabetes).19 150 

 151 

CGM-derived parameters 152 

CGM_Mean and CGM_Std represent the mean and standard deviation of glucose values 153 

measured by CGM, respectively. CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, 154 

ADRR, MVALUE, and MAG were calculated using EasyGV software.25 Here, we 155 

introduced novel indices, the mean (AC_Mean) and the variance (AC_Var) of the 156 

autocorrelation function of glucose values at lags 1–30 with a lag of 5 min. While 157 

autocorrelation function has been used to analyze this type of time series data,26,27 it has not 158 

been thoroughly investigated to date. AC_Mean and AC_Var used in analyzing blood 159 

glucose levels after consuming standardized meals19 were calculated from the autocorrelation 160 

function at lags 1–10 , as we had CGM data available for only 2.5 h after standardized meals 161 

were consumed. 162 

DTW_Low, DTW_Mod, and DTW_Sev are previously proposed CGM-derived 163 

indices that represent the dysregulation of glycemia.19 These indices were calculated by a 164 

previously reported method.19 In brief, the time series data of CGM were fragmented into 165 

sliding windows of 2.5 h, with a 75% overlap. Then, by applying spectral clustering, three 166 

clusters of glucose patterns (low, moderate, and severe) were identified, and the fraction of 167 

time in each category was defined as DTW_Low, DTW_Mod, and DTW_Sev, respectively.  168 

 169 

Calculation of clinical indices 170 
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Insulinogenic index (I.I):  171 

Ratio of the increment of immunoreactive insulin (IRI) to that of plasma glucose at 30 min 172 

after the onset of the OGTT. 173 

Composite index: 174 

[10000/√FPG × FIRI × G × I], 175 

where FPG, FIRI, G, and I are fasting plasma glucose, fasting IRI, mean blood glucose levels, 176 

and mean serum IRI concentrations during the OGTT, respectively. 177 

Oral DI:  178 

Product of the composite index and the ratio of the area under the insulin concentration curve 179 

from 0 to 120 min to that for plasma glucose from 0 to 120 min, without using the data 180 

measured at 90 min, in the OGTT. 181 

AUC_IRI: 182 

Incremental area under the IRI concentration curve from 0 to 10 min during the 183 

hyperglycemic clamp. 184 

Insulin sensitivity index (ISI): 185 

The mean glucose infusion rate during the final 30 min of the clamp (mg/kg/min) divided by 186 

both the plasma glucose (mg/dL) and serum insulin (μU/mL) levels at the end of the clamp 187 

and then multiplying the resulting value by 100.  188 

Clamp DI:  189 

The product of AUC_IRI and ISI. 190 

Metabolic clearance rate of inulin (MCRI):  191 

Ratio of insulin infusion rate to the steady-state plasma insulin concentration during the 192 

hyperinsulinemic-euglycemic clamp test. 193 

 194 

Mathematical model estimating insulin sensitivity, secretion, and clearance  195 
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To estimate insulin sensitivity, insulin secretion, and insulin clearance from clamp tests, we 196 

constructed a mathematical model of the feedback loop that links glucose and insulin as 197 

shown in a previous study28 as follows: 198 

𝑑𝐺

𝑑𝑡
= flux 1 − flux 2 + flux 3 − flux 4 + influx 𝐺 = 𝑘1𝑌 − 𝑘2𝐺 +

𝑘3

𝑘8 + 𝐼
− 𝑘4𝐺𝐼 + 𝑓1(𝑡) 199 

𝑑𝐼

𝑑𝑡
= flux 6 − flux 7 + influx 𝐼 = 𝑘6𝑋 − 𝑘7𝐼 + 𝑓2(𝑡) 200 

𝑑𝑌

𝑑𝑡
= −flux 1 + flux 2 = −𝑘1𝑌 + 𝑘2𝐺 201 

𝑑𝑋

𝑑𝑡
= flux 5 − flux 6 = 𝑘5𝑌 − 𝑘6𝑋, 202 

where the variables 𝐺 and 𝐼 denote blood glucose and insulin concentrations, respectively. 203 

The fluxes, influx 𝐺 and influx 𝐼 denote glucose and insulin infusions, respectively. These 204 

fluxes were estimated using a previously reported method.  205 

For each of the 64 subjects, the parameters of the model to reproduce the time course 206 

were estimated by a meta-evolutionary programming method to search the minimum globally, 207 

followed by application of the nonlinear least squares technique to search the minimum 208 

locally, as previously described.29 Each parameter of the model for serum glucose and insulin 209 

concentration was estimated in the range from 10–4 to 104. For these methods, the parameters 210 

were estimated to minimize the objective function value, which is defined as residual sum of 211 

the square (RSS) between the actual time course obtained by clamp analyses and the model 212 

trajectories. RSS used in the model for serum glucose and insulin concentration was given by 213 

the following equation:  214 

RSS =
𝑛𝐼

𝑛𝐺+𝑛𝐼
∑ [𝐺(𝑡𝑖) − 𝐺sim(𝑡𝑖)]2 +

𝑛𝐺

𝑛𝐺+𝑛𝐼
∑ [𝐼(𝑡𝑖) − 𝐼sim(𝑡𝑖)]2𝑛𝐼

𝑖=1
𝑛𝐺
𝑖=1 , 215 

where 𝑛𝐺 and 𝑛𝐼 are the total numbers of time points of measuring blood glucose and 216 

insulin, respectively, and 𝑡𝑖 is the time of i-th time point. 𝐺(𝑡) is the time-averaged blood 217 

glucose concentration within the time range (𝑡 − 5) min to 𝑡 min with every 1-min interval, 218 

𝐼(𝑡) is the blood insulin concentration at 𝑡 min. 𝐺sim(𝑡) and 𝐼sim(𝑡) are simulated blood 219 
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glucose and insulin concentrations, respectively. Blood glucose and insulin concentrations of 220 

each subject were normalized by dividing them by the respective maximum value. The 221 

numbers of parents and generations in the meta-evolutionary programming were 400 and 222 

4000, respectively. 223 

Mathematical model used for simulating the characteristics of AC_Mean and AC_Var  224 

In simulating the characteristics of AC_Mean and AC_Var, we used a simple and stable 225 

model,30 which can be written as follows: 226 

𝑑𝐺

𝑑𝑡
= −𝑘glu𝐺 − 𝑘sen𝐼𝐺 + 𝑘pro + 𝑓 227 

𝑑𝐼

𝑑𝑡
=

𝑘sec

𝑘tim
∫ 𝐺

𝑡

𝑡−𝑘tim

𝑑𝑠 − 𝑘cle𝐼 228 

where the variables 𝐺 and 𝐼 denote blood glucose and insulin concentrations, respectively. 229 

Parameter values reported as the averages for healthy subjects were as follows:30 230 

𝑘glu = 0.0226, 𝑘sen = 5.64 × 10−5, 𝑘pro = 1.93,  231 

𝑘sec = 0.074, 𝑘tim = 14.9, 𝑘cle = 0.1262. 232 

We simulated how 24-h profiles of 𝐺 changed as 𝑘sec𝑘sen and 𝑘cle, which correspond to 233 

the DI and insulin clearance, respectively, were changed from one-half to twice as large as 234 

the values. Five mg/dL/min glucose was applied for 10 min at 6-, 12-, and 18-h as the 235 

external input of glucose 𝑓. We also calculated the AC_Mean and AC_Var from 𝐺 added 236 

with zero-mean gaussian white noise with variances of 0.25, 0.5, or 1. 237 

 238 

Prediction models and statistical analyses 239 

In this study, we investigated the predictive performance of CGM-derived indices for 240 

assessing the decline in blood glucose control ability across five main methodologies: 241 

multiple linear regression, partial least squares (PLS) regression, least absolute shrinkage 242 

operator (LASSO) regression, random forests, and logistic regression. Of note, these 243 

prediction models were conducted as post hoc analyses. The input variables for these models 244 
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consisted of 27 variables: body mass index (BMI), abdomen circumference (ACir), body fat 245 

percentage, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol 246 

(TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density 247 

lipoprotein cholesterol (HDL-C), FBG, HbA1c, CGM_Mean, CGM_Std, CONGA, LI, 248 

JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, MAG, DTW_Mod, 249 

DTW_Sev, AC_Mean, and AC_Var. This modeling was conducted using scikit-learn, a 250 

python-based tool kit. 251 

The predictive performance assessment of multiple linear regression included 252 

measures such as the coefficient of determination (𝑅2), the adjusted coefficient of 253 

determination (Adj 𝑅2), and Akaike information criterion (AIC). The multicollinearity of the 254 

input variables was estimated by the variance inflation factor (VIF). PLS regression was 255 

conducted to estimate the importance of the input variables in predicting the DI. The variable 256 

importance in projection (VIP) scores,31 which were generated from PLS regression, were 257 

used for estimating the importance of the input variables. Lasso regression is a kind of linear 258 

regression with L1 regularization.32,33 The optimal regularization coefficients, lambda, were 259 

based on leave-one-out cross validation. For multiple linear regression, PLS regression, 260 

LASSO regression, and logistic regression, z-score normalization was performed on each 261 

input variable. 262 

Random forest is an ensemble learning method, which generates classification 263 

decision trees by selecting subsets of input predictor variables randomly.34 The study 264 

employed 300 decision trees with Gini as the criterion for determining the best splits. The 265 

predictive performance of random forests was assessed using accuracy and F1 score based on 266 

leave-one-out cross-validation. The importance of the input variables in predicting glycemic 267 

anomaly is based on the permutation and the feature importance function of the random forest 268 

function. Boruta35 was also used to test whether the input variables is usable for the 269 

prediction.  270 
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Associations between indices were assessed using Spearman’s correlation test, and 271 

correlation coefficients were reported with 95% confidence intervals (Cis) through bootstrap 272 

resampling. The number of resamples performed to form the bootstrap distribution was set at 273 

10000. P < 0.05 was considered statistically significant. Benjamini-Hochberg’s multiple 274 

comparison test was also performed with a significance threshold of Q < 0.05. 275 

Hierarchical clustering analysis was also conducted using a method that combines 276 

Euclidean distance measure and Ward linkage. It was adopted after Z score normalization. 277 

Comparisons among individuals in each cluster were performed by analysis of variance 278 

followed by Tukey’s honestly significant difference test. 279 

  280 

RESULTS 281 

Autocorrelation of glucose levels fluctuations 282 

In this study, our primary objective was to devise novel CGM-derived metrics that represent 283 

the glucose handling capacity of the living body. To achieve this, we conducted CGM, an 284 

OGTT, and a consecutive hyperglycemic and hyperinsulinemic-euglycemic clamp test in 285 

individuals without prior diabetes diagnosis, enabling us to focus on early indicators of 286 

reduced blood glucose control abilities.  287 

We focused on the autocorrelation of glycemic fluctuation pattern, in particular, the 288 

mean (AC_Mean) and the variance (AC_Var) of the autocorrelation function at lags 1–30 289 

with the length of the lag for 5 min, given that glucose levels were measured every 5 min 290 

with the CGM device (Figs. 1 and S2). Figure 1 shows the autocorrelation function of 291 

glycemic fluctuation pattern in two representative subjects (Subjects #13 and #46), both of 292 

whom were categorized as normal glucose tolerance (NGT), but had different clamp DI 293 

values: 65.7 for Subject #13 and 11.5 for Subject #46.  294 

For individuals with slower fluctuations in blood glucose levels, such as Subject #13, 295 

the autocorrelation function displayed a slower rate of decrease with increasing lag (AC_ 296 
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Mean: 0.62, AC_Var: 0.049). By contrast, subjects with more rapid glucose fluctuations, such 297 

as Subject #46, exhibited a relatively swift decrease in autocorrelation function as the lag 298 

increased (AC_Mean: 0.24, AC_Var: 0.12). It is noteworthy that although Subject #46 had a 299 

lower clamp DI than Subject #13, the mean (CGM_Mean) and standard deviation 300 

(CGM_Std) of glucose values were also lower in Subject #46 (CGM_Mean: 95; CGM_Std: 301 

16) than in Subject #13 (CGM_Mean: 107; CGM_Std: 18). Moreover, given the definition 302 

formula for the autocorrelation function, the autocorrelation function would not change if 303 

calculated from blood glucose levels standardized to a mean of 0 and a variance of 1, 304 

indicating a possibility that AC_Mean and AC_Var can possess characteristics that differ 305 

from the average or the variability of glucose levels.  306 

Given these findings, we hypothesized that these indices might possess some 307 

information about underlying glucose regulatory abilities that are not discernible through 308 

conventional measures such as OGTT or the mean and standard deviation of blood glucose 309 

levels. Consequently, our primary research objective was to ascertain the association between 310 

AC_Mean and AC_Var and glucose handling capacities, such as the DI and insulin clearance. 311 

Of note, the DI and insulin clearance reportedly reflect glucose dysregulation well and predict 312 

the development of future T2DM beyond FBG and the plasma glucose concentration at 120 313 

min during the OGTT (PG120).36,37  314 

 315 

Relationship between indices from CGM and those from OGTT or clamp tests 316 

We compared AC_Mean and AC_Var with indices obtained from OGTT or clamp tests to 317 

thoroughly assess the potential of these indices in estimating a decline in blood glucose 318 

control ability (Figs. 2A and S3). In this study, CGM, OGTT, and clamp tests were 319 

performed on 52 NGT, 9 impaired glucose tolerance (IGT), and 3 T2DM individuals (Table 320 

S1). PG120, I.I., composite index, and oral DI were calculated from the OGTT. AUC_IRI, 321 

ISI, and clamp DI were calculated from clamp tests. Additionally, 𝑘4, 𝑘5, and 𝑘7 were 322 
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calculated using a previously established mathematical model.29 PG120 is the plasma glucose 323 

concentration at 120 min during OGTT. I.I., AUC_IRI, and 𝑘5 correspond to insulin 324 

secretion. Composite index, ISI, and 𝑘4 correspond to insulin sensitivity. 𝑘7 corresponds to 325 

insulin clearance. DI is the product of insulin sensitivity and insulin secretion. Of note, we 326 

refrained from employing multiple testing corrections encompassing all pairwise 327 

comparisons in Figure 2A due to the interdependent nature of the conducted tests; we 328 

analyzed various indicators that represent the same abilities, aiming to confirm the 329 

meaningful correlations observed. 330 

 AC_Mean exhibited a statistically significant correlation with 𝑘7 (r = 0.28; 95% CI: 331 

0.04 to 0.50). AC_Var displayed statistically significant correlations with the oral DI (r = –332 

0.28; 95% CI: –0.51 to –0.02), clamp DI (r = –0.31; 95% CI: –0.52 to –0.07), 𝑘4  (r = –0.31; 333 

95% CI: –0.52 to –0.06), and 𝑘7 (r = –0.31; 95% CI: –0.54 to –0.06). Since we were testing 334 

two indices, AC_Mean and AC_Var, we also applied the Benjamini-Hochberg’s multiple 335 

comparison test for each comparison, resulting in Q < 0.05 for these comparisons, validating 336 

the significance of the identified relationships among these indices. To further validate the 337 

relationships among these indices, we also investigated the relationships among AC_Mean, 338 

AC_Var, 𝑘4𝑘5 (corresponding to the clamp DI) and MCRI (corresponding to insulin 339 

clearance). AC_Mean exhibited a statistically significant correlation with 𝑘4𝑘5 (r = 0.29; 340 

95% CI: 0.05 to 0.50). AC_Var displayed statistically significant correlations with 𝑘4𝑘5 (r = 341 

–0.29; 95% CI: –0.50 to –0.05) and MCRI (r = –0.33; 95% CI: –0.55 to –0.08). Additionally, 342 

AC_Mean and AC_Var calculated from different lags were also significantly correlated with 343 

𝑘7, oral DI, and clamp DI (Fig. S4). Collectively, we conclude that AC_Mean and AC_Var 344 

are associated with the DI or insulin clearance.  345 

For comparison, we also assessed commonly used indicators such as FBG and 346 

HbA1c, which have been recommended for pre-DM screening.9–11 Moreover, we examined 347 

CGM-derived basic features such as mean (CGM_Mean) and standard deviation (CGM_Std) 348 
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as well as CGM-derived indices, DTW_Low, DTW_Mod, and DTW_Sev. These indices 349 

have been shown to identify populations with decreased ability to control blood glucose 350 

within populations primarily composed of individuals categorized as having NGT.19 351 

DTW_Low, DTW_Mod, and DTW_Sev were calculated using a previously reported 352 

method:19 low DTW_Low and high DTW_Sev indicate high glucose concentration and 353 

variability and glucose dysregulation.  354 

The indices that exhibited significant correlations with AC_Mean or AC_Var 355 

differed from those significantly correlated with FBG, HbA1c, or other indices derived from 356 

CGM data; the other indices were not significantly correlated with all of the oral DI, clamp 357 

DI, 𝑘4, and 𝑘7. By contrast, FBG, HbA1c, or the other CGM-derived indices were 358 

significantly correlated with PG120, I.I., and the composite index, where AC_Mean and 359 

AC_Var exhibited no significant correlations.  360 

 361 

Estimation of the decreased ability to control blood glucose by combining CGM-derived 362 

indices 363 

Based on these findings, we hypothesized that a more accurate identification of individuals 364 

with disrupted glucose regulation could be achieved by combining AC_Mean and AC_Var 365 

with conventional indices. To test this hypothesis, we investigated the relationship among 366 

AC_Var, DTW_Sev, diabetes diagnosis, and clamp DI – an indicator of glycemic disability 367 

and a predictor of T2DM38 (Fig. 2B). Due to a significant correlation between AC_Mean and 368 

AC_Var (r = –0.74; 95% CI: –0.85 to –0.60) (Fig. S3), we focused on AC_Var. AC_Var was 369 

not significantly correlated with DTW_Sev (r = 0.06; 95% CI: –0.20 to 0.32). In subjects 370 

with T2DM, both AC_Var and DTW_Sev were relatively high. Some subjects with high 371 

values of AC_Var and DTW_Sev were diagnosed with NGT or IGT, but their clamp DI was 372 

relatively low (Fig. 2B, *1). Some subjects had low DTW_Sev and low clamp DI (Fig. 2B, 373 

*2), and others had low AC_Var and low clamp DI (Fig. 2B, *3). In these subjects, either 374 
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AC_Var or DTW_Sev was relatively high, suggesting a potential for combined use to 375 

enhance accuracy in identifying individuals with impaired glucose control. 376 

Theoretically, dynamic time warping, an algorithm that is employed to calculate 377 

DTW_Sev, aligns time series data globally and may not fully account for autocorrelated 378 

structure information.39 Consequently, DTW_Sev is mainly affected by the mean and the 379 

variance of glucose levels.40,41 On the other hand, AC_Var is calculated from autocorrelation 380 

of glucose levels and autocorrelation is not affected by the mean and the variance of levels 381 

given its definition formula. Collectively, these rationales also indicate that DTW_Sev and 382 

AC_Var can have different aspects of glucose characteristics and that a combination of these 383 

two indices may be useful in estimating glucose handling capacities. 384 

To further explore the efficacy of this combination, we conducted clustering analysis 385 

based on these indices (Fig. 2C). The sum of DTW_Low, DTW_Mod, and DTW_Sev was 1, 386 

DTW_Low was excluded from this analysis. We divided the subjects into four groups based 387 

on the relatedness of the indices: cluster $1 mainly contained subjects with low DTW_Sev 388 

and low AC_Var, cluster $2 mainly contained subjects with low DTW_Sev and relatively 389 

high AC_Var, cluster $3 mainly contained subjects with relatively high DTW_Sev and low 390 

AC_Var, and cluster $4 mainly contained subjects with relatively high DTW_Sev and 391 

relatively high AC_Var. Subjects in cluster $3 had statistically significantly lower oral DI 392 

than those in cluster $1 (Fig. 2D), and subjects in cluster $2 had statistically significantly 393 

lower clamp DI than those in cluster $1, suggesting that subjects with high DTW_Sev 394 

(cluster $3) or high AC_Var (cluster $2) have glycemic disabilities. As expected, subjects in 395 

cluster $4 had statistically significantly lower oral DI and clamp DI than those in cluster $1 396 

(Fig. 2D).  397 

 We also conducted multiple regression analyses among oral DI, clamp DI, and the 398 

CGM-derived indices (Table 1). R2 of the models that predicted oral DI and clamp DI from 399 

DTW_Mod, DTW_Sev, and AC_Var were 0.24 and 0.14, respectively. AC_Var had an 400 
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independent negative correlation with oral DI and clamp DI that was statistically significant 401 

(P = 0.029 and P = 0.010, respectively), suggesting that AC_Var contributes to the prediction 402 

of DI independently of DTW_Mod and DTW_Sev. AC_Var also had a negative correlation 403 

with clamp DI that was statistically significant (P = 0.048) independently of CGM_Std 404 

(Table 1C), which was also significantly correlated with clamp DI (Fig. 2A). 𝑅2, the 405 

adjusted coefficient of determination (Adj R2), and the AIC of the model that predicted clamp 406 

DI from CGM_Std and AC_Var were 0.18, 0.15, and 583, respectively. Of note, 𝑅2, Adj 𝑅2, 407 

and AIC of the model that predicted clamp DI from oral DI were only 0.15, 0.14, and 583, 408 

respectively. Collectively, we conclude that combining AC_Var with conventional 409 

CGM-derived indices can increase the accuracy of predicting a decreased ability to control 410 

blood glucose.   411 

 412 

Predicting DI from CGM, single-point blood tests, and physical measurement-derived 413 

indices 414 

To predict DI, which reflects glycemic disability and has been suggested as a predictor of the 415 

development of T2DM,37 we conducted multiple linear regression analyses. Since the 416 

purpose of this study was to estimate glucose intolerance from relatively easy-to-measure 417 

indices, we included only CGM-derived indices, indices from a single blood test, and those 418 

from physical measurements as the input variables, as follows: CGM_Mean, CGM_Std, 419 

CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, MAG, 420 

DTW_Mod, DTW_Sev, AC_Mean, AC_Var, TC, TGs, LDL-C, HDL-C, FBG, HbA1c, BMI, 421 

ACir, body fat percentage, SBP, and DBP.  422 

 To assess the multicollinearity of the input variables, we investigated the VIF of 423 

these variables (Fig. 3A). We removed the variable with the highest VIF one by one until the 424 

VIF of all variables were less than 10 (Fig. 3B), resulting in 18 variables (DBP, SBP, 425 

AC_Var, AC_Mean, HBGI, MAG, GRADE, DTW_Mod, ACir, BMI, MODD, FBG, HbA1c, 426 
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TG, HDL-C, LDL-C, body fat percentage, MVALUE). AC_Mean and AC_Var were 427 

included in these 18 variables, suggesting their relatively low multicollinearity with other 428 

indices. 𝑅2 of the models that predicted oral DI and clamp DI from the 18 variables were 429 

0.64 and 0.50, respectively (Fig. S5A, B). Adj 𝑅2 and AIC of the models that predicted oral 430 

DI (Fig. S5A) and clamp DI (Fig. S5B) using both CGM-derived indices and indices from a 431 

single-point blood test or physical measurements were better than those of models that used 432 

only CGM-derived indices (Figs. S6A, B) or a single-point blood test and physical 433 

measurement-derived indices (Fig. S6C, D), indicating that CGM-derived indices in addition 434 

to non-CGM indices contribute to a more accurate DI prediction.  435 

To avoid overfitting and to investigate the importance of the input variables in 436 

predicting DI, we also applied machine learning models, including PLS regression with VIP 437 

scores31 (Fig. 3C, D) and least absolute shrinkage and selection operator (Lasso) regression33 438 

(Fig. S7). These regression models have been used for studies where the number of input 439 

variables are large relative to the sample size.42,43 PLS regression has been used for datasets 440 

with mutually correlated input variables and output variable, and important predictors can be 441 

estimated by VIP.31 Here, high VIP indicates high contribution of the variables in predicting 442 

DI. Lasso employs L1 regularization, which leads to models with fewer parameters, and has 443 

been used to select useful features to predict DM from numerous input variables.32  444 

The cross validation indicated that the optimal number of PLS components was 2. At 445 

the component, the VIP of some CGM-derived indices, including AC_Var, was higher than 1 446 

(Fig. 3D). The leave-one-out cross validation indicated that the optimal regularization 447 

coefficients of lasso (Lambda) were 0.061 for oral DI and 3.49 for clamp DI (Fig. S7A, B). 448 

At these Lambdas, the coefficients of AC_Var were estimated as non-zero coefficients for 449 

both oral DI and clamp DI (Fig. S7C–F). Collectively, these results indicate that 450 

CGM-derived indices, including AC_Var, contribute to the prediction of DI.  451 
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We also investigated the characteristics of AC_Mean and AC_Var in predicting the 452 

decreased ability to control blood glucose by conducting random forests and a logistic 453 

regression analysis with L1 regularization (Supplementary text 2, Figs. S8–10), suggesting 454 

that including AC_Mean or AC_Var alongside conventional indices enhances the accuracy of 455 

predicting decreased glucose control abilities. 456 

 457 

Relationship among clinical parameters 458 

To provide an overview of the relationship among indices derived from OGTT, clamp tests, 459 

CGM, and other clinical parameters from a single blood test or physical measurements, we 460 

constructed a correlation network (Fig. 4). Correlation networks have been used to elucidate 461 

the interdependency and interconnectivity among different biomarkers of complex metabolic 462 

disorders such as T2DM.44 In this network, AC_Mean and AC_Var were correlated with 463 

some insulin-related indices (blue nodes), but the correlations with other indices (red, 464 

magenta, and green nodes) were relatively small. We also applied the Benjamini-Hochberg’s 465 

multiple comparison test for each comparison, and showed relationships with Q < 0.05 in 466 

Table S2. AC_Var was significantly correlated with 𝑘7, oral DI, and clamp DI (Table S2). 467 

Collectively, we conclude that the autocorrelation function of glucose levels has the ability to 468 

capture a diminished capacity for blood glucose control that remains undetected by 469 

conventional indices.  470 

 471 

Validation of the contributions of AC_Mean and AC_Var in predicting a decreased 472 

ability to control blood glucose using an independent dataset 473 

To further validate the significance of AC_Mean and AC_Var in predicting reduced blood 474 

glucose control capacity, we conducted multivariate analyses (Fig. 5A–D) and constructed a 475 

correlation network (Fig. 5E) by using a different dataset.19 This dataset included 57 476 
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participants who were free from prior diabetes diagnosis, with 5 individuals meeting the 477 

criteria for T2DM, 14 having pre-DM, and the remaining participants having NGT.  478 

The assessment of multicollinearity using VIF revealed that AC_Mean exhibited 479 

relatively low multicollinearity with other indices (Fig. 5A, B), consistent with findings from 480 

previous analyses (Fig. 3A, B). The VIF of the indices calculated using the previously 481 

reported dataset (VIFp) and those calculated using the dataset obtained in this study (VIFt) 482 

were statistically significantly correlated (Fig. 5C), indicating the validity of the relationship 483 

among the clinical parameters. The cross validation indicated that the optimal number of 484 

components of the PLS regression model predicting SSPG, which indicates insulin sensitivity, 485 

was 2. At the component, VIP of AC_Var in predicting SSPG was higher than 1 (Fig. 5D), 486 

indicating that AC_Var contribute to the prediction of SSPG. To avoid overfitting and to 487 

investigate the contributions of the input variables in estimating SSPG, we also conducted 488 

Lasso (Fig. S11). The leave-one-out cross validation showed that the optimal regularization 489 

coefficient, Lambda, was 0.69 (Fig. S11A, B). At the Lambda, the coefficients of AC_Mean 490 

and AC_Var were estimated as non-zero coefficients (Fig. S11C), suggesting that AC_Mean 491 

and AC_Var contribute to the prediction of SSPG.  492 

A correlation network showed that AC_Mean and AC_Var were significantly 493 

correlated with SSPG (r = –0.36; 95% CI: –0.57 to –0.09 and r = 0.48; 95% CI: 0.23 to 0.68, 494 

respectively), but the correlations with other CGM-derived indices were relatively modest 495 

(Fig. 5E). We also applied the Benjamini-Hochberg’s multiple comparison test for each 496 

comparison, and showed relationships with Q < 0.05 in Table S3. Both AC_Mean and 497 

AC_Var were significantly correlated with SSPG (Table S3). These results were consistent 498 

with the result that AC_Var was significantly correlated with 𝑘4, which corresponds to 499 

insulin sensitivity (Fig. 2A). These results confirm that the characteristics of AC_Mean and 500 

AC_Var are reproducible in capturing reduced blood glucose control ability. 501 
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To investigate the effects of meals on AC_Mean and AC_Var, we calculated the 502 

indices using the previously reported CGM data that were collected after consuming 503 

standardized meals19 (Fig. S12). The standardized meals were about the same in calories, but 504 

differed in the amounts of proteins, fat, and fiber: cornflakes and milk (Cereal) were low in 505 

fiber and high in sugar, peanut butter sandwiches (Bread and PB) were high in fat and high in 506 

protein, and PROBAR protein bars (Bar) were moderate in fat and protein, as previously 507 

described.19 The previously reported indices, DTW_Low, DTW_Mod, and DTW_Sev, were 508 

able to capture the differences in glucose fluctuations due to different meals (Fig. S12A).19 509 

By contrast, one-way analysis of variance for testing the significance of differences in 510 

AC_Mean and AC_Var for each meal showed no significant difference (Fig. S12B), 511 

suggesting that AC_Mean and AC_Var were more robust to meal types. 512 

 513 

AC_Mean and AC_Var capture changes in blood glucose dynamics in the early stage of 514 

glucose intolerance 515 

To further validate the predictive characteristics of AC_Mean and AC_Var in identifying 516 

reduced blood glucose control ability, we characterized them using simulated blood glucose 517 

data. We previously reported that as DI decreases, insulin clearance decreases simultaneously 518 

in the early stage of glucose intolerance.28 Hence, we evaluated how AC_Mean and AC_Var 519 

change as DI and insulin clearance decrease simultaneously.  520 

 For simulation of the mathematical model (see Methods), we used parameters 521 

reported as the mean values in NGT.30 We changed DI (𝑘sec𝑘sen) and insulin clearance (𝑘cle) 522 

from one-half to twice the NGT’s values (Fig. 6A). As 𝑘sec𝑘sen and 𝑘cle increased, FBG 523 

levels remained unchanged (Fig. 6A, #𝛼), but there was a point at which blood glucose levels 524 

decreased (Fig. 6A, #𝛽) and a point at which blood glucose levels increased (Fig. 6A, #𝛾). As 525 

the pattern of blood glucose dynamics changed in this way, AC_Mean increased and AC_Var 526 

decreased (Fig. 6B), consistent with the results that AC_Mean was positively correlated with 527 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.18.23295711doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295711
http://creativecommons.org/licenses/by/4.0/


insulin clearance, and AC_Var was negatively correlated with DI and insulin clearance (Fig. 528 

2A).  529 

 We also investigated the effects of noise on AC_Mean and AC_Var (Supplementary 530 

text 3, Figs. 6C, S13 and S14), and found that AC_Var was more robust to noise than 531 

AC_Mean, consistent with the result that AC_Var exhibited a stronger correlation with DI 532 

than AC_Mean (Fig. 2A). Moreover, extending the measurement period and decreasing the 533 

measurement interval of CGM were found to enhance the accuracy of reduced blood glucose 534 

control ability (Supplementary text 3 and Fig. S14).  535 

 536 

Web application for calculating CGM-derived indices 537 

To easily calculate CGM-derived indices, we developed a web application 538 

(https://cgm-ac-mean-std.streamlit.app/) that calculates CGM_Mean, CGM_Std, AC_Mean, 539 

and AC_Var (Fig. S15). This application was implemented in streamlit. In using this 540 

application, glucose should be measured every 5 min. The application can also run on a local 541 

machine using the code in GitHub repository 542 

(https://github.com/HikaruSugimoto/CGM_AC). 543 

 544 

DISCUSSION 545 

In this study, we found that CGM-derived indices, including AC_Mean and AC_Var, were 546 

effective in identifying individuals with reduced blood glucose control ability within a 547 

population predominantly consisting of individuals with NGT. AC_Mean exhibited a 548 

significant correlation with insulin clearance, and AC_Var was significantly correlated with 549 

both insulin clearance and DI. Insulin clearance predicts the incidence of T2DM in non-DM 550 

subjects,36 and DI predicts the development of future T2DM beyond FBG and PG120.37 551 

Collectively, these findings suggest that CGM-derived indices, including AC_Mean and 552 

AC_Var, can identify abnormalities in blood glucose regulation at an early stage, potentially 553 
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serving as alternatives to single-point blood tests or OGTT, which have been found to be 554 

inadequate9–11 or inconvenient12 for the screening of pre-DM. 555 

 We also predicted DI and glucose dysregulation by using multiple linear regression, 556 

PLS regression, Lasso regression, random forests, and logistic regression with L1 557 

regularization. DI is suggested to be a predictor of T2DM development,37 and decreases in 558 

insulin sensitivity and insulin secretion reportedly precede the onset of T2DM.1 However, 559 

accurate measurement of DI, insulin sensitivity, and insulin secretion are laborious. The 560 

prediction models in this study included only indices derived from a single-point blood test, 561 

physical examinations, and CGM, which are relatively easy-to-measure variables. Given that 562 

the accuracy of the linear regression model with CGM_Std and AC_Var as input variables 563 

and clamp DI as the objective variable was about the same as the accuracy of predicting 564 

clamp DI from oral DI, these relatively easy-to-measure variables may be alternatives to 565 

OGTT and clamp tests under some conditions. In this study, we investigated two different 566 

datasets, but both datasets were small in size and included only three T2DM subjects (Table 567 

S1). The main purpose of this study was not to create a predictor that can be used in clinical 568 

settings; rather, this exploratory study showed that reduced blood glucose control ability may 569 

be predictable using CGM and that AC_Mean and AC_Var can be useful in the prediction. 570 

Larger studies are required for more accurate predictions of the abnormalities. 571 

 AC_Mean and AC_Var exhibited low collinearity with other CGM-derived indices 572 

and showed the potential to capture changes in blood glucose dynamics indicative of 573 

early-stage glucose intolerance (Figs. 2–5). The mathematical modeling further highlighted 574 

their potential in identifying abnormalities even when FBG levels remain unchanged (Fig. 6). 575 

Collectively, these results indicate that AC_Mean and AC_Var can capture glycemic 576 

disability that cannot be captured by the conventional indices. However, the exact underlying 577 

mechanisms of these results and their relationship with other CGM-derived indices remain 578 

unknown. In this study, we investigated only the mean and the variance of the autocorrelation 579 
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function at lags 1–30, relatively well-known CGM-derived indices,25 and three indices that 580 

have been reported to identify abnormal glucose regulation.19 However, the mean and the 581 

variance of the autocorrelation function at lags 1–2 (Fig. S4) were also significantly 582 

correlated with oral DI (r = –0.29; P = 0.02 and r = 0.29, P = 0.02, respectively), and other 583 

CGM-derived indices of glycemic variability have been reported.26,45–56 It is necessary to 584 

investigate these indices comprehensively to determine the extent to which abnormalities can 585 

be identified from CGM in the future.  586 

In conclusion, the current study demonstrated that CGM-derived indices, AC_Mean 587 

and AC_Var, can detect decreased blood glucose control ability beyond conventional markers 588 

such as FBG, HbA1c, and other CGM-derived indices. Furthermore, the results indicate that 589 

CGM could potentially estimate DI, a strong indicator of glucose dysregulation and T2DM 590 

onset. This suggests that CGM-derived DI (CGM DI) may serve as an alternative to the 591 

labor-intensive measurements involved in conventional DI assessment using OGTT (oral DI) 592 

or clamp tests (clamp DI).  593 
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Figure Legends 610 

 611 

Fig. 1. Blood glucose fluctuations and correlogram of the time series data. Time courses 612 

of blood glucose levels measured by continuous glucose monitoring in two subjects and their 613 

correlograms. Red lines indicate the mean value of the autocorrelation function (AC_Mean), 614 
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and red shaded areas indicate the variance value of the autocorrelation function (AC_Var) 615 

(see Methods). Lag 1 autocorrelation of blood glucose measurements taken at 5-min intervals 616 

refers to the relationship between the current value (Blood glucose [t]) and the value recorded 617 

one time point later (Blood glucose [t+5x1]). Lag 5 and lag 15 similarly refers to the 618 

relationship between the current value (blood glucose [t]) and the value recorded five time 619 

points later (blood glucose [t+5x5]) and 15 time points later (blood glucose [t+5x15]), 620 

respectively. 621 

  622 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.18.23295711doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295711
http://creativecommons.org/licenses/by/4.0/


 623 

Fig. 2. Correlation between the indices from CGM and those from OGTT or clamp tests. 624 

(A) Heatmap of Spearman’s correlation coefficient, with the P values corresponding to 625 
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testing the hypothesis of no correlation. CGM_Mean and CGM_Std indicate the mean value 626 

and standard deviation of blood glucose levels measured by CGM, respectively. DTW_Low, 627 

DTW_Mod, and DTW_Sev are previously reported indices of glucose variability and glucose 628 

dysregulation19 (see Methods). AC_Mean and AC_Var are the mean and the variance value 629 

of the autocorrelation function of blood glucose fluctuations measured by CGM, respectively. 630 

The parameters 𝑘4, 𝑘5, and 𝑘7 correspond to insulin sensitivity, insulin secretion, and 631 

insulin clearance, respectively. (B) Scatter plots for DTW_Sev versus AC_Var. Subjects were 632 

colored based on diabetes diagnosis (the left) and the value of clamp DI (the right). This 633 

diagnosis is based on the American Diabetes Association Guidelines of HbA1c, fasting blood 634 

glucose, and OGTT. An NGT subject who had high AC_Var and high DTW_Sev had low 635 

clamp DI (*1). Some subjects had low DTW_Sev and low clamp DI (*2), and others had low 636 

AC_Var and low clamp DI (*3). (C) Hierarchical clustering analysis of the standardized 637 

CGM-derived indices using Euclidean distance as a metric with the Ward method. The 638 

columns represent the standardized value of DTW_Mod, DTW_Sev, and AC_Var. The rows 639 

represent individual subjects. The subjects are grouped and sorted according to their degree 640 

of relatedness. (D) Box plots of the value of oral DI and clamp DI for each cluster. Blue, red, 641 

green, and magenta are related to clusters 1, 2, 3, and 4, respectively. The boxes denote the 642 

median and upper and lower quartiles. Each point corresponds to the value for a single 643 

subject. *P < 0.05. Abbreviations: AUC_IRI, area under insulin curve during the first 10 min 644 

of hyperglycemic clamp test; CGM, continuous glucose monitoring; DI, disposition index; 645 

I.I., insulinogenic index; ISI, insulin sensitivity index; NGT, normal glucose tolerance; 646 

OGTT, oral glucose tolerance test; PG120, plasma glucose concentration at 120 min during 647 

the OGTT.  648 
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Fig. 3. Multivariate analyses for predicting the DI. (A) VIF of all variables. (B) VIF of 651 

each variable remaining after removing the variable with the highest VIF one by one until the 652 

VIF of all variables are less than 10. (C) VIP generated from the PLS regression predicting 653 

oral DI. Variables with a VIP ≥ 1 (the dotted line) were considered to be significantly 654 

contributed to the prediction. (D) VIP generated from the PLS regression predicting clamp DI. 655 

Abbreviations: ACir, abdomen circumference; BMI, body mass index; DBP, diastolic blood 656 

pressure; DI, disposition index; FBG, fasting blood glucose; HDL-C, high-density lipoprotein 657 

cholesterol; LDL-C, low-density lipoprotein cholesterol; PLS: partial least squares; SBP, 658 

systolic blood pressure; TC, total cholesterol; TG, triglycerides; VIF, variance inflation 659 

factor; VIP, variable importance in projection.  660 
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 662 

Fig. 4. Correlation network of clinical parameters. A spring layout of the correlation 663 

network of 17 CGM-derived indices; 3 blood glucose level-related indices; 9 insulin 664 

sensitivity, secretion, and clearance-related indices; and 9 other lifestyle diseases-related 665 

indices obtained from a single blood test or physical measurement. Relationship with the 666 

absolute values of the Spearman's correlation coefficient of 0.25 or higher are connected with 667 

edges. The width of the edges is proportional to the corresponding correlation coefficient. 668 

The color of the nodes indicates the type of indices: red, magenta, blue, green is associated 669 

with CGM, blood glucose levels, insulin, and other lifestyle-related diseases, respectively. 670 

Abbreviations: ACir, abdomen circumference; BMI, body mass index; CGM: continuous 671 

glucose monitoring; DBP, diastolic blood pressure; DI, disposition index; FBG, fasting blood 672 

glucose; HDL-C, high-density lipoprotein cholesterol; I.I., insulinogenic index; ISI, insulin 673 

sensitivity index; LDL-C, low-density lipoprotein cholesterol; oral AUC_IRI, area under 674 
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insulin curve during the first 10 min of hyperglycemic clamp test; PG120, plasma glucose 675 

concentration at 120 min during the oral glucose tolerance test; SBP, systolic blood pressure; 676 

TC, total cholesterol; TGs, triglycerides. The parameters 𝑘4, 𝑘5, and 𝑘7 correspond to 677 

insulin sensitivity, insulin secretion, and insulin clearance, respectively.  678 

 679 
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 681 

Fig. 5. Validation of the characteristics of AC_Mean and AC_Var using a previously 682 

reported dataset. A previously reported dataset19 was used in this analysis. (A) VIF of all 683 

variables. (B) VIF of each variable remaining after removing the variable with the highest 684 
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VIF one by one until the VIF of all variables are less than 10. (C) Scatter plot for the VIF of 685 

the indices calculated using the previously reported dataset (VIFp) versus those calculated 686 

using the dataset obtained in this study (VIFt). Each point corresponds to the values for an 687 

index. 𝑟 is Spearman’s correlation coefficient and the 𝑃 value is for testing the hypothesis 688 

of no correlation. (D) VIP generated from the PLS regression predicting SSPG. Variables 689 

with a VIP ≥ 1 (the dotted line) were considered to be significantly contributed to the 690 

prediction. (E) A spring layout the of correlation network of 17 CGM-derived indices, 3 691 

blood glucose levels-related indices, 1 insulin sensitivity-related index, 5 other lifestyle 692 

diseases-related indices obtained from a single blood test or physical measurement. 693 

Relationships with the absolute values of the Spearman's correlation coefficient of 0.25 or 694 

higher are connected with edges. The width of the edges is proportional to the corresponding 695 

correlation coefficient. The color of the nodes indicates the type of indices: red, magenta, 696 

blue, green is associated with CGM, blood glucose levels, insulin, and other lifestyle-related 697 

diseases, respectively. Abbreviations: BMI, body mass index; CGM, continuous glucose 698 

monitoring; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; 699 

LDL-C, low-density lipoprotein cholesterol; PLS: partial least squares; SSPG, steady state 700 

plasma glucose; TC, total cholesterol; TGs, triglycerides; VIF, variance inflation factor; VIP, 701 

variable importance in projection.  702 
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 704 

Fig. 6. Characterization of AC_Mean and AC_Var using simulated blood glucose. (A) 705 

24-h simulated glucose concentration. The color of the line is based on the values of 706 
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𝑘sec𝑘sen and 𝑘cle. The enlarged views of the areas are shown in #𝛼-#𝛾. (B) The relationship 707 

between 𝑘sec𝑘sen, 𝑘cle and AC_Mean (the left). That of AC_Var is shown in the right. The 708 

horizontal axis represents the ratio of 𝑘sec𝑘sen and 𝑘cle to the reported average values for 709 

healthy subjects. (C) AC_Mean (the upper panels) and AC_Var (the lower panels) simulated 710 

from the glucose concentration with gaussian white noise. AC_Mean and AC_Var calculated 711 

in each trial are shown in the left panels. The distributions of AC_Mean and AC_Var are 712 

shown in the right. The blue is simulated using the parameters reported as the average values 713 

for healthy subjects. The green is simulated at half the average values. The 𝑃 values are for 714 

testing the hypothesis of no difference between the two groups. 715 
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Table 1. Multiple regression analyses with oral DI index or clamp DI. (A) Multiple 717 

regression analysis between oral DI and CGM-derived indices, DTW_Mod, DTW_Sev, and 718 

AC_Var.  719 

Coefficient SE P 95% CI

DTW_Mod 0.029 0.17 0.87 -0.31 - 0.37

DTW_Sev -0.22 0.17 0.20 -0.56 - 0.12

AC_Var -0.16 0.071 0.029* -0.3 - -0.017  720 

(B) Multiple regression analysis between clamp DI and CGM-derived indices, DTW_Mod, 721 

DTW_Sev, and AC_Var.  722 

Coefficient SE P 95% CI

DTW_Mod 7.7 7.1 0.28 -6.4 - 22

DTW_Sev 4.6 7.1 0.52 -9.6 - 19

AC_Var -7.8 2.9 0.010* -14 - -1.9  723 

(C) Multiple regression analysis between clamp DI and CGM-derived indices, CGM_Std and 724 

AC_Var. *P < 0.05725 

Coefficient SE P 95% CI

CGM_Std -6.5 3.0 0.035* -12.5 - -0.48

AC_Var -6.1 3.0 0.048* -12 - -0.05  726 

DI, disposition index; CGM, continuous glucose monitoring.  727 
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