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ABSTRACT 1 

Blood transfusion is a life-saving medical procedure performed routinely worldwide. A key 2 

element for successful transfusion is compatibility of the patient and donor red blood cell 3 

(RBC) antigens. Precise antigen matching reduces the risk for immunization and other 4 

adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows 5 

developing computational methods for determining antigens from genomic data.  6 

We describe here a classification method for determining RBC antigens from genotyping 7 

array data. Random forest models for 39 RBC antigens in 14 blood group systems and for 8 

human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen 9 

and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service 10 

Biobank. The algorithm and models were further evaluated using a validation cohort of 11 

111,667 Danish blood donors. 12 

In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 13 

models was 99.9 (98.9–100)%. We were able to replicate 34 out of 39 Finnish models in the 14 

Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1–15 

99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced 16 

accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1–99.8)%. 17 

The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies 18 

suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. 19 

Furthermore, population-specific training cohort increased the accuracies of the models. 20 

This stand-alone and freely available method is applicable for research and screening for 21 

antigen-negative blood donors. 22 

 23 

 24 
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INTRODUCTION 28 

Blood transfusion is a life-saving procedure performed widely in treating various medical 29 

conditions. Despite routine practices, the safety of transfusions remains a major concern1. 30 

Exposure to foreign RBC antigens may result in alloantibody formation and hemolytic 31 

transfusion reactions. Additionally, sensitization to non-self RBC antigens and human 32 

platelet antigens (HPAs) can also occur via pregnancy and cause fetal morbidity and 33 

mortality2,3. The current general practice of matching the recipient and blood donor for ABO 34 

and RhD antigens is inadequate to prevent sensitization to other antigens. Extended 35 

matching could reduce the risk of alloimmunization and adverse events, which are especially 36 

pronounced among patients receiving regular transfusions4,5. 37 

Blood group typing of blood donors has been conventionally performed by serotyping and is 38 

still the main method used in blood centers. To overcome limitations regarding low 39 

throughput and lack of valid reagents for all clinically relevant antigens, numerous DNA-40 

based genotyping and sequencing methods have emerged within the last decades6–10. This 41 

development has been enabled by the accumulating knowledge about the genetic basis of 42 

the blood groups11,12 and the rapid evolution of molecular methodology. However, the 43 

systematically extended blood group typing of blood donors and, even more so, the 44 

recipients, remains sparse. Economic feasibility has been a major restraint to the progress. 45 

The development of genotyping array technologies has promoted high-throughput and cost-46 

effective genetic studies in many fields and, in 2020, Gleadall et al.13 introduced a 47 

microarray platform for RBC antigen, human leukocyte antigens (HLA), and HPA typing for 48 

precision matching of blood.  49 

While accurate blood group typing is obligatory for safe transfusions, an initial screening for 50 

potential donors could be achieved using less stringent procedures. In the last decade, the 51 

development of machine learning approaches for high-dimensional data has provided new 52 

opportunities for exploitation of expanding genetic data. In 2015, Giollo et al.14 presented 53 

BOOGIE, an RBC antigen predictor based on Boolean rules and k-nearest neighbor (k-NN) 54 

algorithm. Decision tree -based methods, including bootstrap aggregation15 and random 55 

forest16, have been utilized for imputation of HLA alleles17,18 and killer cell immunoglobulin-56 

like receptor (KIR) copy number19 and gene content20. To our knowledge, these methods 57 
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have not yet been implemented on RBC antigen and HPA screening. The analysis of high-58 

dimensional data with computational performance suitable for large-scale analyses may be 59 

implemented using “RANdom forest GEneRator” software R package21. The execution is 60 

feasible in the local computing environment and sensitive data uploads are not required. 61 

Here we describe a stand-alone and freely available random forest classification method 62 

and models for determining RBC antigens and HPA-1 from array technology-based 63 

genotyping data. We investigate the performance of models trained with Finnish blood 64 

donor biobank data and further validate the method with a Danish cohort. Our results 65 

suggest that the method is applicable for biobank-scale probabilistic determination of RBC 66 

antigens and HPA-1, and could facilitate research and screening for antigen-negative blood 67 

donors. 68 

 69 

STUDY SUBJECTS AND METHODS 70 

Study cohorts and design 71 

The Finnish study cohort consists of 1,192 blood donors belonging to the Blood Service 72 

Biobank, Helsinki, Finland (https://www.veripalvelu.fi/en/biobank/). Genotype and blood 73 

group phenotype data were obtained from the Blood Service Biobank. The study (biobank 74 

decision 002-2018) conforms to the principles of the Finnish Biobank Act (688/2012) and the 75 

participants have given written informed consent to the Blood Service Biobank. 76 

The Danish validation cohort consists of 111,667 participants of the Danish Blood Donor 77 

Study (DBDS) Genomic Cohort expanding on the Danish blood bank system22,23.  The genetic 78 

studies in DBDS have been approved by the Danish Data Protection Agency (P-2019-99) and 79 

the Scientific Ethical Committee system (NVK-1700407). 80 

 81 

Genotyping and genotype imputation 82 

The genotyping and genotype imputation of the Finnish cohort have been performed 83 

originally as a part of FinnGen project (https://www.finngen.fi/en). Biobank samples were 84 

genotyped using FinnGen ThermoFisher Axiom custom array v2 (Thermo Fisher Scientific, 85 
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Santa Clara, CA, USA) and imputed using the population-specific Sisu v3 imputation 86 

reference panel with Beagle 4.1. Detailed description of the procedures is available at 87 

https://finngen.gitbook.io/documentation/v/r4/methods/genotype-imputation and the 88 

marker content of the custom array v2 is downloadable at 89 

https://www.finngen.fi/en/researchers/genotyping. The phased genotypes were filtered for 90 

the imputation INFO-score >0.6 and were in vcf format. 91 

In the Danish cohort, the genotyping was performed using Illumina’s Infinium Global 92 

Screening Array and imputed using the deCODE genetics’ (Reykjavik, Iceland) North 93 

European reference sequence panel. Unphased genotypes were filtered for the imputation 94 

INFO-score >0.75, minor allele frequency >0.01, Hardy–Weinberg equilibrium P-values <1 95 

× 10−4, and samples for missingness per individual <3%. 96 

 97 

RBC antigen and HPA typing 98 

The RBC antigen and HPA-1 phenotypic information for the Finnish and Danish cohorts is 99 

presented in Table 1. The availability of the phenotype data varied in a wide range 100 

depending on the antigen due to the different testing criteria practices. In the Finnish 101 

cohort, RBC antigen and HPA-1 typing was performed at the FRCBS Blood Group Unit by 102 

routine methods and the results were obtained using validated serological and genotyping 103 

techniques. 104 

The sources for RBC antigen and HPA-1 typing results were the Danish electronic blood bank 105 

systems and the typing was performed using serological methods, except for Vel-status, 106 

which was determined using polymerase chain reaction technique. 107 

 108 

Classification random forest models 109 

An overview of the study design is depicted in Figure 1. RBC antigen and HPA-1 coding genes 110 

and the genetic regions used in the models are presented in Supplementary Table 1. The 111 

models for the antigens were generated separately using the same hyperparameters. Only 112 

antigens having at least four cases in each respective typing data class were included, 113 

resulting altogether in 39 models. For the Finnish reference data set, SNVs in RBC antigen 114 
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and HPA-1 coding genetic regions ± 2,000 bp flanking regions were utilized in dosage 115 

format. Table 2 presents the number of SNVs available for each model. Only samples having 116 

full dosage data were used. The genetic and antigen typing information were combined into 117 

a single full data set and divided randomly 1:1 into train and test data sets.  118 

R v4.3.0 environment24 was used for the implementation and classification random forest 119 

models were created using the R package ranger v0.13.121. The number of trees was 2,000 120 

and split criteria based on node impurity measured by the Gini index. Class weights were 121 

applied due to unbalanced outcome classes. Number of variables to possibly split at each 122 

node (mtry) was number of SNVs divided by 2 and the variable importance was determined 123 

by permutation. Feature selection was based on variable importance >0 and the model was 124 

re-fitted using these important SNVs only. The number of important variables and 125 

prediction errors for each antigen model are presented in the Table 2. Prediction error was 126 

determined as misclassification frequency obtained from out-of-bag data and prediction on 127 

the test set. The important variables for Finnish models are listed in Supplementary Data 2. 128 

The full data set was used in fitting the final models. 129 

 130 

Model evaluation metrics 131 

The model accuracy was evaluated using sensitivity, specificity, positive predictive value 132 

(PPV), negative predictive value (NPV), and balanced accuracy. The data was wrangled using 133 

tidyverse v1.3.1 package25 and the evaluation metrics were derived using caret v6.0-9226. 134 

For each model, the number of true positives (TP), true negatives (TN), false positives (FP) 135 

and false negatives (FN) were determined. Sensitivity was defined as TP / (TP + FN), 136 

specificity as TN / (TN + FP), PPV as TP / (TP + FP), NPV as TN / (TN + FN)27. Balanced 137 

accuracy accounts for imbalanced classification and was defined as (sensitivity + specificity) 138 

/ 2. 139 

 140 

Validation of the Finnish models and the random forest method for generating the models 141 

The models obtained using the Finnish data set were applied to the Danish cohort. The 142 

implementation required imputed genotype data in vcf or PLINK format. The Danish allele 143 
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dosage data was harmonized by naming and allele orientation for compatibility with the 144 

Finnish models and the dosage data for the missing important variables was imputed using 145 

mean values.  146 

The model-generating method was further validated by fitting the models on the Danish 147 

data set to create models specific to the Danish cohort. In the Danish data set, the 148 

percentage of missing genotypes was on average 5% depending on the genetic region of the 149 

blood group/HPA system. Missing allele dosage values were imputed separately for train 150 

and test data sets using mean values before classification random forest step. 151 

Characteristics of the Danish models are presented in Supplementary Table 2. The 152 

important variables for the Danish models are listed in Supplementary Data 3. The 153 

evaluation metrics for both prediction and modelling were defined as depicted in the 154 

“Model evaluation metrics” section.  155 

The significance of variation of balanced accuracies was analyzed using Mann-Whitney-156 

Wilcoxon Test implemented with R v3.6.1.  157 

 158 

Data availability 159 

Genotyping and RBC antigen/phenotype and HPA-1 typing data for the Finnish cohort are 160 

stored in the Blood Service Biobank, Helsinki, Finland. Researchers may apply for access to 161 

data (https://www.veripalvelu.fi/en/biobank/for-researchers/). Due to privacy laws, the 162 

Danish genetic data and phenotypes are only available to DBDS researchers and blood 163 

banks. 164 

  165 
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RESULTS 166 

Evaluation of the Finnish classification models 167 

In the Finnish cohort, the genotype data was accessible for 1,192 blood donors and the RBC 168 

antigen typing data was available for 39 antigens representing 15 blood group systems.  The 169 

blood group typing frequency varied greatly depending on RBC antigen/phenotype, being at 170 

the lowest 5% for HPA-1b and at the highest 100% for A, B, AB, O, K, D, C, c, E, and e (Table 171 

1).  172 

After data partitioning, the number of study subjects in the test data set was 596. The 173 

median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9–100)% in 174 

the test data set and accuracy metrics for all models are presented in the Table 3. The 175 

models for antigen/phenotype positivity of AB, B, A1, A2, Ytb, Coa, Doa, Dob, Fya, HPA-1b, K, 176 

Kpa, Ula, Jka, Lua, S, and s reached balanced accuracy of 100%. For other models, the 177 

balanced accuracy was ≥98.0%, except 83.3% for Lsa, 94.0% for Leb, 95.0% for HPA-1a, and 178 

96.0% for hrS. Accuracy metrics for the test and full data sets are presented in the 179 

Supplementary Tables 3 and 4, respectively. Figure 2 illustrates the confusion matrices for 180 

classification models in the Finnish test data set.  The number of false negative plus false 181 

positive (FN + FP) samples out of all samples was low, ranging from 0 to 1% in all models, 182 

except 2% for hrS. Confusion matrices for the test and full data sets are presented in 183 

Supplementary Figures 1 and 2, respectively. The median (IQR) prediction error, 184 

determined as misclassification frequency obtained from out-of-bag data, of the Finnish 185 

models was 1.6 x 10-3 (1.9 x 10-4 –7.0 x 10-3) (Table 2.).   186 

The distributions of posterior probabilities (PP) in the test data set are depicted in Figure 3. 187 

The samples having PP >0.5 were classified as antigen positive and ≤0.5 as antigen negative. 188 

The majority of the PPs were close to 1 for the antigen typing positive samples and close to 189 

0 for the antigen typing negative samples. The Coa-negative samples (only two samples in 190 

the test data set) were classified correctly but the PPs were closer to 0.5 than to 0. One of 191 

the three Lsa-positive samples were misclassified and the PPs for the other two were closer 192 

to 0.5 than to 1 (specificity 66.7%). The spectrum of PP distribution with some 193 

misclassifications was observed for Cob, Leb, M, N, C, Cw, D, and hrS. Supplementary Figures 194 

3 and 4 depict the distributions of PPs in the test and full data sets. 195 
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 196 

Validation of the Finnish classification models in the Danish cohort 197 

The Danish validation cohort had genotype and phenotype data for 34 out of the 39 Finnish 198 

classification models. Antigen/phenotype typing data varied from 433 for A2 to ~111,000 for 199 

A, AB, B, O, and D (Table 1). Due to missing Finnish model variables in the Danish genotype 200 

data, the Danish allele dosage data was harmonized using mean imputation before applying 201 

the Finnish models.  202 

The median (IQR) balanced accuracy for classifications was 97.1 (90.1–99.4)% and all the 203 

evaluation metrics are presented in Supplementary Table 4. The balanced accuracies were 204 

>98.0% for 14 models including antigen/phenotype positivity of A, AB, B, O, Ytb, Doa, Dob, 205 

HPA-1a, Jka, Lea, S, s, E, and e. Models for antigen/phenotype positivity of A1, Cob, Fya, Fyb, 206 

HPA-1b, K, Kpa, Lua, M, N, and Cw had balanced accuracy ranging from 91.6 to 98.0%. Six 207 

models, A2, Coa, Jkb, Leb, D, and C had balanced accuracy ranging from 64.6 to 89.4%. The 208 

Finnish models for LWb, P1, and c failed classification in the Danish cohort.  209 

 210 

Validation of the classification model algorithm in the Danish cohort 211 

The RBC antigen/phenotype and HPA-1 typing and genotype data available for the Danish 212 

cohort enabled implementation of 40 Danish classification models representing 15 blood 213 

group systems. Due to missing genotypes (approximately 5%), missing allele dosage values 214 

were imputed separately for train and test data sets using mean values.  215 

Median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 216 

99.3 (95.1–99.8)%. The evaluation metrics for test data set are available in Table 4 and for 217 

the train and full data sets in Supplementary Tables 6–7, respectively. Majority (23/40) of 218 

the Danish models reached balanced accuracy of ≥99.0% including models for 219 

antigen/phenotype positivity of A, AB, B, O, Yta, Ytb, Doa, Dob, Fya, HPA-1a, HPA-1b, Jka, Jkb, 220 

M, N, S, s, C, c, D, E, Lea, and Knb. Balanced accuracies for A1, Cob, Fyb, K, Kpa, Lua, Cw, e, and 221 

P1 models ranged from 94.4 to 98.1%, and for A2, Coa, k, Kpb, Lub, Vel, and Leb from 70.0 to 222 

89.3%. Danish model for Kna failed classification due to too low number of Kna-negative 223 

samples in the test data set. Confusion matrices for the Danish models in the Danish train, 224 
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test and full data sets depict the distribution of TN, FN, TP, and FP samples and are 225 

illustrated in Supplementary Figures 5–7, respectively. The median (IQR) prediction error of 226 

the Danish models was 2.3 x 10-3 (9.3 x 10-4 –7.1 x 10-3)% (Supplementary Table 5). 227 

  228 

Comparison of the Finnish and Danish classification models 229 

Assembly of the balanced accuracies for Finnish and Danish models in the Finnish and 230 

Danish full data sets is presented in Table 5. When analyzing the shared 33 models, the 231 

Finnish models predicted the blood groups of the Finnish cohort more accurately than the 232 

blood groups of the Danish cohort (median [IQR] balanced accuracy 99.9 [98.8–100]% vs. 233 

97.1 [91.6–99.5], p = 1.15e-06). The Danish models were performing better than the Finnish 234 

models in the blood group classification of the Danish cohort (median [IQR] balanced 235 

accuracy 99.5 [96.5–99.8]% vs. 97.1 [91.6–99.5]%, p = 0.006).  236 

The number of genetic variants available for the Finnish random forest modelling ranged 237 

from 35 to 688 depending on the blood group/HPA system and number of the important 238 

variables selected by the classifier for the final models ranged from 12 to 214 (Table 2). In 239 

the Danish genotyping data set, the number of variants varied from 42 to 766 and the final 240 

models utilized 20–743 variants (Supplementary Table 5).   241 

 242 

 243 

  244 
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DISCUSSION 245 

Our study introduces random forest classification models for predicting RBC 246 

antigens/phenotypes and HPA-1 from array-based genotyping data. The method and 247 

models were generated utilizing blood group typing data from Finnish blood donors and 248 

further validated using a large Danish blood donor cohort. The results demonstrate high 249 

overall accuracy, and the method is suitable for biobank-scale screening and analysis of 250 

HPA-1 and RBC antigens. 251 

Blood transfusion is one of the most common clinical procedures in the hospitals and the 252 

key element for safe transfusion is compatibility between the recipient and donor RBC 253 

antigens1. Although transfusion-related severe outcomes are rare, the prominent risk of 254 

sensitization and further alloimmunization affects especially patients dependent on 255 

recurrent transfusions 4,5. Extended blood group typing has proven to be beneficial by 256 

reducing the incidence of alloantibody formation28,29. Additionally, studies have shown that 257 

the extended genotyping of blood donors markedly increases the number of suitable donors 258 

for immunized recipients 13 and enhances the supply of antigen-negative blood6.  259 

At present, preventive matching strategies are implemented only for specific patient groups 260 

and, despite the obvious advantages of the extended genotyping of donors, the procedure 261 

has not been considered feasible covering all blood donors. Over the last decades, the 262 

genotyping of different populations has expanded widely.  Using machine learning 263 

approaches to screen blood donor and research biobank genotyping data may provide a 264 

cost-effective solution for enlarging the pool of antigen-negative blood donors. Our random 265 

forest classification method infers RBC antigens and HPA-1 from genotype-imputed 266 

microarray data. The R package ranger performed fast and handled the dimensionality of 267 

input data without problems21. The obtained results demonstrated high balanced accuracies 268 

both in the Finnish discovery cohort (median 99.8% for the 39 Finnish models) and in the 269 

Danish validation cohort (median 99.3% for the 40 Danish models) (Table 5). The 270 

performance was not affected by nearly a 100-fold size difference between the Finnish and 271 

the Danish cohorts (~1,200 vs. ~111,000, respectively).  272 

Rh and MNS blood group system antigens have been challenging to determine by 273 

sequencing due to complex genetic variation and gene rearrangements12,30. We observed 274 
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reduced balanced accuracy in the Finnish model for hrS (93.3%) and the Danish model for Cw 275 

(95.3%). However, the other Rh and MNS antigen models, including clinically significant E, e, 276 

C, c, S, and s, performed accurately. The balanced accuracies for clinically significant 277 

antigens in other systems, including K, Jka, Jkb, Fya, and Fyb, ranged from 95.6% to 100% 278 

(Table 5). 279 

The BOOGIE method for prediction of RBC antigens was published in 201514. It builds on 1-280 

NN algorithm and implementation requires genotype sequencing data and curated 281 

haplotype tables for the RBC antigen phenotypes. When compared, the Finnish models for 282 

ABO and RhD performed better than the BOOGIE method (median balanced accuracy for 283 

the Finnish ABO models 100% vs. BOOGIE ABO accuracy 94.2%; balanced accuracy for the 284 

Finnish RhD model 98.8% vs. BOOGIE RhD accuracy 94.2%). The observed differences in 285 

accuracies could be explained by the potentially limited haplotype tables utilized by 286 

BOOGIE. Additionally, the reported results of BOOGIE are based on low number of samples.  287 

When applying the Finnish models to the Danish cohort, the observed decrease in balanced 288 

accuracies was expected because of the evident genetic, genotyping, and imputation 289 

differences between the Finnish and the Danish cohorts (Table 5). The Finnish cohort was 290 

imputed using population-specific imputation reference panel having no missingness per 291 

individual. On the contrary, the Danish cohort was imputed using the North European 292 

reference sequence panel resulting in an average missingness of 5%. As random forest is not 293 

able to handle missing input data and the important variables of the Finnish models were 294 

not fully present in the Danish data, we were obliged to use mean imputation for missing 295 

variant dosage data. It is obvious that this approach also introduces errors to the data, 296 

which may partly explain the reduced accuracy. The better performance of the Danish 297 

models in Danish cohort underlined the benefit of the population-specific training cohort.  298 

To our surprise, the Finnish genotyping data had only one variant in the RHD region. 299 

Nonetheless, the Finnish model for RhD performed with sufficient balanced accuracy in the 300 

Finnish cohort (98.8%). Our method combines RHD and RHCE region variants for the 301 

modelling and the high linkage disequilibrium may have supported the classification (Table 302 

2). However, the Finnish model for RhD worked poorly in the Danish cohort (78.4%), which 303 

may be attributed to the mean imputation of missing values. 304 
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The present modelling method is restricted to the RBC antigen typing data available for the 305 

training and test data sets, which can be considered as a major limitation because the data 306 

for some RBC antigens are scarce. RBC antigens have demonstrated significant diversity 307 

among populations and rare blood group variants may not be discovered without 308 

substantially large typing numbers. The Danish model for Kna failed because of lacking Kna-309 

negative samples in the test data set and we were not able to create Finnish models for e.g., 310 

Vel, k, Kpb, Lua, and LWa.  311 

In the future, comprehensive donor and recipient typing and precision matching are likely to 312 

increase. A recent publication by van Sambeeck et al.31 demonstrated the feasibility of 313 

preventive matching for all genotyped recipients and donors. Our method is suitable for 314 

initial screening for antigen-negative donors at biobank-scale, presenting a cost-effective 315 

solution for the extended blood group and HPA-1 typing. Additionally, successful prediction 316 

of polygenic blood groups may facilitate the research of desease associations in large 317 

biobanks.  318 

Scripts for random forest modelling and for applying the tested 39 Finnish models are freely 319 

available in the GitHub. The implementation is possible in the local computing environment 320 

without sensitive data uploads and requires only a moderate level of bioinformatic skills.   321 
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FIGURE LEGENDS 

Figure 1. Study design. Random forest classification models were generated using Finnish 

reference data set (n = 1,192). Allele dosages of genes determining RBC 

antigens/phenotypes and HPA-1 were combined with the antigen typing data. The dataset 

was divided randomly to train and test data sets. Random forest modelling was executed in 

the training data set (n = 596) and the important variables were selected using permutation. 

The models were evaluated in the test data set (n = 596) for prediction accuracy and errors. 

The final models were fitted using the full data set and both models and the method were 

validated in the Danish cohort (n = 111,677).  

Figure 2. Confusion matrices of the Finnish models in the Finnish test data set. Confusion 

matrices for the Finnish antigen classification models in the Finnish test data set are 

presented in alphabetical order of the blood group systems. The RBC antigen/phenotype 

and HPA-1 typing results are on the x-axis and the model predictions on the y-axis. The 

antigen-negative samples are denoted by 0 and the antigen-positive samples by 1 on both 

axes. The numbers of true positive and true negative samples are depicted in the green 

boxes and the numbers of false positive and false negative samples in the red boxes.    

Figure 3. Posterior probability boxplots of the Finnish models in the Finnish test data set. 

Posterior probability boxplots for the Finnish antigen classification models in the Finnish test 

data set are presented in alphabetical order of the blood group systems. The RBC 

antigen/phenotype and HPA-1 typing results are on the x-axis and the antigen-negative 

samples are denoted by 0 and the antigen-positive samples by 1. The posterior probabilities 

for samples range from 0 to 1 and are presented on the y-axis. Samples are depicted as 

open circles. 
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Table 1. Blood group/HPA-1 antigen typing information of the Finnish and Danish cohorts. 

Blood group/HPA 
system 

Antigena 
Finnish 

cohort(n) 

Antigen 
positivity in the 

Finnish 
cohort(%) 

Danish cohort(n) 

Antigen 
positivity in the 

Danish 
cohort(%) 

ABO A 1,192 40.9 111,656 41.2 

ABO A1 70 62.9 17,541 75.3 

ABO A2 70 38.6 433 27.0 

ABO AB 1,192 8.0 111,656 4.4 

ABO B 1,192 8.2 111,656 10.2 

ABO O 1,192 42.9 111,656 44.2 

Cartwright Yta NA NA 7,640 99.6 

Cartwright Ytb 1,160 6.2 7,362 7.3 

Colton Coa 1,162 99.8 7,490 98.5 

Colton Cob 1,164 7.3 8,277 9.2 

Dombrock Doa 1,162 53.1 7,352 62.9 

Dombrock Dob 1,162 90.7 7,352 84.6 

Duffy Fya 1,177 67.0 77,920 67.0 

Duffy Fyb 1,175 75.1 71,096 80.8 

Gerbich Lsa 190 3.2 NA NA 

HPA-1 HPA-1a 232 91.4 518 97.1 

HPA-1 HPA-1b 62 43.5 518 30.7 

Kell K 1,192 4.7 96,497 7.8 

Kell k NA NA 14,332 99.0 

Kell Kpa 1,177 2.6 22,497 2.4 

Kell Kpb NA NA 10,350 99.9 

Kell Ula 219 15.5 NA NA 

Kidd Jka 1,177 72.6 77,986 76.6 

Kidd Jkb 1,177 68.5 71,840 72.7 

Knops Kna NA NA 3,462 99.9 

Knops Knb NA NA 3,462 6.8 

Landsteiner-Wiener LWb 327 5.2 NA NA 

Lewis Lea 253 10.2 9,220 17.4 

Lewis Leb 253 80.2 8,925 56.5 

Lutheran Lua 1,164 3.6 9,615 8.6 

MNS M 1,177 87.7 29,642 78.1 

MNS N 1,177 59.0 14,837 71.6 

MNS S 1,177 54.2 28,949 50.4 

MNS s 1,177 87.6 24,291 90.9 

P1PK P1 253 75.9 7,465 77.4 

Rh C 1,192 54.4 44,451 63.3 

Rh c 1,192 79.4 42,968 82.2 

Rh Cw 1,177 3.2 40,720 3.3 

Rh Cx 337 12.2 NA NA 

Rh D 1,192 71.6 111,667 79.5 

Rh E 1,192 19.9 89,289 28.1 

Rh e 1,192 96.2 82,467 97.3 
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Rh hrB 1,162 96.4 NA NA 

Rh hrS 1,162 97.3 NA NA 

Vel Vel NA NA 11,755 99.9 

NA, data not available. 
a O, A1, and A2 and in this column refer to phenotype.  
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Table 2. Characteristics of the Finnish classification models. 

Blood group/HPA 
system 

Antigena Genes analyzed 
n(variants 
available) 

n(model variants) Prediction errorb 

ABO ABO ABO 496 164 8.68E-04 

ABO A1 ABO 496 18 1.29E-03 

ABO A2 ABO 496 43 2.20E-02 

Cartwright Ytb ACHE 62 12 0.00E+00 

Colton Coa AQP1 108 15 4.26E-04 

Colton Cob AQP1 108 39 2.03E-03 

Dombrock Doa ART4 109 17 6.97E-05 

Dombrock Dob ART4 109 17 0.00E+00 

Duffy Fya ACKR1 57 25 6.80E-05 

Duffy Fyb ACKR1 57 26 4.32E-03 

Gerbich Lsa GYPC 342 81 7.71E-03 

HPA-1 HPA-1a ITGB3 386 24 1.74E-03 

HPA-1 HPA-1b ITGB3 386 73 2.06E-02 

Kell K KEL 127 33 2.93E-05 

Kell Kpa KEL 127 26 8.56E-05 

Kell Ula KEL 127 21 2.01E-04 

Kidd Jka SLC14A1 622 18 1.62E-04 

Kidd Jkb SLC14A1 622 178 8.14E-04 

Landsteiner-Wiener Lwb ICAM4 35 19 4.27E-03 

Lewis Lea FUT2, FUT3 199 45 4.13E-03 

Lewis Leb FUT2, FUT3 199 88 1.56E-02 

Lutheran Lua BCAM 124 14 9.47E-04 

MNS M 
GYPA, GYPB, 

GYPC 
688 132 6.80E-03 

MNS N 
GYPA, GYPB, 

GYPC 
688 214 1.18E-02 

MNS S 
GYPA, GYPB, 

GYPC 
688 44 1.54E-05 

MNS s 
GYPA, GYPB, 

GYPC 
688 49 1.19E-04 

P1PK P1 
A4GALT, 

B3GALNT1 
368 135 1.73E-02 

Rh C RHCE, RHD 266 108 9.23E-03 

Rh c RHCE, RHD 266 68 3.23E-03 

Rh Cw RHCE, RHD 266 53 2.80E-03 

Rh Cx RHCE, RHD 266 12 4.70E-03 

Rh D RHCE, RHD 266 113 7.47E-03 

Rh E RHCE, RHD 266 80 1.07E-03 

Rh e RHCE, RHD 266 23 1.33E-03 

Rh hrB RHCE, RHD 266 20 1.39E-03 

Rh hrS RHCE, RHD 266 22 7.71E-03 
a O, A1, and A2 and in this column refer to phenotype. 
b Misclassification frequency obtained from out-of-bag data. 
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Table 3. Accuracy metrics for the Finnish models in the Finnish test data set. 

Blood group/HPA 
system 

Antigena Sensitivity Specificity 
Positive 

predictive value 
Negative 

predictive value 
Balanced accuracy 

ABO A 0.997 1.000 1.000 0.996 0.999 

ABO A1 1.000 1.000 1.000 1.000 1.000 

ABO A2 1.000 1.000 1.000 1.000 1.000 

ABO AB 1.000 1.000 1.000 1.000 1.000 

ABO B 1.000 1.000 1.000 1.000 1.000 

ABO O 1.000 0.996 0.997 1.000 0.998 

Cartwright Ytb 1.000 1.000 1.000 1.000 1.000 

Colton Coa 1.000 1.000 1.000 1.000 1.000 

Colton Cob 1.000 0.952 0.996 1.000 0.976 

Dombrock Doa 1.000 1.000 1.000 1.000 1.000 

Dombrock Dob 1.000 1.000 1.000 1.000 1.000 

Duffy Fya 1.000 1.000 1.000 1.000 1.000 

Duffy Fyb 0.979 1.000 1.000 0.993 0.990 

Gerbich Lsa 1.000 0.667 0.989 1.000 0.833 

HPA-1 HPA-1a 0.900 1.000 1.000 0.991 0.950 

HPA-1 HPA-1b 1.000 1.000 1.000 1.000 1.000 

Kell K 1.000 1.000 1.000 1.000 1.000 

Kell Kpa 1.000 1.000 1.000 1.000 1.000 

Kell Ula 1.000 1.000 1.000 1.000 1.000 

Kidd Jka 1.000 1.000 1.000 1.000 1.000 

Kidd Jkb 0.995 1.000 1.000 0.998 0.997 

Landsteiner-Wiener LWb 0.994 1.000 1.000 0.889 0.997 

Lewis Lea 0.991 1.000 1.000 0.929 0.996 

Lewis Leb 0.880 1.000 1.000 0.971 0.940 

Lutheran Lua 1.000 1.000 1.000 1.000 1.000 

MNS M 0.972 0.994 0.959 0.996 0.983 

MNS N 0.992 0.986 0.980 0.994 0.989 

MNS S 1.000 1.000 1.000 1.000 1.000 

MNS s 1.000 1.000 1.000 1.000 1.000 

P1PK P1 1.000 0.979 0.938 1.000 0.990 

Rh C 0.978 1.000 1.000 0.982 0.989 

Rh c 1.000 0.994 0.976 1.000 0.997 

Rh Cw 0.996 1.000 1.000 0.905 0.998 

Rh Cx 0.986 1.000 1.000 0.909 0.993 

Rh D 0.970 0.993 0.982 0.988 0.982 

Rh E 1.000 0.975 0.994 1.000 0.987 

Rh e 1.000 0.998 0.957 1.000 0.999 

Rh hrB 1.000 0.998 0.955 1.000 0.999 

Rh hrS 0.933 0.986 0.636 0.998 0.960 
a O, A1, and A2 and in this column refer to phenotype.
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Table 4. Accuracy metrics for the Danish models in the Danish test data set. 

Blood group/HPA 
system 

Antigena Sensitivity Specificity 
Positive 

predictive 
value 

Negative 
predictive 

value 
Balanced accuracy 

ABO A 0.999 0.998 0.998 0.999 0.998 

ABO A1 0.971 0.992 0.974 0.991 0.981 

ABO A2 0.975 0.810 0.933 0.922 0.893 

ABO AB 1.000 0.996 1.000 0.997 0.998 

ABO B 1.000 0.998 1.000 0.998 0.999 

ABO O 0.999 0.997 0.998 0.999 0.998 

Cartwright Yta 1.000 1.000 0.933 1.000 1.000 

Cartwright Ytb 0.999 1.000 1.000 0.985 0.999 

Colton Coa 0.500 1.000 0.750 0.999 0.750 

Colton Cob 0.993 0.950 0.995 0.928 0.971 

Dombrock Doa 1.000 0.999 0.999 1.000 1.000 

Dombrock Dob 0.996 1.000 0.998 0.999 0.998 

Duffy Fya 0.995 0.998 0.996 0.998 0.997 

Duffy Fyb 0.963 0.999 0.995 0.991 0.981 

HPA-1 HPA-1a 1.000 1.000 1.000 1.000 1.000 

HPA-1 HPA-1b 0.994 1.000 1.000 0.988 0.997 

Kell K 0.996 0.906 0.992 0.956 0.951 

Kell k 0.681 1.000 0.942 0.997 0.840 

Kell Kpa 0.999 0.888 0.997 0.956 0.944 

Kell Kpb 0.400 1.000 1.000 0.999 0.700 

Kidd Jka 0.996 0.998 0.995 0.999 0.997 

Kidd Jkb 0.996 0.999 0.997 0.998 0.997 

Knops Kna 0.000 1.000 NA 0.999 0.500 

Knops Knb 1.000 1.000 1.000 1.000 1.000 

Lewis Lea 0.996 0.986 0.997 0.981 0.991 

Lewis Leb 0.499 0.979 0.948 0.717 0.739 

Lutheran Lua 0.997 0.931 0.994 0.971 0.964 

Lutheran Lub 0.750 1.000 0.923 0.999 0.875 

MNS M 0.989 0.998 0.993 0.997 0.994 

MNS N 0.981 0.990 0.975 0.993 0.986 

MNS S 0.997 0.997 0.997 0.997 0.997 

MNS s 0.985 0.999 0.995 0.998 0.992 

P1PK P1 0.939 0.996 0.986 0.982 0.968 

Rh C 0.994 0.999 0.999 0.997 0.997 

Rh c 0.997 0.999 0.995 0.999 0.998 

Rh Cw 0.998 0.898 0.997 0.952 0.948 

Rh D 0.994 0.999 0.997 0.998 0.997 

Rh E 0.999 0.989 0.996 0.998 0.994 

Rh e 0.962 1.000 0.993 0.999 0.981 

Vel Vel 0.568 1.000 0.955 0.999 0.784 
a O, A1, and A2 and in this column refer to phenotype. 
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Table 5. Balanced accuracies for the Finnish and Danish models in full data sets. 

Blood group/HPA system Antigena 

Balanced accuracy 

Finnish full data set 
Finnish models 

Danish full data set  
Finnish models 

Danish full data set  
Danish models 

ABO A 0.999 0.995 0.999 

ABO A1 1.000 0.980 0.984 

ABO A2 0.981 0.894 0.891 

ABO AB 1.000 0.998 0.999 

ABO B 1.000 0.987 0.999 

ABO O 0.999 0.995 0.998 

Cartwright Yta NA NA 1.000 

Cartwright Ytb 1.000 0.998 0.998 

Colton Coa 1.000 0.833 0.833 

Colton Cob 0.988 0.926 0.963 

Dombrock Doa 1.000 0.999 0.999 

Dombrock Dob 1.000 0.999 0.999 

Duffy Fya 1.000 0.979 0.997 

Duffy Fyb 0.993 0.971 0.980 

Gerbich Lsa 0.917 NA NA 

HPA-1 HPA-1a 1.000 1.000 1.000 

HPA-1 HPA-1b 0.986 0.939 0.999 

Kell K 1.000 0.916 0.956 

Kell k NA NA 0.838 

Kell Kpa 1.000 0.935 0.961 

Kell Kpb NA NA 0.750 

Kell Ula 1.000 NA NA 

Kidd Jka 1.000 0.995 0.997 

Kidd Jkb 0.999 0.662 0.997 

Knops Kna NA NA 0.750 

Knops Knb NA NA 1.000 

Landsteiner_Wiener LWb 0.998 0.500 NA 

Lewis Lea 0.998 0.981 0.989 

Lewis Leb 0.968 0.729 0.736 

Lutheran Lua 0.988 0.956 0.964 

Lutheran Lub NA NA 0.828 

MNS M 0.984 0.970 0.993 

MNS N 0.988 0.947 0.987 

MNS S 1.000 0.995 0.997 

MNS s 1.000 0.988 0.993 

P1PK P1 0.984 0.500 0.965 

Rh C 0.989 0.646 0.997 

Rh c 0.997 0.500 0.997 

Rh Cw 0.999 0.918 0.953 

Rh Cx 0.997 NA NA 

Rh D 0.988 0.784 0.997 

Rh E 0.998 0.992 0.995 

Rh e 0.988 0.982 0.984 

Rh hrB 0.988 NA NA 

Rh hrS 0.933 NA NA 

Vel Vel NA NA 0.811 

NA, data not available. 
a O, A1, and A2 and in this column refer to phenotype.  
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Figure 1. Study design. 
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Figure 2. Confusion matrices of the Finnish models in the Finnish test data set. 
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Figure 3. Posterior probability boxplots of the Finnish models in the Finnish test data set.  
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