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Abstract 

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, 

and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of 

significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological 

effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in 

postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative 

trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the 

genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their 

regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on 

cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and 

variant-by-smoking interaction effects on methylation and expression, separately, adjusting for 

biological and technical covariates and using a two-stage multiple testing approach with 
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eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants 

(padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; 

five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant 

interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) 

and no smoking interactions. Colocalization analyses identified loci with smoking-associated 

GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may 

influence smoking behaviors through functional effects on methylation/expression. One locus 

containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In 

this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking 

GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain 

the neurobiology of smoking behaviors.  

Introduction 

Genetic variants that act as quantitative trait loci (QTLs) for gene regulatory features, 

such as DNA methylation (DNAm) and RNA expression (RNAexp) levels, are pervasive across 

the genome 1-4 Moreover, QTL variants are enriched among disease-associated loci.5-7 Genome-

wide variants have been characterized for their QTL effects across different regulatory features, 

tissues, and intrinsic factors, such as sex, by the Genotype-Tissue Expression (GTEx) project 1,8 

and others.2,4 However, understanding QTL effects in the context of exogenous exposures, 

especially in trait-relevant tissues, remains relatively limited, presenting an important next step to 

better understand mechanisms that underlie complex disease processes.  

Cigarette smoking is an exogenous exposure associated with altered gene regulation, as 

shown before in both blood9 and brain.10,11 Although some gene regulation features and QTL 

variants are shared across tissues, others can be highly tissue-specific, with brain tissues showing 

the most distinct profiles compared with other tissues.12 Notably, poor correlations have been 
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observed between RNAexp1 and DNAm levels,13 and differences in the QTLs implicated14 in 

brain versus other tissues means that more accessible tissues, such as blood, provide insufficient 

proxies for brain-specific regulatory mechanisms. Even within the brain, tissues can differ in 

their gene regulation levels and QTL variants that drive regulation.1 It is therefore critical to 

focus on disease-relevant tissues in the brain by relying on human postmortem tissues to assess 

the neurobiological underpinnings of disease-associated variants and their target genes and the 

neurobiological impact of cigarette smoking. By focusing on brain tissues, this study aims to 

shed light on the intricate mechanisms linking genetically driven gene regulation in the context 

of cigarette smoking in the brain, offering crucial insights into the broader health implications. 

Postmortem human brain studies of various addiction-relevant tissues helped explain 

earlier genetic loci identified via genome-wide association study (GWAS) analyses for cigarette 

smoking behaviors, specifically cis-expression QTL (cis-eQTL) and cis-methylation QTL (cis-

meQTL) variants.15-17 Since then, the genetic architecture of smoking has rapidly evolved with 

GWAS sample sizes exceeding 3 million in the GWAS and Sequencing Consortium of Alcohol 

and Nicotine use (GSCAN), resulting in hundreds of genome-wide significant loci identified for 

smoking initiation (ever vs. never), age at initiation, cigarettes per day, and cessation (current vs. 

former).18,19 The underlying neurobiology is unknown for most of these loci, underscoring the 

need to investigate their functional effects that may drive smoking behaviors. Other omics data 

in human brain can offer valuable insights into these effects.  

Multiple brain regions are involved in cigarette smoking, and addiction more broadly, as 

part of a three-stage cycle.20 In this context, we specifically focus on nucleus accumbens (NAc), 

a core tissue of the first stage of the addiction cycle (binge/intoxication), given its integral role in 

cognitive processing of motivation, pleasure, reward, and reinforcement.21 To gain insights into 
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potential functional effects of smoking-associated loci in NAc, we present a comprehensive 

study that maps genome-wide cis-eQTL and cis-meQTL variants and investigates variant × 

cigarette smoking interactions in the NAc of decedents from the Lieber Institute for Brain 

Development (LIBD). To our knowledge, this resource provides the first genome-wide meQTL 

map in human NAc, and the co-occurring cis-meQTL/eQTL maps in the same decedents enable 

a deeper understanding of shared causal mechanisms. Our study uniquely leverages smoking 

status postmortem to discern variants whose quantitative effects may vary upon smoking 

exposure, in contrast to previous phenotype-agnostic QTL maps in the human brain.1,14 

Additionally, by colocalizing the QTL loci with GSCAN’s smoking-associated GWAS results, 

we identify target genes that may provide valuable neurobiological insights underlying cigarette 

smoking behaviors.  

 

Methods 

Human Postmortem NAc Samples 

 Postmortem human NAc tissues were obtained from the LIBD brain collection at 

autopsy, as previously described.10,22 Decedents with DSM-5 psychiatric or substance use 

disorders other than nicotine were excluded in addition to those with history or evidence of brain 

trauma, metastatic brain cancer, neurotic pathology, neurodegenerative diseases, HIV/AIDS, 

hepatitis, or other communicable diseases. Information regarding demographics, substance use 

history, and current smoking status were collected from a next-of-kin 36-item telephone-

administered questionnaire (LIBD Autopsy Questionnaire). Cotinine biomarker measures from 

brain and/or blood samples were measured using a standard toxicology screen (National Medical 

Services Labs, Inc., Willow Grove, Pennsylvania). As in Markunas et al., smoking cases were 

defined by cotinine levels above 12 ng/mL in blood and 12 ng/g in brain, a threshold that 
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differentiates between active and passive smoking,23 and by a next-of-kin report of current 

smoking.10 Controls (nonsmokers) were defined by cotinine levels below 12 ng/mL (blood) or 12 

ng/g (brain) and a next-of-kin report of no current smoking. 

Genotype Data 

 The genotype data used in this study were obtained from a superset of samples that were 

genotyped and imputed as part of the full LIBD cohort, using previously described procedures.22 

Briefly, samples from the full cohort were genotyped across multiple Illumina microarray 

platforms (see Supplemental Methods) and underwent a standard quality control (QC) protocol 24 

to remove low-quality and low-frequency variants. Haplotypes were phased using SHAPEIT25 

and then imputed using IMPUTE226 with reference to 1000 Genomes phase 3. Imputed genotype 

dosages were converted to hard-call genotypes for variants with imputation posterior 

probabilities >0.9. Over 11 million autosomal variants were carried forward for analyses. 

DNAm and RNA-seq Data Generation and Processing  

 DNA and RNA were extracted from NAc samples of 239 eligible LIBD decedents, as 

described previously.27,28 DNAm was measured using an Illumina Human MethylationEPIC 

BeadChip. As described before,10 DNAm data processing and QC were conducted using the R 

package minfi,29 which included implementing stratified quantile normalization, correcting 

technical artifacts using principal components (PCs) of the negative control probe intensities, and 

controlling for tissue sample heterogeneity by estimating neuronal cell-type proportions30 using 

the Houseman method.31 DNAm β-values were calculated and used in the meQTL analyses, 

representing the percentage of DNAm at each CpG (ratio of methylated intensities relative to the 

total intensity). 

 Following RNA extraction protocols previously described, samples were sequenced using 

paired-end 100 bp reads on an Illumina HiSeq3000 at LIBD.10,32 For each RNA-seq sample, 
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reads were trimmed and filtered using Trimmomatic v0.39.33 The remaining read pairs were 

pseudo-mapped to the GENCODE v34 (ENSEMBL release 100) comprehensive gene annotation 

reference using Salmon v1.1.0,34 and the full GRCh38 primary genome assembly was used as a 

selective alignment decoy sequence35 to enhance the accuracy of transcript quantification. 

Transcript quantifications were aggregated to the gene-level counts using tximport v1.12.3,36 

resulting in 60,240 GENCODE genes. 

 To identify potential sample swaps, pairwise genotype correlations were calculated 

across samples using imputed genotypes and RNA-seq derived genotype calls. Samples were 

either excluded or mismatches resolved if the Pearson correlation coefficient ρ >0.8 for non-

matching sample IDs or ρ <0.7 for matching sample IDs. Similar QC was conducted using the 

DNAm data.10 Samples were further excluded based on RNA-seq quality metrics (see 

Supplemental Methods), low RIN score, discrepancies between self-reported sex and 

chromosome Y gene expression, and missing genotype data. Sample-level QC removed 36 

samples, resulting in a post-QC RNA-seq sample size of 203. Lowly expressed genes were then 

removed using the exclusion criteria of ≥90% of samples with ≤10 gene counts or ≤1 transcripts 

per million value. For eQTL mapping, GRCh37 human genome reference coordinates were used 

for all gene annotations to align with the genotype data genome build. In total, 16,274 genes 

were considered for eQTL mapping.31  

Of the available 239 decedents, 201 RNA-seq samples and 220 DNAm samples, with 

genotype and smoking data, remained following QC, including 198 samples in both datasets 

(intersection) and 223 samples with either RNA-seq or DNAm data (union).  
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Methylation and Expression Quantitative Trait Loci (meQTL/eQTL) Mapping  

 We performed cis-meQTL mapping using imputed genetic variants and DNAm intensity 

β-values of probes proximal, within 500 kilobases (kb) up or downstream, to these variants. Four 

different meQTL mapping regression models were fit: (1) a “baseline” model to test for 

association between genetic variants and DNAm β-values across both smoking cases and 

controls; this model included age at death, sex, estimated non-neuronal cell-type proportion, PC1 

for DNAm array negative control probes, PC1 for imputed genotypes, and PC2 for imputed 

genotypes as covariates (see Supplemental Methods for model selection details); (2) a smoking 

cases–only model similar to the baseline model; (3) a smoking controls–only model similar to 

the baseline model; and (4) an interaction model to test for associations of a genetic variant-by-

smoking status interaction with DNAm β-values. All models used rank-inverse normal 

transformed (RINT) DNAm β-values. The smoking cases–only and controls–only models are 

needed to generate summary statistics used to conduct stratified two degrees-of-freedom (2DF) 

tests. The stratified 2DF test jointly tests for genetic variant main effects and genetic variant-by-

smoking status interaction effects.37 Additional details of each model are provided in the 

Supplemental Methods. 

A similar framework to meQTL mapping was applied for cis-expression quantitative trait 

loci (eQTL) mapping. Baseline, smoking cases–only, smoking controls–only, and interaction 

eQTL models were fit for each imputed genetic variant and NAc expression levels of genes 

proximal (within 500 kb of gene body) to these variants. Gene expression was represented as 

count values for a given gene after median-of-ratios normalization38 and RINT. The covariates 

included in each model were age at death, sex, exon mapping rate, ribosomal RNA mapping rate, 

PC1 for imputed genotypes, PC2 for imputed genotypes, and four latent variables estimated by 
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PEER v1.339 to account for additional unmeasured sources of confounding (see Supplemental 

Methods for model selection details). 

To account for multiple hypothesis testing in the meQTL/eQTL models and stratified 

2DF tests, p-values were corrected using a conversative two-stage approach to mitigate inflation 

associated with single-stage approaches when applied to QTL mapping.40 This hierarchical 

approach first accounts for association tests across variants for a given DNAm probe/gene, then 

accounts for tests across all probes/genes. In the first stage, all nominal p-values for a given 

probe/gene were adjusted using EigenMT.41 In the second stage, EigenMT adjusted p-values 

were further corrected by the number of probes/genes tested. Any initial two-stage adjusted p-

value smaller than a Bonferroni corrected p-value was assigned the latter p-value as the final 

two-stage adjusted p-value. This ensures that the two-stage adjustment stringency does not 

exceed the family-wise error rate control of Bonferroni correction. A two-stage adjusted p-value 

cutoff of 0.05 was used to identify statistically significant QTLs. 

Gene Set Enrichment Analysis (GSEA) for eGenes and meQTL CpGs 
We used the GSEAPreranked tool from GSEA v4.3.242 to test for enrichment of 

smoking-associated eGenes and meQTL CpGs in MSigDB v2023.1.Hs gene set collections C2 

canonical pathways and C5 Gene Ontology gene sets. Only gene sets with 15–500 genes were 

included. CpGs were assigned to genes using the Infinium MethylationEPIC v1.0 B5 Manifest, 

resulting in 11,772 CpGs from the interaction meQTL mapping model with at least one assigned 

gene. Each gene was ranked using the largest -log10-transformed, smoking interaction p-value for 

a given gene from QTL mapping. Weighted Kolmogorov-Smirnov–like statistics were computed 

for the enrichment scores, and p-values were determined using 1000 gene set permutations. 

Significant pathways were selected based on an FDR threshold of 0.10. 
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QTL enrichment testing for GSCAN-identified genetic variants 
We conducted variant-based enrichment testing to assess whether genome-wide 

significant GSCAN loci were enriched for meQTLs or eQTLs. We obtained GSCAN summary 

statistics from the University of Minnesota’s Data Repository for U of M 

(https://doi.org/10.13020/3b1n-ff32), focusing on GSCAN’s GWAS results from 2019 to capture 

genetic loci with variants that commonly occur and have the largest effect sizes on smoking: N 

up to 1.2 million individuals, depending on the smoking trait analyzed.18 For meQTL enrichment 

analysis, we compared the p-value distributions from stratified 2DF tests (i.e., stratified 2DF 

meQTL mapping) between GSCAN variants and a set of randomly matched variants. The 

random matched variant set was designed to be 10 times the size of the GSCAN variant set. The 

GSCAN variant set included linkage disequilibrium (LD)-pruned, genome-wide significant 

variants reported by GSCAN, across all four smoking traits, that were also available in our 

meQTL mapping (361 variants, each representing an independent significant locus). The 

matched variant set included 3,600 LD-pruned variants selected using SNPsnap.43 For variants 

with multiple stratified 2DF p-values (i.e., proximal to multiple CpG sites), only the smallest p-

value was retained. The meQTL stratified 2DF p-value distributions for the GSCAN and 

matched variant sets were tested for equality using a two-sided Kolmogorov-Smirnov test. The 

eQTL enrichment analysis followed the same procedure as the meQTL enrichment analysis. The 

GSCAN variant set included 305 variants because the overlap with variants from eQTL mapping 

differed from meQTL mapping. The SNPsnap constructed, matched variant set included 3,050 

(305 × 10) variants. 

Colocalization between GSCAN smoking GWAS and meQTL/eQTL mappings 

 We tested whether meQTL or eQTL signals from the baseline model QTL mapping 

colocalized with GSCAN loci for smoking initiation, age at initiation, cigarettes per day, and 
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cessation using the coloc v5.1.0 R package. For simplicity, we describe this analysis in relation 

to a single GSCAN trait and meQTLs, but an equivalent framework was applied for GSCAN-

eQTL colocalization testing. All DNAm probes with an meQTL mapping cis-window that 

overlapped with a GSCAN locus were considered for colocalization. For a given probe, the 

colocalization test region spanned all genetic variants that were 1) included in the meQTL 

mapping for the probe and 2) tested in the GSCAN GWAS (Figure S1). Summary statistics from 

GSCAN and the baseline model meQTL mapping for these variants were provided to the 

coloc.abf function to perform colocalization testing. A colocalization test region was considered 

as having a colocalized signal between the GSCAN GWAS and meQTL mapping if the coloc 

posterior probability of hypothesis 4 (both traits are associated and share a single causal variant) 

exceeded 0.8 and the meQTL had a genome-wide significant, two-stage, adjusted p-value in the 

baseline meQTL analysis. 

For GSCAN loci that showed colocalization with both an meQTL and an eQTL, 

HyPrColoc (https://github.com/jrs95/hyprcoloc/; commit ID f279ceb) was applied to assess 

whether these colocalizations resulted from the same region of the locus.44 Each HyPrColoc test 

only included one GSCAN trait, eGene, and CpG, so if multiple genes or CpGs independently 

colocalized with the GSCAN trait, all combinations of gene–CpG pairs were combined with the 

GSCAN trait for a HyPrColoc test. For each HyPrColoc test, a genetic variant was included as 

input only if it had summary statistics available from the baseline model eQTL/meQTL mapping 

and GSCAN GWAS for the smoking trait. Significant colocalization was defined as a GSCAN 

trait–eGene–CpG triplet having posterior probability >0.8. 
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Results 

Overview 

Of the available 239 decedents, 223 (52 cases and 171 controls) samples with genotype 

and smoking data and either RNA-seq or DNAm in NAc remained after QC (Table 1). Of the 

cases, 50% had African ancestry (AA) and 50% had European ancestry (EA) based on next-of-

kin report and genotype confirmation. The manner of death differed slightly among cases and 

controls; more controls died by accident (17%) compared to cases (3.8%), and cases were more 

likely to die from natural causes (88.5%) compared to controls (74.9%). Age, sex, and 

postmortem interval were similar for cases and controls. 

We first generated single data type QTL (eQTL and meQTL) maps in a mega-analysis of 

EA and AA decedents. Significant QTLs were annotated and characterized as a main effect or as 

showing evidence of a significant smoking interaction. Each QTL type independently underwent 

colocalization analysis with GSCAN GWAS summary statistics, and a joint colocalization 

analyses across data types was performed for significant me/eQTL. See Figure 1 for an overview 

of the analysis workflow.  

Genome-wide cis-meQTL Maps  

DNAm in NAc and genotype data were available for 52 smoking cases (26 EA, 26 AA) 

and 168 smoking controls (75 EA, 93 AA). A total of 11,206,899 variants were used in the initial 

analysis and 784,843 CpGs, resulting in 1,748,985,510 meQTL tests. After applying two-stage 

multiple testing correction, we identified 2,552,641 significant meQTL variants targeting 51,315 

unique CpGs. These results are shown in Supplemental Table S1, which is restricted to the lead 

variant for each unique CpG because of the size of the meQTL analysis (Table S1, Column: 

Pinteraction). Full results for all variants are publicly available at synapse.org 

(https://doi.org/10.7303/syn50996324).  
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To identify the most robust signals, we performed post hoc filtering, keeping only 

meQTLs where the top variant had a minor allele frequency (MAF) > 0.05 and missingness < 

0.10 in both ancestries, leaving 41,695 unique CpGs. The top five most significant meQTLs 

include CpGs that map to PITRM1, KDM3B, ARID1B, or MTL5 (Table S1).  

Genome-wide cis-eQTL Maps 

Gene expression (RNA-seq) in NAc and genotype data were available for 47 smoking 

cases (24 EA, 23 AA) and 156 smoking controls (72 EA, 84 AA). These data were previously 

used to map eQTLs agnostic to the smoking phenotype (i.e., without accounting for the main 

effect of smoking or variant-by-smoking interaction).45 In the present study, accounting for 

variant-by-smoking interaction and after multiple testing correction, we identified 83,095 

significant eQTL variants from 1,050 eGenes. Of these, 57,683 eQTL variants targeting 958 

unique eGenes remained after post hoc filtering was applied to identify the most robust signals, 

keeping only eQTLs where the top variant had an MAF >0.05 and missingness <0.10 in both 

ancestries (Table S2). All significant results are shown in Table S2. Table S3 is filtered to the 

lead variant for each significant eGene (N=1,050). The 10 most significant eGenes were RPL9, 

ZSWIM7, GATD3B, RPS28, XRRA1, TMEM161B-AS1, CUTALP, NIPBL-DT, ZNF718, and 

SPATA7 (Table S3). Full results for all tested variants are publicly available at synapse.org 

(https://doi.org/10.7303/syn50996324).  

 Both meQTLs and eQTLs were pervasive throughout the genome (Figure 2). When 

comparing the eQTL to meQTL results, 562/1,050 (54%) significant eGenes overlapped genes 

annotated to significant meQTL CpGs. When comparing our eQTL results to GTEx, 655 of the 

1,050 unique and significant eGenes identified in our analysis are present in the GTEx NAc 

analysis after MAF and missingness filtering. Of these 655, 509 (78%) met a Bonferroni 
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correction significance threshold (0.05/655=7.6e-5) (Table S3, GTEx column: Nominal p-value). 

Thus, we observed a high correlation when comparing NAc eQTL results between our study and 

GTEx. 

Smoking Interaction Effects with meQTLs/eQTLs 

To identify meQTLs/eQTLs that differed by smoking, we compared the primary analysis 

results, generated using a 2DF test, with the baseline models and interaction models. The 

meQTLs were primarily driven by main effects, with few showing evidence for interaction. Of 

the significant 41,695 unique CpGs, only five demonstrated strong evidence of an interaction 

with smoking (Table 2, Figure S2) based on Bonferroni correction (significance threshold of 

0.05/41,695=1.2e-6). No eQTLs showed evidence of an interaction (interaction significance 

threshold of 0.05/877 unique eGenes=5.7e-5) after filtering by MAF and missingness.  

Because use of stringent significance thresholds may miss subtle smoking interactions 

with individual variants, we performed GSEA using genes ranked based on QTL–smoking 

interaction p-values to identify QTL-enriched biological processes and pathways that may be 

altered by smoking. For meQTL-smoking interactions, five pathways related to the synaptic cleft 

(the gap between pre- and postsynaptic membranes where neurotransmitters are released) were 

implicated. For eQTL-smoking interactions, cell cycle and wound response processes (cellular 

changes resulting from a stimulus indicated damage to an organism) were enriched (Table S4). 

GWAS-identified Variants that Exert QTL Effects on their Target Genes  

GSCAN’s GWAS analyses identified 462 independent variants at 325 loci that showed 

significant association with at least one of four smoking phenotypes (initiation, age at initiation, 

cigarettes per day, and cessation)18. Of these variants, 361 were available in our meQTL map and 

305 were available in our eQTL map. Annotating the GWAS variants to our QTL maps revealed 

that 63% of the GWAS-identified variants were significant meQTLs, whereas only 7% were 
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significant eQTLs (Tables S5–S7). Only a few (eQTL N=11, meQTL N=293) were significant at 

the genome-wide level (Tables S5–S6, column Two-stage adjusted p-value2DF). 

The GWAS-identified variants mapped to 1,201 significant variant–CpG pairs from the 

meQTL 2DF model, of which 135 showed nominal evidence for variant-by-smoking interaction 

(Pinteraction<0.05) (Table S5). Additionally, the GWAS-identified variants mapped to 27 

significant variant–eGene pairs from the eQTL 2DF model, of which three showed nominal 

evidence for interaction (Pinteraction<0.05) (Table S6). For example, rs8192726 (located in a well-

known nicotine metabolizing gene: CYP2A6) was associated with cigarettes per day and 

methylation at cg18820595 (LTBP4) among smokers (Pcases=8.2×10−6) but not among 

nonsmokers (Pcontrols=0.34). However, nearly all meQTL and eQTL patterns observed for 

GSCAN-implicated variants were driven by main effects without differences observed between 

smokers and nonsmokers. One variant–CpG pair overlapped with multiple smoking phenotypes: 

rs11780471-cg00421144, with the major allele (A) being associated with increased risk for 

smoking initiation, lower age at initiation, and decreased methylation level in CHRNA2.  

To test the overlapping evidence of GWAS-identified variants as QTLs more formally, 

we performed an enrichment analysis using a two-sample Kolmogorov-Smirnov test that 

compared NAc meQTL and eQTL p-value distributions at GSCAN significant variants with a 

random set of variants. We found that GSCAN variants were significantly enriched for meQTLs 

(p-value=0.005) but not for eQTLs (p-value=0.3). For comparison, using the same test with NAc 

eQTLs from GTEx, we found an enrichment p-value=0.07.  

Smoking meQTL, eQTL, and GWAS Colocalization  

We performed colocalization analyses of GSCAN’s GWAS results with our QTL maps to 

characterize heritable components of smoking that exert QTL effects. First, we performed pair-
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wise analyses (meQTL + GWAS, eQTL + GWAS), starting with GSCAN significant loci. 

Because a single locus may include more than one unique CpG or eGene, many colocalization 

analyses were performed per region. See Methods for additional details. In general, we observed 

more colocalization of meQTLs than eQTLs with the GWAS loci (Table 3, Tables S8–S9). No 

eQTLs that colocalized with a GSCAN locus overlapped more than one phenotype. However, 

four genome-wide significant CpGs colocalized across two phenotypes (cigarettes per day and 

age of initiation): cg12293539 at MAML3 and cg00622170, cg11254171, and cg18236429 at the 

NOP14/NOP14-AS1 locus. Additionally, smoking initiation had the most colocalizing loci, in 

line with being the phenotype with the most significant number of GSCAN associations. 

Next, we performed colocalization using a method (HyPrColoc) that can incorporate 

multiple traits (i.e., methylation, gene expression, and smoking traits) in a single analysis. 

Focusing on GSCAN GWAS loci that colocalized with either an eQTL or meQTL, we confirmed 

the GWAS–eQTL–meQTL colocalizing region at the GSCAN smoking initiation locus chr3: 

52386605–54266212. In total, three variant–CpG–eGene combinations had a >80% probability 

of colocalization, all involving ENSG00000243696 (predicted read-through of MUSTN1-ITIH4) 

as the eGene with (1) rs6445538 and cg25643088, (2) rs6445538 and cg19713033, and (3) 

rs4687472 and cg23815702. The colocalizing region encompassed a single locus on 

chromosome 3 containing MUSTN1, STIMATE, and ITIH4, in addition to other genes (Figure 3). 

Discussion 

Cigarette smoking remains highly prevalent and a leading cause of death globally, despite 

decades of research into the health consequences and public health campaigns to curb 

smoking.46,47 Addiction to cigarette smoking is a complex, multi-stage process involving a 

neuronal rewards system that includes the NAc region of the brain.20,48 The NAc is known to 
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have a role in cognitive processing of motivation, reward, and reinforcement, which are essential 

to the first stage of addiction (binge/intoxication).21 To better understand the functional effects of 

heritable factors that influence smoking behaviors, this study focused on identifying, for the first 

time, meQTLs in the NAc; investigating genetic variant interactions with cigarette smoking for 

both eQTLs and meQTLs; and comparing the generated QTL maps with GWAS results to better 

understand the neurobiology of smoking-related traits.  

QTLs are pervasive throughout the genome and provide valuable insight into a tissue’s 

biology and gene regulation. Some QTLs are shared across tissues, whereas others exhibit tissue 

specificity. The GTEx project, widely used for exploring eQTLs, recently released a large-scale 

meQTL dataset encompassing nine human tissues.49 However, this dataset did not capture brain 

tissues. To our knowledge, ours is the first genome-wide meQTL map in human NAc. This 

genome-wide meQTL map, together with the genome-wide eQTL map from an overlapping 

dataset of the same decedents, has the potential to provide multi-omics insight into regulatory 

mechanisms related to many human diseases and traits. These maps are provided as a new 

resource to the scientific community.  

Overall, we found few significant variant-by-smoking interaction effects and conclude 

that most QTLs in the NAc may not differ by smoking. While some interactions with small 

effect sizes may exist, they may require larger sample sizes to detect. We investigated this 

possibility using a pathway analysis ranked by evidence of smoking interactions, and we 

identified pathways related to cellular damage, cell cycle, and the synaptic cleft, where the 

nicotinic acetylcholine receptors play an important role in regulating neurotransmission.50 Five 

individual meQTLs differed significantly between smokers and nonsmokers, including Nudix 

Hydrolase 12 (NUDT12), Family with sequence similarity 53 member B (FAM53B), and Ring 
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Finger Protein 39 (RNF39). NUDT12 plays a role in nicotinate and nicotinamide metabolism.51 

Interestingly, NUDT12 was identified in a transcriptome analysis of neurons following chronic 

nicotine exposure 52 and lies within a QTL interval for nicotine sensitivity in mouse studies,53 as 

annotated in GeneWeaver.54 Another gene, FAM53B, has been associated with cocaine 

dependence.55 Differential DNAm at FAM53B has been observed in COPD cases compared with 

controls,56 suggesting alterations may occur in the presence of a smoking exposure. Likewise, 

RNF39 was found to be differentially methylated in a study of marijuana use 57 and other studies 

of smoking-related DNAm changes.58,59 These findings add evidence for a select few 

biologically plausible genes whereby smoking may alter genetically driven gene regulation in 

NAc; additional evidence will require larger sample sizes to detect more subtle smoking-related 

effects. 

To understand the shared causal variants between heritable factors (smoking-associated 

variants) and meQTLs/eQTLs, we employed colocalization analyses, which have not been 

applied with these data previously.45 Genomic regions with variants showing evidence of 

colocalized signals from both GWAS and QTL mapping suggest that the trait-associated variants 

act as regulators of DNAm or gene expression. We generally observed more overlap between the 

GWAS-associated variants and meQTLs than eQTLs; this pattern was also supported by the 

enrichment analyses. This observation may relate to more meQTL tests overall. However, the 

same pattern holds when looking at only QTLs that survive genome-wide multiple testing 

correction, whereby declaring meQTLs as statistically significant was based on a more stringent 

threshold than eQTLs and is consistent with studies of the prefrontal cortex,60 blood,61 and other 

tissues.49  
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One genomic region showed robust evidence of colocalization with all three data types; 

highlighting novel functional evidence where changes to DNAm and gene expression may help 

explain the neurobiology underlying a smoking initiation associated heritable factor. The primary 

gene indicated is a predicted read-through of the Musculoskeletal, Embryonic Nuclear Protein 1 

(MUSTN1) and inter-alpha-trypsin inhibitor, heavy chain 4 (ITIH4) genes. Little is known about 

the read-through transcript. MUSTN1 is known to have a role in skeletal muscle homeostasis, 

chondrocyte differentiation, and limb morphogenesis.62 MUSTN1 expression in the brain has 

been observed at low levels.1,63,64 Schizophrenia-associated variants in ITIH4 have been shown 

to regulate expression of ITIH4 in prefrontal cortex,65 and ITIH4 is a biomarker for COPD.66,67 

ITIH4 is also expressed at low levels in the brain and is largely expressed in the liver, although it 

is also moderately expressed in skeletal muscles like MUSTN1.1,63,64 Interestingly, there is 

increasing evidence that changes to skeletal muscle homeostasis can influence the physiology of 

the brain.68,69 

This study has limitations to consider in interpreting the findings. First, because this 

study utilized an understudied brain tissue collected from decedents with a unique set of multi-

omics data types (DNAm, RNA-seq, and genotypes) and smoking status, sample availability was 

limited to 52 smoking cases and 171 smoking controls. This constrained sample size may have 

limited our ability to identify interaction effects, and it limited interrogation of ancestry- or sex-

specific effects and extension into independent replication datasets.  

Second, QTLs were tested using a cis-window that still resulted in a large number of total 

tests, increasing the chance of type I error. We accounted for multiple testing using a two-stage 

correction strategy designed for this type of study41; however, the possibility of type I error 

remains. trans-QTL effects also merit future research with a larger sample size.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.18.23295431doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295431
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, the QTL–GWAS colocalization was based on the first GSCAN meta-analysis, 

including up to 1.2 million individuals.18 GSCAN recently released an updated meta-analysis 

with >3 million individuals, enabling more statistical power to identify genetic loci associated 

with smoking traits, particularly loci with lower MAF and effect sizes than those observed in the 

first GSCAN meta-analysis. Although comparison with the updated GSCAN meta-analysis 

might result in the identification of additional QTL–GWAS colocalization signals, given the 

sample size available with multi-omics data in our postmortem human brain study, we would 

have less statistical power to detect colocalization with the lower MAF variants and smaller 

effect sizes observed from the additional loci identified in GSCAN2. The present study offers a 

comprehensive capture of a large number of genetic loci with common variants with the largest 

effect sizes on smoking.   

Additionally, this study had several strengths. It is the first to provide a genome-wide 

meQTL map in human NAc, a relatively understudied brain tissue with an important role in the 

addiction cycle. Case definitions were carefully established based on corroborating evidence 

from several sources, including blood- and brain-based toxicology screens with confirmation by 

next-of-kin reports. Therefore, misclassification is unlikely. Comorbidities were also minimal, as 

cases and controls were drawn from decedents with no psychiatric or substance use disorder 

diagnoses, brain trauma, metastatic cancer, or communicable disease based on the determination 

of two independent board-certified psychiatrists upon review of abstracted medical records and 

next-of-kin reporting. We used the 2DF test, which achieves similar power to a standard 1DF test 

when no interaction is present and simultaneously improves power when interaction effects are 

present.37 Although we used conservative thresholds to identify the strongest interactions and the 

most robust signals, the full 2DF results are provided for researchers to explore additional 
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signals, which are likely present. Finally, we tested colocalization across QTL data types with 

variants stemming from GSCAN’s seminal GWAS for cigarette smoking behaviors. To our 

knowledge, the present study represents the first large-scale formal testing of colocalization for 

GSCAN-identified loci with QTLs in human brain, and its results identified novel target genes 

and provided insight into the neurobiological function of smoking-associated heritable factors in 

relation to both DNAm and gene expression.  

 Overall, this multi-ancestry, multi-omics study of decedents with smoking status known 

and accounted for provides a unique resource for interrogating regions across the genome for 

their influence on gene regulation, cigarette smoking behaviors, and other complex conditions 

involving the NAc. Future studies may use these data to compare QTLs across other brain tissues 

to gain insights into tissue-specific regulation and to further investigate the neurobiology 

underlying other disease processes.   
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Tables 

Table 1. Characteristics of decedents included for methylation and expression quantitative trait 

loci mapping in nucleus accumbens. 

 Case 

(N=52) 

Control 

(N=171) 
P-value 

Age, years 
   

Mean (SD) 47.4 (12.5) 45.6 (14.1) 0.37 

Median [Min, Max] 47.2 [18.8, 73.9] 48.8 [17.4, 71.8] 
 

Sex 
   

Female 14 (26.9%) 44 (25.7%) 0.86 

Male 38 (73.1%) 127 (74.3%) 
 

Race 
   

African Ancestry 26 (50.0%) 78 (45.6%) 0.60 

European Ancestry 26 (50.0%) 93 (54.4%) 
 

Manner of Death 
   

Accident 2 (3.8%) 29 (17.0%) 0.04 

Homicide 3 (5.8%) 13 (7.6%) 
 

Natural 46 (88.5%) 128 (74.9%) 
 

Unknown 1 (1.9%) 1 (0.6%) 
 

Postmortem Interval, hours 
   

Mean (SD) 32.9 (15.9) 29.1 (12.2) 0.12 

Median [Min, Max] 31.0 [0, 68.0] 26.0 [9.00, 67.5] 
 

P-value calculated with Fisher’s exact test for categorical variables and a t-test for quantitative 

variables. 
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Table 2. Five meQTLs with evidence of significant variant × smoking interactions. 

Variant CpG 
CpG distance from 

top variant (bp) 
Gene P2DF Adjusted  Pmain effect Pinteraction 

rs16965753 cg05215806 87468 — 0.005 0.76 2.5E-07 

rs73190041 cg06105925 43102 NUDT12 0.002 1.3E-06 1.5E-07 

rs4962681 cg17990900 5083 FAM53B 1.02E-08 2.9E-06 5.8E-07 

rs7770811 cg20119745 78880 RNF39 0.045 2.7E-05 6.4E-07 

rs6884129 cg25315648 104 ADRA1B 3.41E-20 1.36E-17 8.7E-07 

See Table S1 for full annotations.  
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Table 3. Summary of the meQTL and eQTL colocalization with the GSCAN smoking GWAS 

results. 

Data type overlap Phenotype 

N unique 

eGene/CpG 

PP(H4)>0.8 

N GSCAN unique 

loci that colocalized / 

total 

GSCAN-meQTL Smoking Initiation 83 44/256 (17%) 

 Age of Smoking Initiation 8 4/10 (40%) 

 Cigarettes per Day 42 12/39 (31%) 

 Smoking Cessation  13 5/16 (31%) 

GSCAN-eQTL Smoking Initiation 3 2/248 (1%) 

 Age of Smoking Initiation 0 0/9 (0%) 

 Cigarettes per Day 1 1/39 (3%) 

 Smoking Cessation 0 0/16 (0%) 

Full colocalization results are provided in Tables S8–S9. Table 3 summarizes meQTL/eQTL loci that 

surpass genome-wide statistical significance and colocalize with GSCAN smoking-associated loci. N 

unique eGene/CpG PP(H4)>0.8 (column 3) corresponds to the number of eGenes or CpGs with a QTL 

that shows evidence of colocalization with a GSCAN locus. N GSCAN unique loci that colocalized / total 

(column 4) is the fraction of unique GSCAN loci that showed evidence of colocalization.   
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Figure 1: Analysis workflow. Genome-wide cis-eQTL and cis-meQTL maps were constructed using DNA methylation, gene 

expression, and genotype data generated on decedents in the Lieber Institute for Brain Development (LIBD) Human Brain Repository. 

Significant QTLs following multiple testing correction underwent further annotation. QTL maps were integrated with GSCAN GWAS 

summary statistics to perform genetic variant enrichment testing and colocalization analyses.  
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Figure 2: Miami plot for stratified 2DF meQTL and eQTL maps. Stratified 2DF QTL mapping -log10 nominal p-values for 

significant (2df adjusted p <= 0.05) genetic variant–CpG probe (top panel) and genetic variant-gene associations tests (bottom panel) 

are displayed as a function of genome position (x-axis). Genomic locations of significant GSCAN GWAS loci for four smoking 

phenotypes are denoted by the bars in the middle panel. 
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Figure 3: GSCAN smoking initiation GWAS, meQTL, and eQTL association test -log10 p-values near GSCAN locus 

chr3:52386605-54266212. -log10 nominal p-values for associations between genetic variants and smoking initiation, expression of 

three CpGs, and gene expression for the eGene identified by HyPrColoc with colocalization probability >0.8. Only genetic variants 

that overlapped across summary statistics for GSCAN, meQTL mapping, and eQTL mapping are plotted. Locations of genes included 

in the eQTL mapping are annotated in the bottom panel. 
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