
1 

 

Analyzing the Mechanism Behind Age-agnostic Prediction of Diastolic 

Dysfunction Using Echocardiography Variables in Deep Neural Networks  

 
Ankush D. Jamthikar, PhD1, Rohan Shah, MD1, Marton Tokodi, MD, PhD2,  

Partho P. Sengupta, MD, DM1, Naveena Yanamala, MS, PhD1  

 
1Division of Cardiology and Hypertension, Department of Medicine, Rutgers Robert Wood 

Johnson Medical School, New Brunswick, NJ, USA 

2Heart and Vascular Center, Semmelweis University, Budapest, Hungary 

 

Word count (Excluding abstract, figure legends, and tables): 3376 words 

 

Short title of the manuscript: Dissecting DNN for predicting biological age and Sex 

 

Source of Funding: This work was supported by a National Science Foundation grant (Grant 

Number: 1920920) received by Dr. Sengupta.  

 

Disclosures: Dr. Sengupta is a consultant for RCE Technologies, Echo IQ. Dr. Yanamala is an 

advisor to Turnkey Learning, LLC and Turnkey Learning (P) Ltd, Pittsburgh, PA, USA. All 

other authors have reported that they have no relationships relevant to the contents of this paper 

to disclose. 

 

Address for Correspondence:  

Dr. Naveena Yanamala, MS, PhD 

Department of Cardiology and Hypertension,  

Rutgers Robert Wood Johnson Medical School,  

1 Robert Wood Johnson Place, New Brunswick, NJ, 08901 and  

Software and Societal Systems Department (S3D),  

Carnegie Mellon University, Pittsburgh, PA 

Phone: +17322583649 

Email: ny128@rwjms.rutgers.edu  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.23295672doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:ny128@rwjms.rutgers.edu
https://doi.org/10.1101/2023.09.17.23295672


2 

 

Analyzing the Mechanism Behind Age-agnostic Prediction of Diastolic 

Dysfunction Using Echocardiography Variables in Deep Neural Networks 

Abstract 

Objective: This investigation delved into the inner workings of previously published Deep 

Neural Networks (DNNs) designed to detect changes in diastolic function related to age using 

echocardiographic parameters. The primary goal was to decipher the predictive mechanism and 

determine whether biological age and gender played concealed roles within the DNN model. 

Methods: We conducted a secondary analysis of a previously published DNN model that was 

trained using data from 1,009 patients (average age: 62±17 years, 57% females) to forecast risk 

phenogroups based on nine echocardiographic parameters. This model was assessed on both 

an internal cohort (n=243, mean age = 62 ± 17 years, ~57% females) and an external validation 

cohort (n=5596, mean age = 76 ± 5 years, ~57% females). To forecast biological age and 

gender, we developed linear regression and classification models employing hidden layer 

activations from the DNN. Model performance was assessed using Pearson’s correlation for 

regression, accuracy, and area under the curve (AUC) metrics for classification. 

Results: Upon scrutinizing the hidden layer activations, we observed that the model accurately 

captured biological age in both younger and older populations, particularly in low-risk 

phenogroups, with robust correlations for the entire population (0.94, p<0.001), males (0.90, 

p<0.001), and females (0.94, p<0.001). In high-risk phenogroups, the correlations were lower, 

standing at 0.31 (p=0.274) for the entire population, 0.76 (p=0.003) for males, and 0.11 

(p=0.723) for females. Predicting gender as an underlying factor resulted in an accuracy rate 

of 58.02% and 52.27%, accompanied by an AUC of 0.65 for both validation cohorts. 

Conclusion: This study underscores that the latent space within DNNs maintains a link with 

age in relation to diastolic functional parameters, offering a solution that is independent of age 

for predicting diastolic dysfunction. The dissection of the network can further enhance our 

comprehension of the information learned by DNNs, thereby providing novel 

pathophysiological insights for medical professionals. 

Keywords: deep neural network, echocardiography, left ventricular diastolic dysfunction, age, 

sex prediction 
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Introduction 

Neural network dissection is a methodology that deciphers the intricacies of deep neural 

networks, often seen as "black boxes" due to the difficulty in understanding their operation 1 2. 

This technique illuminates the network's functional behavior by examining individual neurons, 

hidden layers, and their connections systematically 1 3. Furthermore, it enables the exploration 

of learned representations in the network, thereby identifying specific features or concepts 

prioritized during decision-making or classifications 2 4. The derived insights clarify the 

network’s behaviour and facilitate model optimization, interpretability, and domain-specific 

understanding. It finds applications across diverse domains like computer vision, natural 

language processing, and biomedical research 2 3 5-8. 

In our prior research, we developed a deep-learning model for the echocardiographic 

evaluation of left ventricular diastolic dysfunction (LVDD) in younger cohorts 9-11. LVDD is a 

condition where the left side of the heart struggles with relaxation and blood filling, affecting 

its pumping efficiency 12. Aging significantly contributes to structural and functional changes 

in the heart, and these alterations have been linked to LVDD. Despite not incorporating age 

adjustment in the training phase, our deep learning-based model successfully differentiated 

between low-risk and high-risk phenogroups across younger and older cohorts. 

Building on our previous model's age-independent performance, our current study 

explores how the model learns the age-related association with left ventricular functional 

parameters. We hypothesize that the model developed for predicting low and high-risk 

phenogroups of LVDD can also identify age or sex-related changes. To delve into our deep 

learning models' age- or sex-related learning, we dissected the neural network model and 

examined its latent space of trained parameters and hidden neural activations. 
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Methods  

Study Population  

This study includes two previously published databases that comprises a local derivation cohort 

and an external validation cohort 9. The local derivation cohort included 1,252 patients (mean 

age = 62±17 years, ~57% females), out of which 799 participants (mean age = 66±17 years) 

were retrospectively enrolled from the Icahn School of Medicine at Mount Sinai, New York 9 

10. The remaining 453 participants (mean age = 56±17 years) were included in two prospective 

trials at the West Virginia University School of Medicine. Our previous studies have provided 

a detailed study protocol and inclusion and exclusion criteria 9-11. The external validation cohort 

includes the 5,596 participants from the Atherosclerosis Risk in Communities (ARIC) analysis, 

a prospective epidemiologic cohort study started in 1987 to investigate the etiology of 

atherosclerosis and its clinical sequelae. The ARIC study enrolled 15,792 participants aged 45-

64 from four US communities 13. The current study analyzed 5,596 participants (mean 

age=76±5 years) who underwent echocardiographic assessment during the fifth visit between 

2011 and 2013. Our previous studies have discussed the details of the inclusion and exclusion 

criteria and the information about the institutional review board approval 9 11 13. Note that the 

current study has a specific emphasis on network dissection, investigating the potential of 

hidden activations to capture age-associated changes in echocardiographic parameters. The 

unique design of this study sets it apart from our previously published studies, which 

concentrated on assessing left ventricular diastolic dysfunction (LVDD) in younger and elderly 

cohorts 9-11. 

The DeepNN model of LVDD 

In our previous study 10, we described an unsupervised method that transforms the nine 

echocardiographic variables into a similarity network using topological data analysis (TDA), 
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which forms a continuous loop based on the varying degree of systolic or diastolic dysfunction. 

The TDA-based similarity network assigns low-risk or high-risk labels to patients using their 

nine routinely measured echocardiographic variables such as ejection fraction, left ventricular 

mass index, early diastolic transmitral flow velocity, late diastolic transmitral flow velocity, 

E/A ratio, early diastolic relaxation velocity, E/e’ ratio, left atrial ventricular index, tricuspid 

regurgitation velocity.  The brief information about these echocardiographic parameters along 

with their guideline-based thresholds for abnormality are provided in the supplementary 

material (Section A). After labeling the patients as high-risk or low-risk using the TDA-based 

approach, a cloud-based automated machine-learning platform (OptiML, BigML, Corvallis, 

Oregon) was used to train multiple machine learning algorithms and selected the best 

performing algorithm as the DeepNN model. Our group has already published the detailed 

methodologies for the TDA-based similarity network and the DeepNN model in 9 10.  

Development of an emulator model for investigating latent space information 

The DeepNN model was explicitly developed for predicting the high-risk or low-risk 

phenogroups of LVDD using the commercial cloud-based BigML platform 9. Since it is not 

possible to extract hidden weights from the DeepNN model developed using the BigML 

framework, another similar multi-layered deep neural network (DNN) model was developed 

using an open-source Python-based library. This new DNN model emulates the characteristics 

of the existing DeepNN model (hence called emulator model hereafter) and provides access to 

trained weights that are useful to investigate the information about the latent space. The training 

of the emulator model is performed on the same local derivation cohort (n=1,252) with high-

risk or low-risk patient clusters used as class labels. Out of 1252 patients, 80% (n=1009) are 

used for model training, and 20% (n=243) are used for internal validation. Figure 1 (A) shows 

the internal architecture of the emulator model that predicts the binary risk profiles from the 

nine echocardiography parameters. The model has four hidden layers, each with 13, 27, 63, 
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and 6 neurons. The choice of the number of layers and the neurons in each layer is governed 

by the open-source Python-based Optuna-3.0.1 library for hyperparameter tuning 14. During 

the training process of the emulator model, responses from all the hidden neurons (aka ‘neural 

activations’) are recorded. The latent information within such neural activations is further used 

to investigate the association with the actual age or sex of a person.  

 

Figure 1 (A) The architecture of the emulator model predicting low- and high-risk potential 

phenogroups of LVDD and (B) latent variable exploration from the neural activations. EF – 

ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume index, E - early 
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mitral inflow velocity, A - late mitral inflow velocity, e’ – early diastolic mitral annular 

velocity, TRV – tricuspid regurgitation velocity. 

Latent space exploration for the emulator model 

To investigate if the emulator model is age- and sex-agnostic, the hidden neural activations 

from each layer are used to train separate regression and classification models to predict actual 

age and sex, respectively (Figure 1B). For age prediction, a linear regression model is trained 

on the neural activations obtained from the training data (n=1009). Since there are four hidden 

layers with a different set of neurons, four independent linear regression models are trained, 

and the corresponding coefficients are recorded. The trained coefficients of the linear 

regression model are then used to transform the neural responses for the internal and external 

validation databases into the predicted biological age of patients. Note that the nine 

echocardiography parameters drive the predicted age and may differ from the actual age of 

patients. Linear regression is the most fundamental approach for finding the association 

between continuous variables and, thus, is adopted in this study to investigate the link between 

neural activations and actual age.  

We also investigated the association between neural activations and sex as a latent variable. 

Since sex is a dichotomous variable, a classification model is trained on the neural response of 

the training database. Then this trained model is used to transform the neural response from the 

validations databases into the predicted sex of patients. Five popular machine learning-based 

classification algorithms, such as logistic regression 15, support vector machine 16, bagging 17, 

random forest 18, and extreme gradient boosting 19 are compared to determine the best choice 

for predicting sex as a latent variable from the neural responses.  

Performance Evaluation and Statistical Analysis  
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To verify the equivalence between the previously proposed DeepNN model 9 and the emulator 

model was established using (i) the five performance evaluation metrics such as sensitivity, 

specificity, F1-score, accuracy, and area under the curve (AUC), and (ii) the confusion matrix 

between the predicted labels from both models. Outlier detection using the inter-quartile range 

and missing value removal impacting ~5% of the total dataset was performed on both the 

derivation and validation cohorts before the statistical analysis. In latent space exploration, the 

association between the actual age and the echocardiography-driven predicted biological age 

obtained is examined using Pearson’s correlation coefficient, i.e., the r metric. The combined 

internal and external validation data was analyzed using scatter plots. These plots compared 

the mean over a 5-year age range for both actual and biological age categories, depicting the 

mean ± standard error around the mean age. The two-tailed t-test is used to determine the 

statistical difference between the predicted age in the low-risk and high-risk categories with a 

level of significance, p<0.05. Patients were clustered into groups using hierarchical clustering 

based on a similarity measure 20. The association between hidden neural activations and sex is 

governed by the optimal classification algorithm, whose performance is evaluated using the six 

performance evaluation metrics discussed above.  

Results  

Baseline Characteristics  

The baseline characteristics of the local derivation cohort and the external validation cohort are 

provided in Table 1 and Table 2. As shown in the tables, the actual age and sex, along with 

nine echocardiographic parameters, are significantly associated with the phenogroups of 

diastolic dysfunction. The average age in the derivation cohort is 62 ± 17 years (18 - 97 years), 

and in the external validation cohort is 76 ± 5 years (66 - 90 years). This age distribution shows 

that the derivation cohort mostly has young participants with distributed ages compared to the 
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older population in the validation database. Overall, females in both the study cohorts are 

~57%. 

Table 1 Comparison of baseline characteristics of study participants in the derivation cohort 

stratified by the deep neural network model–based phenogroups of diastolic dysfunction. 

Clinical 

Variable 

Overall 

(n=1252) 

Low-Risk 

(n=588) 

High-Risk 

(n=664) 
p-value 

Age, yrs 62±17 54±15 69±15 <0.0001* 

Males 539 (43.1%) 217 (36.9%) 322 (48.5%) <0.0001* 

BMI, kg/m2 29.06±7.42 29.42±7.99 28.75±6.87 0.785 

Smoker 574 (45.8%) 250 (42.5%) 324 (48.8%) 0.030* 

Diabetes mellitus 275 (22.0%) 78 (13.3%) 197 (29.7%) <0.0001* 

Hypertension 716 (57.2%) 268 (45.6%) 448 (67.5%) <0.0001* 

Hyperlipidemia 653 (52.2%) 270 (45.9%) 383 (57.7%) <0.0001* 

CKD 266 (21.2%) 52 (8.8%) 214 (32.2%) <0.0001* 

EF, % 48.58±25.26 51.60±24.74 45.91±25.42 <0.0001* 

LVMi, g/m2 137.52±168.20 118.48±159.81 154.39±173.69 <0.0001* 

LAVi, mL/m2 44.11±28.39 33.20±17.53 53.77±32.39 <0.0001* 

E, cm/s 0.88±0.41 0.82±0.31 0.93±0.48 <0.0001* 

A, cm/s 1.93±2.61 2.15±3.24 1.73±1.87 <0.0001* 

E/A ratio 1.07±0.56 1.03±0.39 1.10±0.67 0.067 

E/e´ ratio 12.00±9.10 7.87±3.59 15.65±10.78 <0.0001* 

TRV, m/s 8.70±15.17 6.43±10.16 10.71±18.27 <0.0001* 

e´, cm/s 8.11±5.23 8.54±2.33 7.73±6.82 <0.0001* 

Values are n (%) or mean ± SD. *p < 0.05 comparing the high-risk and low-risk 

groups using the Mann-Whitney U test, where the mean is reported and using the 

chi-square or Fisher exact test where the frequency is reported.  

EF – ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume 

index, E - early mitral inflow velocity, A - late mitral inflow velocity, e’ – early 

diastolic mitral annular velocity, TRV – tricuspid regurgitation velocity, CKD – 

chronic kidney disease, BMI – body mass index.  

 

Development and validation of the emulator model and comparison with the DeepNN model 

To mimic the characteristics of the DeepNN model, the proposed emulator model was trained 

using the same training dataset (n=1009) and validated on the internal validation dataset 

(n=242) as described previously 9. During the training phase, the emulator model showed an 

accuracy of 97% and an F1 score of 98%. A similar performance is demonstrated by the model 

in the internal validation dataset (n=242), with an accuracy of 97.12% and an F1-score of 

97.45% for predicting the low-risk and high-risk phenogroups of diastolic dysfunction. The 
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comparative results between the previous DeepNN model and the proposed model are shown 

in Table S1 and Table S2 under section B of the supplemental material. The results indicate 

that both models exhibited a comparable pattern in predicting low-risk and high-risk 

phenogroups, with the emulator model outperforming the DeepNN model by producing fewer 

false positives and negatives.  

Table 2 Comparison of baseline characteristics of study participants in the external validation 

cohort stratified by the deep neural network model–based phenogroups of diastolic 

dysfunction. 

Clinical 

Variable 

Overall 

(n=5596) 

Low-Risk 

(n=3635) 

High-Risk 

(n=1961) 
p-value 

Age, yrs 76 ± 5 75 ± 5 77 ± 5 <0.0001* 

Males 2409 (43.0%) 1464 (40.3%) 945 (48.2%) <0.0001* 

BMI, kg/m2 28.49 ± 6.01 28.03 ± 5.74 29.35 ± 6.41 <0.0001* 

Smoker 317 (5.7%) 210 (5.8%) 107 (5.5%) 0.664 

Diabetes mellitus 1607 (28.7%) 888 (24.4%) 719 (36.7%) <0.0001* 

Hypertension 3872 (69.2%) 2323 (63.9%) 1549 (79.0%) <0.0001* 

Hyperlipidaemia 2786 (49.8%) 1962 (54.0%) 824 (42.0%) <0.0001* 

CKD 1141 (20.4%) 629 (17.3%) 512 (26.1%) <0.0001* 

EF, % 65.02 ± 6.78 66.95 ± 4.90 61.45 ± 8.19 <0.0001* 

E, cm/s 0.68 ± 0.19 0.66 ± 0.16 0.71 ± 0.23 <0.0001* 

A, cm/s 0.80 ± 0.19 0.78 ± 0.17 0.85 ± 0.23 <0.0001* 

E/A ratio 0.88 ± 0.30 0.87 ± 0.26 0.89 ± 0.36 0.004* 

e´, cm/s 5.68 ± 1.48 6.15 ± 1.42 4.80 ± 1.15 <0.0001* 

E/e´ ratio 10.28 ± 4.05 9.08 ± 2.67 12.51 ± 5.10 <0.0001* 

TRV, m/s 2.38 ± 0.24 2.34 ± 0.20 2.46 ± 0.28 <0.0001* 

LVMi, g/m2 80.24 ± 21.06 71.79 ± 13.28 95.91 ± 23.70 <0.0001* 

LAVi, mL/m2 26.30 ± 9.28 23.40 ± 6.33 31.68 ± 11.27 <0.0001* 

Values are n (%) or mean ± SD. *p < 0.05 comparing the high-risk and low-risk groups 

using the Mann-Whitney U test, where the mean is reported, and using the chi-square 

or Fisher exact test where the frequency is reported. EF – ejection fraction, LVMi – left 

ventricular mass index, LAVi – left atrial volume index, E - early mitral inflow velocity, 

A - late mitral inflow velocity, e’ – early diastolic mitral annular velocity, TRV – 

tricuspid regurgitation velocity, CKD – chronic kidney disease, BMI – body mass 

index. 
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Predicting age as a latent variable from the neural activations 

To explore and understand the latent space of the echocardiography-driven emulator model, 

we performed a regression analysis between the age-predicted from neural activations and the 

actual age. Additionally, we combined the internal and external validation cohorts (n=5529) to 

conduct a batch prediction and determine if the model's observations on the younger internal 

cohort hold for the older population. Figure 2 shows the relationship between the actual age 

and the predicted biological age of patients in the combined dataset.  

 

Figure 2 Association between the true age and the biological age predicted using neural 

activations of the emulator model in overall population (first column), in males (second 
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column), and in females (third column). Four rows correspond to the four hidden layers of the 

proposed model. 

Since the emulator model has four hidden layers, four different sets of neural activations are 

employed to predict biological age using independent regression models. This association of 

actual age with the predicted biological age from four hidden layers is illustrated as four rows 

in Figure 2. Moreover, the association is also indicated separately for an entire population (first 

column), in males (second column), and females (third column). Figure 2 shows that the 

correlation coefficient between the actual age and the predicted biological age is higher for the 

low-risk phenogroup of patients than the high-risk phenogroup of patients. This is consistently 

true for males and females in all four layers of the deep neural network model. Layer 2 of the 

model exhibited slightly higher correlation coefficients than other layers for patients' high-risk 

phenogroup. For high-risk phenogroups, the correlation coefficients were 0.31 (p=0.274) for 

the entire population, 0.76 (p<0.01) for males, and 0.11 (p=0.723) for females, respectively. In 

low-risk phenogroups, these correlation coefficients were 0.94 (p=<0.001) for the entire 

population, 0.90 (p=<0.001) for males, and 0.94 (p=<0.001) for females, respectively.  

Another observation from Figure 2 is that for younger high-risk phenogroup patients, the 

predicted biological age is higher than their actual age. This overestimation of biological age 

is possibly due to their elevated values of the echocardiographic variables as discussed in Table 

3 to Table 6 in the next section, which govern the neural responses within the network. In 

contrast, the predicted age for the low-risk phenogroup of patients gradually increased as their 

actual age advanced, leading to a reduced disparity between the predicted ages of older patients 

in both the low-risk and high-risk groups. These findings indicate that the emulator model 

preserves the well-known age-related association with the echocardiographic variables while 

also being able to discriminate between the low and high-risk phenogroups of patients.  
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Table 3 Analysing the distribution of clinical variables in patients clustered by neural 

activations of hidden layer 1.  

Variables 
C1  

(n=2681) 

C2  

(n=151) 

C3  

(n=714) 

C4  

(n=1983) 

Age, yrs 73.83 ± 6.87 76.45 ± 9.45 77.40 ± 5.94 75.49 ± 5.88 

E, cm/s 0.67 ± 0.16 0.90 ± 0.32 0.77 ± 0.22 0.65 ± 0.19 

A, cm/s 0.75 ± 0.20 0.61 ± 0.44 1.07 ± 0.20 0.70 ± 0.22 

E/A ratio 0.86 ± 0.31 1.12 ± 0.97 0.71 ± 0.19 0.84 ± 0.37 

EF, % 67.60 ± 4.85 47.77 ± 13.76 64.89 ± 7.70 62.63 ± 5.68 

e', cm/s 6.56 ± 1.54 4.47 ± 1.46 4.39 ± 0.92 5.19 ± 1.06 

E/e' ratio 8.90 ± 2.55 17.28 ± 8.70 15.15 ± 5.03 10.12 ± 3.20 

TRV, m/s 1.40 ± 1.16 2.06 ± 1.20 1.51 ± 1.24 1.44 ± 1.21 

LAVi, mL/m2 23.18 ± 6.29 48.92 ± 23.32 28.72 ± 8.69 28.94 ± 9.09 

LVMi, g/m2 69.32 ± 12.66 135.67 ± 38.01 87.74 ± 20.90 88.27 ± 17.67 

EF – ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume 

index, E - early mitral inflow velocity, A - late mitral inflow velocity, e’ – early 

diastolic mitral annular velocity, TRV – tricuspid regurgitation velocity, CKD – 

chronic kidney disease, BMI – body mass index. 

 

Table 4 Analysing the distribution of clinical variables in patients clustered by neural 

activations of hidden layer 2.  

Variables 
C1  

(n=171) 

C2  

(n=2682) 

C3  

(n=402) 

C4  

(n=2274) 

Age, yrs 76.56 ± 8.83 73.70 ± 6.81 77.05 ± 6.79 75.96 ± 5.83 

E, cm/s 0.88 ± 0.32 0.66 ± 0.16 0.82 ± 0.26 0.66 ± 0.18 

A, cm/s 0.67 ± 0.46 0.73 ± 0.20 0.91 ± 0.39 0.79 ± 0.24 

E/A ratio 0.95 ± 0.78 0.87 ± 0.30 0.84 ± 0.57 0.80 ± 0.32 

EF, % 47.61 ± 13.20 67.35 ± 4.87 60.69 ± 8.75 64.12 ± 5.64 

e', cm/s 4.22 ± 1.24 6.60 ± 1.50 4.47 ± 1.19 5.05 ± 1.06 

E/e' ratio 17.59 ± 8.98 8.70 ± 2.46 15.82 ± 5.41 10.85 ± 3.38 

TRV, m/s 1.92 ± 1.25 1.41 ± 1.16 1.69 ± 1.24 1.42 ± 1.21 

LAVi, mL/m2 45.99 ± 22.30 23.33 ± 6.39 35.48 ± 11.93 27.58 ± 8.07 

LVMi, g/m2 133.60 ± 36.26 69.60 ± 12.73 101.05 ± 22.41 85.26 ± 16.87 

EF – ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume 

index, E - early mitral inflow velocity, A - late mitral inflow velocity, e’ – early 

diastolic mitral annular velocity, TRV – tricuspid regurgitation velocity, CKD – 

chronic kidney disease, BMI – body mass index. 
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Table 5 Analysing the distribution of clinical variables in patients clustered by neural 

activations of hidden layer 3.  

Variables 
C1  

(n=1866) 

C2  

(n=2654) 

C3  

(n=138) 

C4  

(n=871) 

Age, yrs 75.83 ± 5.65 73.66 ± 6.83 76.57 ± 9.00 76.78 ± 6.69 

E, cm/s 0.65 ± 0.17 0.66 ± 0.16 0.90 ± 0.34 0.76 ± 0.23 

A, cm/s 0.79 ± 0.23 0.73 ± 0.20 0.72 ± 0.47 0.85 ± 0.35 

E/A ratio 0.80 ± 0.30 0.88 ± 0.31 1.00 ± 0.79 0.80 ± 0.48 

EF, % 64.62 ± 5.33 67.35 ± 4.86 47.87 ± 13.88 60.89 ± 8.27 

e', cm/s 5.14 ± 1.04 6.61 ± 1.49 4.10 ± 1.21 4.57 ± 1.13 

E/e' ratio 10.44 ± 3.09 8.67 ± 2.45 18.71 ± 9.17 14.08 ± 5.03 

TRV, m/s 1.39 ± 1.20 1.41 ± 1.16 1.96 ± 1.26 1.61 ± 1.24 

LAVi, mL/m2 26.91 ± 7.63 23.37 ± 6.41 47.72 ± 23.97 32.84 ± 11.05 

LVMi, g/m2 83.15 ± 15.91 69.69 ± 12.77 138.15 ± 37.18 97.41 ± 21.53 

EF – ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume 

index, E - early mitral inflow velocity, A - late mitral inflow velocity, e’ – early 

diastolic mitral annular velocity, TRV – tricuspid regurgitation velocity, CKD – 

chronic kidney disease, BMI – body mass index. 

 

Table 6 Analysing the distribution of clinical variables in patients clustered by neural 

activations of hidden layer 4.  

Variables 
C1  

(n=4466) 

C2  

(n=110) 

C3  

(n=584) 

C4  

(n=369) 

AGE, yrs 74.54 ± 6.45 76.48 ± 9.11 76.55 ± 6.45 77.07 ± 7.17 

E, cm/s 0.66 ± 0.17 0.90 ± 0.33 0.72 ± 0.21 0.83 ± 0.26 

A, cm/s 0.75 ± 0.21 0.79 ± 0.47 0.86 ± 0.30 0.82 ± 0.42 

E/A ratio 0.85 ± 0.31 1.00 ± 0.76 0.77 ± 0.36 0.85 ± 0.63 

EF, % 66.27 ± 5.19 46.48 ± 14.41 62.56 ± 6.36 57.92 ± 10.18 

e', cm/s 6.02 ± 1.51 3.94 ± 1.08 4.63 ± 1.08 4.49 ± 1.20 

E/e' ratio 9.37 ± 2.85 20.00 ± 9.65 12.95 ± 4.07 15.55 ± 5.73 

TRV, m/s 1.40 ± 1.17 1.96 ± 1.24 1.55 ± 1.23 1.71 ± 1.25 

LAVi, mL/m2 24.80 ± 7.15 47.42 ± 24.89 30.10 ± 9.31 37.57 ± 13.34 

LVMi, g/m2 75.11 ± 15.55 138.90 ± 39.97 92.34 ± 19.56 106.75 ± 23.91 

EF – ejection fraction, LVMi – left ventricular mass index, LAVi – left atrial volume 

index, E - early mitral inflow velocity, A - late mitral inflow velocity, e’ – early 

diastolic mitral annular velocity, TRV – tricuspid regurgitation velocity, CKD – 

chronic kidney disease, BMI – body mass index. 
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Examining patient pathways through the network and the impact of echocardiographic 

variables 

To further answer the question of how the echocardiographic variables of patients are travelling 

through the neural network, we dissected the neural network activations. We performed 

hierarchical clustering for all patients 20. The details of hierarchical clustering are provided in 

supplemental material (section C). Hierarchical clustering separated the patients into four row-

wise clusters (illustrated in Figure 3), such as C1 to C4, whose clinical variables in each of the 

four layers are shown in Tables 3 to 6, respectively. Table 3 to Table 6 present the clustering 

results, revealing that out of four clusters, the high-risk phenogroup of patients predominantly 

falls into clusters C2, C1, C3, and C2, respectively, across four hidden layers. 

 

Figure 3. Hierarchical clustering of the neural network activations indicating four unique sets 

of clusters of patients in each hidden layer.  
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Additionally, it is worth noting that apart from clustering patients, neurons exhibiting similar 

activations have also been grouped. This observation might suggest that these neurons play a 

role in the distinct pathways taken by low-risk or high-risk phenogroups of patients. In our 

investigation of patient pathways across the four layers of the network, we identified the three 

most common neural pathways followed by the high-risk and low-risk phenogroups of patients. 

For the high-risk phenogroups, the three distinct neural pathways are 10-27-16-6, 10-3-54-6, 

and 8-3-54-6, while for the low-risk patients, the pathways are 9-6-23-1, 9-6-5-1, and 9-6-40-

1. Figure 4 depicts the pathways followed by three sample patients from the low-risk and high-

risk phenogroups, showcasing the distinct neural trajectories identified in our analysis.  

  

Figure 4. Neural network pathways followed by three sample patients from low-risk and high-

risk phenogroups.  L1-L4 are four hidden layers. High-risk patient P1 (pathway L1N10-

L2N27-L3N19-L4N6): EF=43.6, E=0.65, A=1.18, E/A=0.6, e’=2.9, E/e’= 20.6, TRV= 2.76, 

LAVi= 25.31, LVMi=106, high-risk patient P2 (pathway L1N10-L2N3-L3N54-L4N6): 

EF=57.6, E=0.47, A=0.91, E/A=0.5, e’=5.7, E/e’= 7.9, TRV= 2.53, LAVi= 20.9, LVMi=94.32, 
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high-risk patient P3 (pathway L1N8-L2N3-L3N54-L4N6): EF=40.6, E=0.38, A=0.69, 

E/A=0.5, e’=6.5, E/e’= 4.4, TRV= 2.42, LAVi= 31.46, LVMi=122.32. Low-risk patient P1 

(pathway L1N9-L2N6-L3N23-L4N1): EF=82.2, E=0.85, A=0.82, E/A=1, e’=5.7, E/e’= 9.7, 

TRV= 1.98, LAVi= 20.74, LVMi=83.55, low-risk patient P2 (pathway L1N9-L2N6-L3N5-

L4N1): EF=75.6, E=0.54, A=0.89, E/A=0.6, e’=4.5, E/e’= 8.2, TRV= 2, LAVi= 19.99, 

LVMi=76.23, low-risk patient P3 (pathway L1N9-L2N6-L3N40-L4N1): EF=68.4, E=0.84, 

A=0.81, E/A=1, e’=5.2, E/e’= 10.7, TRV= 2.46, LAVi= 14.56, LVMi=106.54. 

Prediction of sex as a latent variable from the neural activations  

To further investigate the latent space of the emulator model, five ML algorithms are trained 

to predict sex as a latent variable from the neural activations of a deep neural network. Table 5 

lists the six performance evaluation metrics for five algorithms for internal and external 

validation cohorts. Across all ML-based algorithms for predicting sex, the average accuracy 

was 60% and 59%, respectively (Table 7), in the internal and external validation cohorts. 

Logistic regression algorithms reported better classification performance with an AUC of 0.65 

in both validation cohorts.  

Table 7 Predicting sex as a latent variable from the second layer of neural network model. 

Database  Classifier  
Sensitivity 

(%) 

Specificity 

(%) 

F-Score 

(%) 

ACC 

(%) 
AUC 

Interval 

validation 

cohort 

(n=243) 

SVM 41.90 70.29 46.32 58.02 0.61 

LR 87.62 35.51 64.34 58.02 0.65 

Bagging 46.67 74.64 51.85 62.55 0.63 

RF 44.76 70.29 48.70 59.26 0.64 

XGBoost 51.43 70.29 54.00 62.14 0.62 

Mean 54.48 64.20 53.04 60.00 0.63 

External 

validation 

cohort 

(n=5596) 

SVM 27.07 88.14 37.92 61.85 0.62 

LR 87.46 25.67 61.21 52.27 0.65 

Bagging 38.77 78.07 46.21 61.15 0.62 

RF 36.20 79.29 44.25 60.74 0.62 

XGBoost 41.59 72.23 46.65 59.04 0.61 

Mean 46.22 68.68 47.25 59.01 0.62 
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Although the accuracy and AUC values are less, it should be noted that this was the first attempt 

to show the association between the hidden layer neural activations and sex. 

Discussion  

Diving into the hidden representations of deep neural networks is always an interesting yet 

challenging task. Our previous study shows that the echocardiographic deep neural network 

(i.e., DeepNN) can predict the risk of LVDD from the nine diastolic function parameters in 

younger and elderly cohorts 9 11. In this study, we attempted to dissect the model's internal 

architecture to investigate latent space's association with the two demographic parameters, such 

as age and sex. The network dissection revealed that the hidden layers of the emulator model, 

although trained to predict the LVDD, exhibit an association with the actual age of patients, 

validating our hypothesis for this study. Although accuracy for predicting sex from the latent 

space of the emulator model is low, we still demonstrated the capability of the hidden neural 

activations to provide some information about the sex of patients.  

We know that the biological age differs from the chronological actual age and involves the 

time elapsed and several biological and physiological factors, including genetics, nutrition, and 

comorbidities 21. Therefore, it becomes essential to understand how the structural changes in 

the heart, captured by the echocardiography-driven neural network, can be used to predict the 

biological age. The present study results show that the low-risk and high phenogroups of 

LVDD are associated with actual age, and this association can also be preserved by the neural 

network indicating a similar association between the phenogroups and the echocardiography-

derived biological age. That means by using nine echocardiography parameters, the emulator 

model can distinguish between low-risk and high-risk phylogroups, and by using 

echocardiography-driven biological age predicted from the latent space of the model, a similar 

distinction can also be possible. 
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In this study, we included participants from two different cohorts. The derivation cohort 

consisted of participants who were younger, middle-aged, and older people with ages ranging 

from 18 years to 97 years. The majority of participants in the derivation cohort were young or 

middle-aged. In contrast to the derivation cohort, the external validation cohort included 

participants between the ages of 66 and 90 years old, considered to be older members of the 

cohort. Our findings have shown that hidden neural activations from the proposed emulator 

model in both cohorts were capable of providing an idea about the age and sex of patients. 

However, for the younger age group, the hidden neural activations showed an overestimated 

age; for older adults, the predicted age was underestimated compared to the actual age of 

patients. This could be due to the dissimilarities in actual age and biological age (or “heart 

age”) captured by the echocardiography parameters. The age information captured by the 

hidden neural activations reflects the biological age of patients. From a previous study by 

Okura and colleagues 22, it is known that aging leads to structural changes in the heart that may 

change a person's biological age. The overestimation and underestimation of biological age 

concerning actual age show that the model can capture the changes in the heart's structure. Our 

study results (Figure 2) further point to the ability of the hidden neural activations of the 

emulator model to capture these changes in high-risk phenogroups in a much more pronounced 

manner. We have also observed that the information captured by neural activations in the high-

risk group significantly differs from the low-risk LVDD phenogroups in both sexes (Figure 2).  

Previous attempts were made to predict the actual age and sex from the echocardiograms 

22 23 and electrocardiogram (ECG) 24, however, the age-dependent LVDD severity prediction 

was not investigated. Okura et al. 22 showed that aging leads to a more pronounced deterioration 

of diastolic function in females than in males 22. Also, the incidence of diastolic heart failure is 

higher in elderly females than in males 22. The authors also demonstrated a significant 

association of actual age and sex with the left ventricular function 22, which may further change 
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LVDD severity. Although the study by Okura et al. 22 made the observations considering the 

chronological age, it would have been more interesting to investigate similar observations with 

echocardiography-driven biological age. Another study by Attia et al. 24 predicted the 

biological age and sex from the 12-lead ECG signals using the convolutional neural network-

based model. The authors showed that ECG signals have the potential to predict the biological 

age and sex of patients. However, it was a direct approach with age and sex being used as labels 

to train the CNN model, and no latent information within hidden neural activations was 

explored.  

This study on the dissection of the deep neural network models points to a vital aspect of 

echocardiography-driven AI models that they can capture biological age or sex information, 

even if they are not primarily trained to do so. This study is a first-ever attempt to dissect the 

latent space of a deep neural network for providing the age and sex-related association with the 

LVDD phenogroups. Further research should include other comorbidities when predicting 

LVDD phenotypes and then investigate how latent space captures the effect of comorbidities 

when predicting actual age.  

Conclusion  

This study proposed an echocardiographic deep neural network-based emulator that 

characterizes patients with low or high potential burden of LVDD. The dissection of the 

echocardiographic emulator can provide additional information on the biological age governed 

by the latent space of the deep neural network. The echocardiography-driven biological age 

can help in distinguishing patients with LVDD. Our findings suggest that the neural network-

based architectures can preserve the well-known association between echocardiographic 

parameters and the actual age of patients while being able to discriminate the potential burden 

of LVDD in both younger and older populations. Therefore, this study could be helpful to 
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provide an age-agnostic solution that can assist clinicians with new pathophysiological 

insights.  

Acknowledgments 

Authors would like to thank Dr. Quincy Hathaway, MD, PhD from West Virginia University 

School of Medicine, WV, USA, for providing valuable feedback on this manuscript that 

significantly improved the quality and reliability of this manuscript.  

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.23295672doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.17.23295672


22 

 

References 

1.   Bau D, Zhu J-Y, Strobelt H, et al. Understanding the role of individual units in a deep neural 

network. Proceedings of the National Academy of Sciences 2020;117(48):30071-78. doi: 

doi:10.1073/pnas.1907375117 

2.   Dissecting deep neural networks for better medical image classification and classification 

understanding. 2018 IEEE 31st International Symposium on Computer-Based Medical Systems 

(CBMS); 2018. IEEE. 

3.   Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural 

networks. Digital Signal Processing 2018;73:1-15. doi: 

https://doi.org/10.1016/j.dsp.2017.10.011 

4.   Nazir S, Dickson DM, Akram MU. Survey of explainable artificial intelligence techniques for 

biomedical imaging with deep neural networks. Computers in Biology and Medicine 

2023;156:106668. doi: https://doi.org/10.1016/j.compbiomed.2023.106668 

5.   Network dissection: Quantifying interpretability of deep visual representations. Proceedings of 

the IEEE conference on computer vision and pattern recognition; 2017. 

6.   Gao Z, Chen Y, Yi Z. A novel method to compute the weights of neural networks. 

Neurocomputing 2020;407:409-27. 

7.   Zhou B, Bau D, Oliva A, et al. Interpreting Deep Visual Representations via Network 

Dissection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2019;41(9):2131-

45. doi: 10.1109/TPAMI.2018.2858759 

8.   Bau A, Belinkov Y, Sajjad H, et al. Identifying and controlling important neurons in neural 

machine translation. arXiv preprint arXiv:181101157 2018 

9.   Pandey A, Kagiyama N, Yanamala N, et al. Deep-learning models for the echocardiographic 

assessment of diastolic dysfunction. Cardiovascular Imaging 2021;14(10):1887-900. 

10.  Tokodi M, Shrestha S, Bianco C, et al. Interpatient similarities in cardiac function: a platform 

for personalized cardiovascular medicine. Cardiovascular Imaging 2020;13(5):1119-32. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.23295672doi: medRxiv preprint 

https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.compbiomed.2023.106668
https://doi.org/10.1101/2023.09.17.23295672


23 

 

11.  Shah R, Tokodi M, Jamthikar A, et al. A Deep Patient-Similarity Learning Framework for the 

Assessment of Diastolic Dysfunction in Elderly Patients. J Am Coll Cardiol 2023;(In Peer 

Review) 

12.  Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the Evaluation of Left 

Ventricular Diastolic Function by Echocardiography: An Update from the American Society of 

Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc 

Echocardiogr 2016;29(4):277-314. doi: 10.1016/j.echo.2016.01.011 

13.  Investigators A. The atherosclerosis risk in community (ARIC) study: design and objectives. 

American Journal of Epidemiology 1989;129(4):687-702. 

14.  Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th 

ACM SIGKDD international conference on knowledge discovery & data mining; 2019. 

15.  Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression: John Wiley & Sons 

2013. 

16.  Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20(3):273-97. 

17.  Ho TK. The random subspace method for constructing decision forests. IEEE transactions on 

pattern analysis and machine intelligence 1998;20(8):832-44. 

18.  Breiman L. Random forests. Machine learning 2001;45(1):5-32. 

19.  Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics 

2001:1189-232. 

20.  Müllner D. fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python. 

Journal of Statistical Software 2013;53:1-18. 

21.  Jazwinski SM, Kim S. Examination of the dimensions of biological age. Frontiers in genetics 

2019;10:263. 

22.   Okura H, Takada Y, Yamabe A, et al. Age-and gender-specific changes in the left ventricular 

relaxation: a Doppler echocardiographic study in healthy individuals. Circulation: 

Cardiovascular Imaging 2009;2(1):41-46. 

23.  Duffy G, Clarke SL, Christensen M, et al. Deep Learning Discovery of Demographic 

Biomarkers in Echocardiography. arXiv preprint arXiv:220706421 2022 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.23295672doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.17.23295672


24 

 

24.  Attia ZI, Friedman PA, Noseworthy PA, et al. Age and sex estimation using artificial 

intelligence from standard 12-lead ECGs. Circulation: Arrhythmia and Electrophysiology 

2019;12(9):e007284. 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.23295672doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.17.23295672

