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Abstract

Background: Pelvic Incidence (PI) plays a crucial role in surgical planning. However,
it is insufficient for accurately predicting spinal alignment parameters, including
Sacral Slope, Pelvic Tilt, and Lumbar Lordosis. We have devised an AI-based method
for predicting sagittal spinal alignments with enhanced precision.

Methods:We have developed an AI-based system utilizing a Seq2Seq framework to
model the spatial correlation between pelvic and spinal key points. This system was
trained on a dataset of 337 cases and evaluated using 51 cases obtained from a
multi-centre hospital. To address the issue of pelvic rotation, we introduced an Angle
Correlation Network. We compared the performance of our AI-based system in
predicting spinal alignment against the traditional PI-based method. This comparison
was conducted using Mean Absolute Error (MAE) and the Correlation Coefficient (R
value) as evaluation metrics.

Results:We evaluated the performance of our AI-based system for predicting Sacral
Slope (SS), Pelvic Tilt (PT), and Lumbar Lordosis (LL) values. The Pearson
correlation coefficient of the AI-based method surpassed that of the PI-based method
(0.80 vs 0.67 for SS, 0.73 vs 0.52 for PT, and 0.76 vs 0.48 for LL), indicating a more
robust linear relationship between AI predictions and actual values. Additionally, the
AI-based method exhibited a lower Mean Absolute Error (MAE) compared to the
PI-based method for LL (5.52 vs 6.69), signifying enhanced prediction accuracy.

Conclusions: In this study, we demonstrated the potential of an AI-based approach
for predicting sagittal spinal alignments with improved precision compared to the
traditional PI-based method. The AI-based system, utilizing a Seq2Seq framework
and an Angle Correlation Network, exhibited a stronger linear relationship between
predicted and actual values for Sacral Slope, Pelvic Tilt, and Lumbar Lordosis, as
well as a reduced Mean Absolute Error for Lumbar Lordosis. These findings support
the integration of AI in spinal surgery planning and personalized medicine for sagittal
alignment evaluation and management.
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Introduction
Bipedalism in Homo sapiens has led to the development of extraordinary sagittal
spinopelvic alignments, which enable an energetically economical upright stance due
to the reciprocal sagittal curvatures [1]. A healthy, physically mature individual
typically possesses a unique spinopelvic alignment characterized by the harmony
among pelvic, lumbar, thoracic, and cervical segments. Among these segments, the
pelvis lacks movable intervertebral discs and remains relatively constant, even when
spinal segments undergo malformation. Consequently, the pelvic sequence can be
used to predict original spinal alignments due to its correlation with other spinal
segments and invariable morphology [2-17].

Pelvic incidence (PI), defined as the angle between the line perpendicular to the
superior plate of S1 at its midpoint and the line connecting this point to the axis of the
femoral heads, has been investigated as an invariant morphological parameter of the
pelvis [2]. PI has been shown to have strong correlations with pelvic tilt (PT), sacral
slope (SS), and lumbar lordosis (LL). As a result, PI is widely used to predict the
original spinopelvic alignments of patients with spinal deformity and inform surgical
planning [2-17].

However, the current method has several limitations. Firstly, PI is a simplistic
graphical angle, providing minimal information about the pelvic sequence and
neglecting potentially crucial aspects of pelvic morphology. Secondly, using PI to
predict the sagittal sequence of the spine is overly general and lacks specificity,
rendering it impossible to discern local spinal sequences. Thirdly, all predictive
sequence information is non-visible. Owing to these limitations, the existing method
for predicting spinal sagittal alignments is insufficient for surgical design
requirements.

Machine learning, particularly deep learning, has demonstrated superiority over
human intelligence and has been successfully applied to medical data for clinical
purposes [17-20]. Therefore, in this study, we utilized AI technology to conduct
correlation analyses of pelvic and spinal sequences, introducing an innovative method
for predicting sagittal spinal alignments. Our approach aims to achieve higher
accuracy and more direct-viewing information than previous studies.
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Method

1. Building an AI-based system to model spatial correlation between pelvic and
spinal key points.
In this study, we introduce a novel approach for modeling the spatial correlation
between pelvic and spinal key points. Our system development involved the inclusion
of 337 healthy adults, aged 18 to 35 years, with full-length, free-standing lateral
radiographs from our institute. Two orthopedic spine surgeons reached a consensus
and annotated the X-ray images by manually recording the spatial coordinates of the
following pelvic and spinal key points, as illustrated in Figure 1:

• 12 sacral key points, including posterior edge of the S1 endplate, sacral
promontory, posterior edge of the S2-5 superior endplates, anterior edge of the
S2-5 superior endplates, posterior edge of the Co1 superior endplate, anterior
edge of the Co1 superior endplate, and center of the Co1-Co2 intervertebral
junction.

• 11 key points for the Ilium and Ischium, including midpoint of the line
connecting the posterior superior iliac spine and posterior inferior iliac spine,
apex of the greater sciatic notch, ischial spine, posterior superior edge of the
ischial tuberosity, anterior inferior edge of the ischial tuberosity, pubic
symphysis, anterior inferior iliac spine, anterior superior iliac spine, line
connecting the anterior superior iliac spine and iliac crest apex, and iliac crest
apex.

• 2 femoral head centers.
• 59 vertebral body key points for the lumbar, thoracic, and cervical spine.

The collection of sacrum, femoral head and hip key points is also referred to as “the
shape of a pelvis” in the remaining of this paper. The collection of the 59 vertebral
body key points is also referred to as “the shape of a spine” in the remaining of this
paper. We random selected 63 cases from the 337 cases as a validation dataset for
hyperparameter tuning and model selection. The remaining 274 cases were used to
train a deep learning model based on the Seq2Seq architecture. We further collected
another dataset from multicenter institutes, containing 51 well-positioned full length
standing lateral x-ray images, to form a test dataset to evaluate the performance of the
proposed system against other established approaches.
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Figure 1. Overview of the proposed AI-based system

Figure 2. A zig-zag offset scheme to facilitate learning

Figure 3. An angle correction network to predict “neutral position.”
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Spatial correlation between pelvic and spinal key points were formulated as a
supervised regression problem. The independent variable was the shape of a pelvis
depicted by a collection of pelvic key point coordinates while the dependent variable
was the shape of a spine depicted by a collection of spinal key point coordinates and
endplate orientation vectors. A Seq2Seq model is a special type of deep learning
models that leverages its recurrent mechanism to model complex long-term spatial or
temporal data. Generally, a Seq2Seq model is composed of an encoder and a decoder
module. The encoder models the pelvic shape in our case, to capture its intra-class
correlation among pelvic key points. The resulting correlation information (or
memory) is then fed into the decoder module to model correlation between pelvic
shape and spinal shape. In our training setup, the outputs of the decoder module were
the regressed offset vectors, forming a zig-zag path, which facilitates learning
compared to other formulations Figure 2. The Seq2Seq model was optimized by the
Adam optimizer using the combination of a mean-square loss term for coordinate
regression and a cosine similarity loss term for orientation regression. A minibatch of
16 samples sufficed in our case to converge after 1,000 epochs.

Rotation is another issue when it comes to exploring pelvic-spinal correspondence.
The physiological rotation of pelvic makes it hard to find a “neutral position”. To
overcome this issue, we propose a novel Angle Correlation Network (ACN) that
rotates input shapes by a predicted angle that would minimize the overall training loss.
Throughout the training, ACN learns to address the neutral position problem by itself,
as shown in Figure 3.

During development of the system, we find it critical to conduct pre-processing steps
to stabilize training and increase generalization ability. Specifically, a Procrustes
analysis was performed on each pair of the pelvic and spinal shape. The aim was to
obtain a similar scale, orientation and placement by minimizing shape difference
between the training samples so that the model could focus on the given task. The
Procrustes analysis contained three steps: translation, uniform scaling, and rotation.
The first two steps were straight-forward to perform. The rotation step was conducted
by comparing to a randomly selected reference shape from the training dataset. The
inverse steps were performed accordingly on the model predictions in the
post-processing steps in order to recover the scale and orientation of the input. The
overview of the proposed system was shown in Figure 1.
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2. Performance of the AI-based system compared to a classic clinical study
To evaluate the performance of the AI-based system in predicting sacral slope (SS),
pelvic tilt (PT) and lumbar lordosis (LL), a comparison was made with a classic
clinical study. The methodology for this comparison is outlined below.

Dataset preparation and model selection
The dataset used in this study was divided into three subsets: training, validation, and
testing. The training dataset was used to train various AI models, while the validation
dataset was employed to fine-tune the models and select the best-performing one
based on pre-defined evaluation metrics. The held-out dataset, which contained 51
cases, was reserved for testing the performance of the selected model. A Seq2Seq
model was chosen as the AI-based system for this study due to its ability to learn
complex patterns and relationships within the data. The best-performing Seq2Seq
model was identified according to its performance on the validation dataset.

Evaluation metrics
To assess the performance of the selected Seq2Seq model, two evaluation metrics
were employed: 1) Mean Absolute Error (MAE): This metric calculates the average
magnitude of the errors between the predicted values and the true values of LL and
TK. A lower MAE indicates better model performance. 2) Correlation Coefficient (R
value): This metric measures the strength and direction of the linear relationship
between the predicted values and the true values of SS, PT and LL. A higher R value
indicates a strong correlation between the predictions and the true values, suggesting
better model performance.

Classic clinical study
A classic clinical study ( SS=0.63PI+7, PT=0.37PI-7 [3], LL=0.62PI+17.6 [7] was
chosen for comparison to evaluate the effectiveness of the AI-based system. In this
study, researchers used regression analysis and other statistical methods to predict SS,
PT and LL values based on available clinical and radiographic data. The performance
of the classic clinical study was assessed using the same evaluation metrics (MAE and
R value) as those employed for the AI-based system.

Comparison and analysis
We randomly rotate the pelvic images of the 51 test subjects to be tested, with rotation
angles ranging from -60 to 60 degrees. After the rotation, we further process the data
for comparison. The performance of the AI-based system and the classic clinical
study was compared in terms of the evaluation metrics (MAE and R value). The
results were then analysed to determine the effectiveness of the AI-based system in
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predicting SS, PT and LL values relative to the classic clinical study. To ensure a
rigorous comparison, potential confounding factors, such as differences in patient
populations or data quality, were taken into account. In addition, the generalizability
of the AI-based system to diverse patient populations was considered, particularly if
the training data was not representative of the target patient group. By comparing the
performance of the AI-based system and the classic clinical study using the specified
methodology, the study aimed to demonstrate the potential advantages and limitations
of using an AI-based approach for predicting SS, PT and LL values in patients.

Result
The results of our study are presented in Table 1, Table 2, Figure 4, and Figure 5.
Table 1 presents the details of the 51 testing cases, and Table 2 presents the statistical
description, Mean Absolute Error (MAE) and Pearson correlation coefficient for PI
and AI predictions on SS, PT, and LL variables.

For the SS, PT and LL variable, the Pearson correlation coefficient for AI predictions
was higher than that for PI predictions (0.80 vs 0.67, 0.73 vs 0.52, 0.76 vs 0.48 ),
demonstrating a stronger linear relationship between AI predictions and the true
values. In addition, AI predictions showed a lower MAE compared to PI predictions
on LL (5.52 vs 6.69).

From Figures 4 and 5, we can see that the PI predictions for SS, PT, and LL perform
reasonably well in the median range but are less satisfactory at the two ends of the
normal distribution. In comparison, AI not only performs well in the median range but
also demonstrates impressive results at the extreme values.

The AI prediction method consistently outperforms the PI prediction method.
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Table 1: Performance of the testing cases

Case
Pelvic
Random
rotation

PI
PI prediction

AI prediction
(Seq2Seq-based)

Ture Value

SS① PT② LL③ SS PT LL SS PT LL
1 6.7 42.7 33.9 9.2 44.1 27.5 15.2 40.6 23.8 18.9 33.8
2 -33.5 49.2 38.0 11.7 48.1 43.7 5.5 56.8 42.9 6.3 54.0
3 3.9 48.4 37.5 11.4 47.6 36.2 12.3 49.2 36.7 11.7 55.7
4 -1.6 41.5 33.2 8.8 43.3 31.8 9.7 44.9 31.1 10.5 37.6
5 -8.4 50.3 38.7 12.1 48.8 38.2 12.0 51.3 44.1 6.2 57.2
6 -30.5 42.2 33.6 9.1 43.8 36.8 5.5 49.9 36.6 5.7 48.5
7 47.3 56.1 42.3 14.3 52.4 44.7 11.4 57.7 44.4 11.7 52.4
8 -3.4 38.6 31.3 7.7 41.5 33.8 4.8 47.0 30.4 8.3 49.6
9 44.4 48.3 37.4 11.4 47.5 25.4 22.9 38.5 27.9 20.4 21.8
10 -18.9 52.7 40.2 13.0 50.3 39.9 12.8 52.9 42.4 10.4 55.0
11 18.4 51.6 39.5 12.6 49.6 39.5 12.1 52.5 38.9 12.7 46.5
12 -46.8 59.6 44.6 15.7 54.6 46.5 13.2 59.6 53.1 6.5 65.2
13 12.5 42.6 33.9 9.2 44.0 33.2 9.4 46.4 28.9 13.8 40.9
14 -2.4 36.1 29.7 6.7 40.0 29.4 6.7 42.5 25.8 10.3 31.3
15 9.6 43.6 34.5 9.6 44.6 32.9 10.7 45.9 39.2 4.4 47.7
16 18.7 42.0 33.5 9.0 43.6 30.7 11.3 43.8 35.3 6.7 47.1
17 48.5 53.5 40.7 13.3 50.8 33.9 19.6 47.0 29.6 23.9 39.9
18 -3.9 42.1 33.5 9.0 43.7 37.0 5.1 50.1 30.4 11.6 41.9
19 14.9 43.7 34.5 9.6 44.7 44.8 -1.1 58.0 41.5 2.2 51.5
20 9.6 43.4 34.3 9.5 44.5 37.3 6.1 50.4 33.0 10.4 40.3
21 -11.8 44.6 35.1 10.0 45.3 39.0 5.7 52.1 35.3 9.3 47.4
22 54.3 47.5 36.9 11.0 47.1 35.5 12.0 48.6 32.9 14.6 31.7
23 8.0 65.2 48.1 17.8 58.0 51.1 14.2 64.1 47.6 17.6 56.2
24 -15.3 52.7 40.2 13.0 50.3 49.2 3.5 62.4 45.4 7.3 59.2
25 54.8 62.5 46.4 16.8 56.4 47.1 15.4 60.1 49.5 13.0 57.2
26 -6.7 38.0 31.0 7.4 41.2 35.6 2.4 48.7 33.7 4.3 47.9
27 -16.6 55.5 42.0 14.1 52.0 43.7 11.8 56.7 44.5 11.0 48.0
28 55.8 47.4 36.8 11.0 47.0 23.0 24.3 36.1 34.1 13.3 48.3
29 33.6 34.0 28.4 5.9 38.7 25.6 8.4 38.8 26.6 7.4 34.5
30 -3.4 43.3 34.3 9.5 44.4 51.5 -8.2 64.6 45.4 -2.1 64.9
31 -36.8 34.2 28.6 6.0 38.8 31.5 2.8 44.6 24.2 10.1 38.9
32 7.6 41.9 33.4 8.9 43.6 33.3 8.6 46.4 38.5 3.3 49.1
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① SS=0.63PI+7 [3]
② PT=0.37PI-7 [3]
③ LL=0.62PI+17.6 [7]

Table 2: Performance Comparison of PI and AI Predictions in Random Rotation

True values
Random rotation -60°to +60°

PI prediction（① ② ③） AI prediction (Seq2Seq-based)

x ± s x ± s R④ MAE x ± s R④ MAE
PI 46.41 ± 8.08 - - - - - -
SS 36.49 ± 7.28 36.24 ± 5.14 0.67 4.24 36.85 ± 8.17 0.80 4.08
PT 9.92 ± 6.32 10.64 ± 3.10 0.52 4.28 9.57 ± 6.93 0.73 4.08
LL 47.87 ± 9.93 46.4 ± 5.1 0.48 6.69 49.95 ± 8.17 0.76 5.51
① SS=0.63PI+7 [3]
② PT=0.37PI-7 [3]
③ LL=0.62PI+17.6 [7]
④ Pearson correlation coefficient with true value

33 55.0 36.9 30.2 7.0 40.5 14.8 22.1 27.8 19.7 17.2 27.1
34 56.4 39.6 31.9 8.0 42.2 26.8 12.8 40.0 32.2 7.4 42.9
35 -38.5 53.5 40.7 13.3 50.8 39.7 13.7 52.8 30.9 22.6 37.1
36 19.9 41.7 33.2 8.8 43.5 38.5 3.2 51.6 44.5 -2.8 54.9
37 -54.0 65.8 48.4 18.0 58.4 52.5 13.3 65.5 44.2 21.6 59.1
38 -23.4 42.8 34.0 9.3 44.1 46.4 -3.5 59.4 35.4 7.4 58.7
39 -22.9 45.6 35.7 10.3 45.9 47.9 -2.3 61.0 46.0 -0.4 56.4
40 46.4 35.9 29.6 6.6 39.9 32.9 3.0 46.0 32.0 3.9 48.1
41 -47.1 41.4 33.1 8.7 43.3 38.5 2.9 51.7 33.5 7.9 43.2
42 -1.1 51.7 39.6 12.6 49.7 42.3 9.4 55.3 38.7 13.0 56.1
43 -23.0 63.4 47.0 17.1 56.9 36.6 26.8 49.7 41.3 22.2 54.0
44 35.5 39.7 32.0 8.1 42.2 26.2 13.5 39.2 34.8 4.9 42.3
45 22.7 57.1 43.0 14.7 53.0 49.5 7.6 62.6 44.4 12.7 69.9
46 53.0 44.1 34.8 9.8 44.9 34.5 9.6 47.7 39.1 5.0 58.5
47 43.8 50.2 38.6 12.1 48.7 34.9 15.3 48.0 37.1 13.1 45.1
48 -6.0 36.6 30.1 6.9 40.3 32.9 3.7 46.1 31.2 5.4 52.2
49 32.5 34.6 28.8 6.1 39.1 24.5 10.1 37.6 33.2 1.3 39.4
50 0.7 44.2 34.8 9.8 45.0 39.0 5.2 52.2 39.6 4.5 48.4
51 -37.1 47.7 37.0 11.1 47.2 31.7 16.0 44.8 30.1 17.6 47.1
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Figure 4. Comparison of True Values, PI Predictions, and AI Predictions for SS, PT,
and LL Variables
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Figure 5. Comparison of MAE and Pearson Correlation for True Values, PI
Predictions, and AI Predictions of SS, PT, and LL Variables

Discussion
In the 1990s, Legaye and Dubousset introduced sagittal pelvic parameters (PI, PT,
and SS) to the field of spinal research [2]. Lots of scholars used these pelvic
parameters, along with lumbar lordosis (LL) and other factors, to analyze and classify
the sagittal sequence of normal individuals in an upright posture [2-17]. Their work
revealed the relationship between these parameters and numerous spinal disorders.
More importantly, many studies have confirmed that having a good match between
the pelvic parameters and the lumbar sequence is crucial for diagnosing and treating
spinal disorders, as well as for avoiding adverse postoperative events. As a result, the
evaluation systems for pelvic parameters (PI, SS and PT ) and LL have become a
research hotspot in the spinal field.

Vialle, R et al recruited 300 healthy volunteers and abstained SS=0.63PI+7 and
PT=0.37PI-7 [3]. Schwab et al. proposed that LL= PI±10° can be used as a rough
approximation of the relationship between pelvic parameters and lumbar lordosis in
an upright posture [10]. Mac-Thiong and Roussouly, on the other hand, derived a
more accurate formula based on a larger sample size: LL=0.62PI+17.6 [7].
Researchers from various countries have also developed formulas for predicting LL
using PI as the basis, based on their own experimental samples. In the study, due to
the test sample size (51 cases), R-value was not as high as in previous literature, but
the result showed that AI was better than PI in predicting SS, PT and LL.

To date, all mainstream spinal-pelvic sagittal studies both domestically and
internationally have been based solely on the PI system [2-17]. However, PI is just a
simple angular measurement of pelvic morphology. Although it largely reflects the
corresponding pelvic morphology, a single angle cannot accurately represent the
many specific features of an individual's pelvic morphology. Different features of
pelvic morphology may have varying impacts on spinal matching. Therefore, relying
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solely on the PI system to predict LL using pelvic parameters may cause us to
overlook other useful pelvic morphological parameters.

We cannot deny that in the era of human computational power, PI has been the best
and most straightforward pelvic morphological parameter for predicting LL. However,
we have now entered the era of AI computational power, where AI's superior
computing capabilities eliminate the need to consider the significant costs of human
labor and time [20]. Therefore, through AI-based analysis and prediction of the pelvis
and spine, we can avoid losing any data and not waste any potential meaningful
opportunities [19]. We developed an AI-based system using a Seq2Seq algorithm to
model the spatial correlation between pelvic and spinal keypoints [18]. The system
was trained on 274 cases and evaluated on a test dataset of 65 cases. A novel Angle
Correlation Network was proposed to address the issue of rotation. The system
outperformed a classic clinical study in terms of both mean absolute error and
correlation coefficient, using MAE and R value as evaluation metric. In this research,
we manually annotated key points of the pelvis and spine on standing lateral
full-length radiographs. The relationships between these key points generate much
more data than the simple relationship between PI and LL. In fact, not only can we
obtain the LL value of the spinal sequence, but we can also obtain more detailed local
sequence relationships, such as the lower lumbar lordosis angle of L4-S1, and so on.
All this data can be presented in a visualized form, which is something the PI system
cannot achieve.

There are still some shortcomings in this study, as we manually annotated key points
of the pelvis and predicted their relationships. Further research is needed to: 1)
improve AI-based automatic recognition of key points and prediction, 2) abandon key
point recognition and use purely morphological learning for prediction, which relies
on a more extensive data sample, and 3) improve three-dimensional morphological
recognition and prediction using technology like CT three-dimensional reconstruction,
EOS, and others. We firmly believe that this is just the beginning of AI-based
research on the sagittal sequence of the spine and pelvis, and it will ultimately far
surpass human capabilities.

Conclusion
In conclusion, this study demonstrates the potential of deep learning-based methods in
predicting spinal sagittal alignments. Our Seq2Seq-based AI model outperformed the
traditional method based on PI. By providing accurate and detailed predictions, the AI
model has a potential to improve surgical planning and outcomes for patients with
spinal diseases.
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