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Abstract

Public health surveillance for pathogens presents an optimization problem: we require
enough sampling to identify intervention-triggering shifts in pathogen epidemiology, such as
new introductions or sudden increases in prevalence, but not so much that costs due to surveil-
lance itself outweigh those from pathogen-associated illness. To determine this optimal sampling
frequency, we developed a general mathematical model for the introduction of a new pathogen
that, once introduced, increases in prevalence exponentially. Given the relative cost of infec-
tion vs. sampling, we derived equations for the expected combined cost of disease burden and
surveillance given a sampling frequency and thus the sampling frequency for which the expected
total cost is lowest.
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Introduction

A key goal of public health infectious disease surveillance systems is to detect a pathogen at an
early stage of its entry into the population, enabling interventions to limit its spread and the
harm it could inflict [1, 2, 3]. Such efforts are increasingly important given the many ways in
which communities are connected, with growing populations, global travel, and urbanization,
and given ecological shifts associated with climate change and other factors leading to emergence
and re-emergence of vector-borne diseases, with cases of locally acquired dengue and malaria
where they had been absent for many decades [4, 5, 6].

One important strategy for achieving early pathogen detection is monitoring for infected
individuals through robust clinical surveillance. However, clinical surveillance is inherently
limited in important ways. Infections may be mildly symptomatic, asymptomatic, or have a
long pre-symptomatic infectious phase, such that the pathogen population has spread extensively
before the first clinical cases are diagnosed and the pathogen identified [7]. In contexts where
access to care or resources are limited, missed cases and reporting delays can make it difficult
to rapidly detect and correctly diagnose new infections [8].

For pathogens that can be detected in environmental samples and that spread by vectors, a
complementary and critical strategy for early pathogen detection is monitoring through periodic
sampling of the environment. Pathogen detection in wastewater has been important for the
surveillance and control of poliovirus [9, 10] and has been used more recently for tracking the local
epidemic dynamics and evolution of SARS-CoV-2 [11, 12], norovirus [13], influenza [14], mpox
[15, 16], and other pathogens [17]. Efforts are underway to extend these techniques for tracking
antibiotic resistance genes in wastewater [18, 19]. For vector-borne pathogens, including West
Nile virus [20], Borrelia species [21], and Powassan virus [22], surveillance includes pathogen
detection in vectors collected via traps, with sampling also taking place at a given frequency.

Monitoring for infectious diseases requires substantial time, money, and infrastructure for
detection, interpretation, and response [23, 24, 25, 26, 27, 28]. Although the potential for
environmental and vector-based surveillance systems have been recognized and widely discussed,
and despite the massive push to fund and develop these programs, particularly wastewater efforts
[29, 30], there remains a critical gap in our understanding: How should surveillance be designed
to achieve maximal effectiveness [31, 32, 33, 34, 35, 36]? A central consideration is how often
testing should be performed (Figure 1). Here, we addressed this question by formulating a
simple, stochastic model for pathogen introduction, growth, and detection in the presence of
periodic sampling and testing. We identified the key parameters of this process, and we derived
a simple equation for the expected total cost (i.e., the sum of all costs related to surveillance
and to effects from the disease, when considered as an average over many realizations of the
stochastic dynamics). The expected total cost is a function of the parameters of the model, and
given values for these parameters, we can minimize the expected total cost.

Our goal was to minimize the expected total surveillance and disease cost for the detection of
the first appearance of a pathogen. Accordingly, we employed a simple model of surveillance to
detect the entry of a pathogen into a population, assuming that, once the pathogen is present,
its prevalence increases exponentially. Sampling begins at time t = 0 and continues regularly
at time tn = nT , where n ≥ 1 and T is the sampling period. Each sampling event incurs a cost
c1, and since there are 1/T sampling events per unit time, the sampling cost per unit time is
given by c1/T . Copies of the pathogen are introduced after time t = 0 according to a Poisson
process, such that the waiting times between initiation events are exponentially distributed with
rate λ. Once a new lineage is introduced, it also reproduces (transmits) according to a Poisson
process, such that the expected prevalence of the pathogen grows exponentially with rate r.
If a sampling event detects a copy of a pathogen that belongs to a particular lineage, then
that lineage is “detected.” Let p be the probability that a sampling event detects a copy of a
pathogen, and since each detection occurs independently, the probability that a sampling event

2

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


-25 -20 -15 -10 -5 0 5 10 15
Time, t

2

4

6

8

10

P
a
th

o
g
e
n

p
o
p
u
la

ti
o
n
 s

iz
e

T = 2;  cost = 15 (13+2)                                          a

Pathogen introduction

-25 -20 -15 -10 -5 0 5 10 15
Time, t

2

4

6

8

10

P
a
th

o
g
e
n

p
o
p
u
la

ti
o
n
 s

iz
e

T = 3;  cost = 13 (9+4)                                          a

Pathogen introduction

-25 -20 -15 -10 -5 0 5 10 15
Time, t

2

4

6

8

10

P
a
th

o
g
e
n

p
o
p
u
la

ti
o
n
 s

iz
e

T = 4;  cost = 15 (7+8)                                          a

Pathogen introduction

Figure 1: Optimization of surveillance. A simple scenario illustrates how surveillance can be
optimized. In the plot, the dotted blue lines represent sampling events, and the solid red curves
represent the abundance of a pathogen. Here, we assume that a pathogen first emerges at time
t = 0 with the pathogen population growing exponentially, doubling at each subsequent time step.
Sampling of the environment occurs at times −25 + nT—where T is the sampling period and n ≥ 1
is an integer—until the pathogen is first detected. We plot the outcomes if the sampling period had
been (A) T = 2, (B) T = 3, or (C) T = 4. If the cost associated with one sampling event is equal to
the cost associated with one instance of the pathogen, and if costs accumulate linearly, then T = 3
would have resulted in the lowest total cost.

detects a lineage of size n is given by 1− (1− p)n. Once a lineage is detected, we assume that
intervention is immediate and is successful at suppressing further spread of that lineage. If a
lineage has N copies of the pathogen when it is detected, then the disease cost due to that
lineage is given by c2N . Letting 〈N〉 denote the expected size of a lineage when it is detected,
the expected disease cost due to a lineage is given by c2〈N〉. Since new lineages appear at rate
λ, the expected disease cost per unit time is given by λc2〈N〉. The expected total cost per unit
time is then c1/T + λc2〈N〉. The model is illustrated in Figure 2.

Results

We derived an accurate approximation for the expected total cost of testing and disease burden
per unit time, 〈C〉:

〈C〉 =
c1
T

+ λc2

(

erT − 1

rT

)(

1−
1− e−rT

log(1− p)

)

(1)
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Figure 2: Stochastic surveillance model. A single realization of the stochastic surveillance and
disease dynamics is shown. The environment is tested at times 5n, where n is an integer and
0 ≤ n ≤ 65. There are thus 66 testing events, so the cumulative surveillance cost is 66. The first
lineage begins at time t ≈ 16.7 and is detected at time t = 50, when its size is 61. The second lineage
begins at time t ≈ 75.8 and is detected at time t = 120, when its size is 116. The third lineage begins
at time t ≈ 210.6 and is detected at time t = 280, when its size is 32. The cumulative disease cost
is thus 61 + 116 + 32 = 209. The total surveillance and disease cost is 66 + 209 = 275, and the total
cost per unit time is 275/325 = 11/13.

Details on the derivation of Equation (1) are provided in the Supplementary Information. By
comparing Equation (1) with c1/T +λc2〈N〉, notice that the product of the two factors in large
parentheses is equal to the expected size of an outbreak when it is detected, 〈N〉. It is helpful to
understand the behavior of 〈N〉 as a function of p, r, and T . In the limit of a perfectly sensitive
detector (i.e., p → 1), we have − log(1− p) → ∞, and the second factor in big parentheses just
approaches 1. So as p → 1, we have 〈N〉 ≈ (erT − 1)/(rT ), which is the expected size of the
outbreak when the first test happens, given an introduction. If the detector has poor sensitivity
(i.e., p ≪ 1), then − log(1 − p) ≈ p, and the second factor in big parentheses is approximately
equal to (1− e−rT )/p. So for small values of p, we have 〈N〉 ≈ (erT − 1)(1− e−rT )/(rTp). For
large values of the pathogen growth rate, r, we have 〈N〉 ≈ [erT /(rT )][1 − 1/ log(1 − p)], and
for small values of r, we have 〈N〉 → 1—i.e., the pathogen is detected before it has a chance to
produce new infections. Since 〈N〉 is a function of the product rT (not of r and T individually),
its behavior as a function of the testing period, T , is the same: For large values of T , we have
〈N〉 ≈ [erT /(rT )][1−1/ log(1−p)], and for small values of T , we have 〈N〉 → 1. Notice that 〈N〉
is a decreasing function of p, an increasing function of r, and an increasing function of T—i.e.,
a less-sensitive detector, a more rapidly growing pathogen, or a larger testing interval all result
in a larger expected size of the outbreak when it is detected.

The expected infection cost per unit time, λc2〈N〉, is therefore also an increasing function of
the testing period, T , and this quantity becomes arbitrarily large as T → ∞. The surveillance
cost per unit time, c1/T , however, is a decreasing function of T , and this quantity becomes
arbitrarily large as T → 0. These behaviors are evident in Figure 3, where we plotted 〈C〉 as a
function of the sampling frequency, f = 1/T , for different values of the five model parameters.
It is instructive to consider the effects of very large or very small values of f on 〈C〉. As we
increase f , we can detect the disease more rapidly, thereby diminishing disease-related costs.
But returns are diminishing: We can—at best—hope to discover the disease as a single unit,
representing the pathogen introduction, before it has begun to spread and proliferate, while
increasing f further can add arbitrarily large surveillance costs. At the other extreme, setting
f too small allows the disease to proliferate before any intervention is applied. Therefore, as
shown in each of the curves in Figure 3, 〈C〉 attains a minimum for a particular value of f .
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Figure 3: Expected total cost for a particular type of pathogen. (A through F) We set
c1 = 1, and we plot 〈C〉, given by Equation (1), as a function of f for several values of λ, r, c2, and
p. The black dots are measurements of the expected total cost from simulating the true stochastic
process. The 95% confidence intervals are smaller than the size of the data points. The vertical lines
show the sampling frequencies for which the expected total cost is minimal in each case.

In designing and performing environmental surveillance, we do not know a priori the char-
acteristics of a particular pathogen that may be introduced and result in an outbreak. Rather,
for optimizing surveillance, the requirement is to have an understanding of the likely character-
istics of new pathogens that might emerge. As a simple example, suppose that our surveillance
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platform is capable of detecting not just one but two different pathogens. Further, suppose
that these two pathogens have different costs and are initiated at different rates. Let c2(1)
denote the per-case cost for the first pathogen, and let c2(2) denote the per-case cost for the
second pathogen. Similarly, let λ(1) denote the rate of introductions for the first pathogen,
and let λ(2) denote the rate of introductions for the second pathogen. For this scenario, the
expected infection cost per unit time is equal to [λ(1)][c2(1)][〈N〉] + [λ(2)][c2(2)][〈N〉]. It is also
possible that the two pathogens differ in their growth rates and in their susceptibility to being
detected. The first pathogen might have corresponding parameters r(1) and p(1), while the
second pathogen might have parameters r(2) and p(2). As a result, the expected size of an
outbreak of the first pathogen, 〈N〉(1), might be different from the expected size of an outbreak
of the second pathogen, 〈N〉(2). The expected infection cost per unit time is then equal to
[λ(1)][c2(1)][〈N〉(1)] + [λ(2)][c2(2)][〈N〉(2)]. If there are more than two types of pathogens that
can emerge and be detected by our surveillance platform, then in the calculation of the expected
infection cost per unit time, we would simply add another term for each additional pathogen.

An important point is that the possible values of the parameters c2, r, and p that a pathogen
can have are not discrete. Accordingly, let dc2 dr dp λ

′(c2, r, p) denote the (infinitesimal) rate at
which pathogens with per-case cost c2, growth rate r, and detection probability p emerge. In
this more general treatment, λ′(c2, r, p) is a rate density that is a function of c2, r, and p. To
calculate the expected pathogen cost, we integrate dc2 dr dp λ

′(c2, r, p) c2〈N〉 over all possible
values of c2, r, and p. Accounting for all possible types of pathogens that might emerge, the
expected total cost per unit time, 〈C ′〉, is equal to

〈C ′〉 =
c1
T

+

∫

∞

0

dc2

∫

∞

0

dr

∫

1

0

dp

{

λ′(c2, r, p)

[

c2

(

erT − 1

rT

)(

1−
1− e−rT

log(1− p)

)]}

(2)

Equation (2) can be quickly calculated numerically for different values of the testing period,
T . The value of 1/T for which the expected total cost is lowest specifies the optimal testing
frequency, F ∗. From Equation (2), we have

F ∗ =
1

argminT 〈C ′〉
(3)

Figure 4 shows how this works. In Figure 4A, we show one possible form for the probability
density function for c2. Pathogens with little or no associated cost (i.e., those for which c2
is close to zero) are most common, while more harmful pathogens occasionally arise. The
parameter a controls the shape of the probability density function. For smaller values of a,
the distribution has a longer tail, meaning that there is a higher chance that a new pathogen
is harmful. In Figure 4B, we use this form for the probability density function for c2, we set
r = 0.1 and p = 0.01, we set the total rate of emergence of new pathogens to 0.001, and we plot
the expected total cost, 〈C ′〉. (In the specification of λ′, δ denotes the Dirac delta function.)
For smaller values of a, the optimal testing frequency for environmental surveillance increases
accordingly.

Similarly, in Figure 4C, we show one possible form for the probability density function for r.
We again use the parameter a to control the shape of the probability density function. Smaller
values of a result in a longer tail to the distribution, so that pathogens with more rapid growth
rates are more likely to arise. In Figure 4D, we use this form for the probability density function
for r, we set c2 = 1 and p = 0.01, we set the total rate of emergence of new pathogens to 0.001,
and we plot 〈C ′〉. For smaller values of a, we must sample the environment more frequently.
Notice that as the sampling frequency decreases below its optimum, the expected total cost
rapidly increases. This is because there is a chance that pathogens with unusually large growth
rates are introduced, and if their subsequent exponential growth is not halted soon enough, then
the resulting pathogen-associated costs can become extremely large.
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Figure 4: Expected total cost accounting for many types of pathogens. (A, C, and E) We
show example probability density functions for the parameters c2, r, and p, respectively. For each
case, we introduce a single parameter, a, which controls the shape of the probability density function.
(B, D, and F) We set c1 = 1, and we plot 〈C ′〉, given by Equation (2), as a function of f for several
rate density functions, λ′(c2, r, p). The vertical lines show the sampling frequencies for which the
expected total cost is minimal in each case.

In Figure 4E, we show one possibility for the probability density function for p. For smaller
values of a, there is a higher chance of pathogens being introduced that have low sensitivity to
being detected. Using this form for the probability density function for p in Figure 4F, setting
c2 = 1 and r = 0.1, and setting the total rate of emergence of new pathogens to 0.001, we plot
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〈C ′〉. (In the specification of λ′, θ denotes the Heaviside step function.) Smaller values of a result
in a larger optimal testing frequency. Details on Figure 4 are provided in the Supplementary
Information.

The example probability density functions in Figure 4 were chosen here for convenience:
they have nice analytical forms, and they admit simple analytical solutions when substituted
into Equation (2). For optimizing an environmental or vector surveillance system in practice,
one would construct a estimated form for λ′(c2, r, p) based on experimental or observational
data, and the optimal testing frequency would be determined numerically using Equation (3).
Optimization of environmental or vector surveillance thus requires an understanding of the cost
of each sampling and testing event, c1, and an understanding of the function for the rate of
emergence of new pathogens, λ′(c2, r, p).

Discussion

Equations (2) and (3) specify the optimal frequency at which to perform sampling and testing.
Their use for optimizing testing frequency requires an estimation of the likely values of the per-
case cost, c2, rate of growth, r, and susceptibility to detection, p, of any emerging pathogens.
The rate density, λ′(c2, r, p), is large if pathogens with those parameter values are likely to
emerge, and small otherwise. Estimating the dependence of λ′ on p entails many considerations.
Molecular properties of emerging pathogens must be anticipated, and this must be interpreted
in the context of whichever laboratory tests are used to detect it. Spatial structure of the
landscape over which pathogens can emerge further influences the dependence of λ′ on p. For
instance, if a pathogen emerges far from a wastewater treatment facility, then the number of
infections in the vicinity of the location of sampling might be much smaller than the total size
of the outbreak. This effect could be incorporated by using a reduced value of λ′. A similar
consideration arises in sampling a vector population, where a pathogen might originate and
begin spreading in individuals that are far from the nearest trap. Inferring the dependence of
λ′ on r may be accomplished by analysis of historical data of either clinical cases or abundance
of a pathogen in a vector species, together with maximum likelihood estimation. A larger
number of outbreaks having occurred during a particular time period would correspond to a
larger value of λ′. Optimization of testing frequency further requires a formal understanding
of surveillance-related and pathogen-related costs [37, 38, 39]. Mathematically, the question of
how to optimize a surveillance platform is undefined unless all relevant surveillance-related and
pathogen-related costs are quantified in the same units. This is challenging, since the underlying
factors are inherently very different in nature. Nonetheless, such understanding is essential if
environmental and vector surveillance for infectious diseases is to be meaningfully optimized.

Our model for determining the optimal testing frequency is broadly applicable. If α is the
probability of a test resulting in a false positive, then the sampling cost can be adjusted using the
substitution c1 → c1+αk, where k is the cost due to a false positive. This consideration can be
extended by assuming that the probability of a false positive is dependent on p, i.e., α → α(p).
Although the long-time dynamics of an emerging pathogen can show complex behavior, the
early-time dynamics are often approximately exponential, and the associated disease-related
costs at early times are expected to scale roughly linearly with the size of the outbreak. Both of
these features are incorporated in our model. Once a pathogen is detected and an intervention
is implemented, spread of the pathogen and its associated costs are not immediately halted,
and this is accounted for by making the substitution λ′(c2, r, p) → λ′(κc2, r, p), where κ < 1.
A further consideration is that intervention is unlikely to completely eliminate the pathogen.
Subsequent sampling and testing would then monitor for when the pathogen becomes sufficiently
abundant again that additional intervention is warranted. This may be approximately described
by using a rate density for introductions that is time-dependent (i.e., λ′(c2, r, p) → λ′(c2, r, p, t))
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and increases if there was a recently suppressed outbreak. The increased value of λ′ accounts
for the possibility of a follow-up outbreak due to cases that the intervention failed to extinguish.
Changes in weather and climate affect the risk of an outbreak—especially for many vector-borne
pathogens [40]—and this could also be modeled through time-dependence of λ′.

Our approach can be applied to answer another important question: Where should environ-
mental sampling be performed? This would work by introducing a spatial structure in the model.
The pathogen can be introduced in one location and then migrate to different locations as it
proliferates. By numerically running the stochastic dynamics with spatial structure, an expected
total surveillance and disease cost can be calculated. By trying different sampling locations, it
is possible to find the sampling locations for which the expected total cost is minimal.

Environmental and vector surveillance are equally instrumental for tracking the prevalence
of a pathogen [41]. An understanding of how and when to intervene is therefore essential
[42, 43]. If false positives are too frequent, then intervention costs will accumulate, leading to
costly surveillance. If the designated signal that is required for intervention is too strong, then
the pathogen can spread to the point where intervention has limited effectiveness in mitigating
disease-related costs. The optimal testing frequency could also be adjusted as new data become
available [44]. If tracking indicates increased prevalence of a pathogen, then more frequent
sampling and testing might be warranted. A further possibility is that testing could be performed
frequently over several seasons to gain an understanding of the typical seasonal behavior for new
pathogens or in new ecological settings to inform optimization and more efficiently track the
abundance of the pathogen.

Our model and its many possible extensions can thus inform the design of these critical
aspects of environmental and vector surveillance platforms. Our work provides a general and
robust foundation for mechanistic optimization of environmental surveillance for infectious dis-
eases.

Acknowledgments

This project has been funded in part by contract 200-2016-91779 with the Centers for Disease
Control and Prevention. Disclaimer: The findings, conclusions, and views expressed are those
of the author(s) and do not necessarily represent the official position of the Centers for Disease
Control and Prevention (CDC). S.M.K. received funding from NIH T32 training grant 2 T32
AI 7535-21 A1. M.L. is grateful for funding from the Morris-Singer Fund.

Competing interests

The authors declare no competing interests.

Code availability

All code for running the simulations and reproducing the figures is available at https://github.com/jolejarz.

References

[1] Jillian Murray and Adam L. Cohen. Infectious disease surveillance. In Stella R. Quah,
editor, International Encyclopedia of Public Health (Second Edition), pages 222–229. Aca-
demic Press, Oxford, second edition edition, 2017.

9

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://github.com/jolejarz
https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


[2] Jobie Budd, Benjamin S. Miller, Erin M. Manning, Vasileios Lampos, Mengdie Zhuang,
Michael Edelstein, Geraint Rees, Vincent C. Emery, Molly M. Stevens, Neil Keegan,
Michael J. Short, Deenan Pillay, Ed Manley, Ingemar J. Cox, David Heymann, Anne M.
Johnson, and Rachel A. McKendry. Digital technologies in the public-health response to
covid-19. Nat. Med., 26:1183–1192, 2020.

[3] Daniel B. Jernigan, Dylan George, and Marc Lipsitch. Learning from covid-19 to improve
surveillance for emerging threats. Am. J. Public Health, 113 (5):520–522, 2023.

[4] Rachel E. Baker, Ayesha S. Mahmud, Ian F. Miller, Malavika Rajeev, Fidisoa Rasam-
bainarivo, Benjamin L. Rice, Saki Takahashi, Andrew J. Tatem, Caroline E. Wagner, Lin-
Fa Wang, Amy Wesolowski, and C. Jessica E. Metcalf. Infectious disease in an era of global
change. Nat. Rev. Microbiol., 20:193–205, 2021.

[5] Melissa Kretschmer, Jennifer Collins, Ariella P. Dale, Brenna Garrett, Lia Koski, Karen
Zabel, R. Nicholas Staab, Katie Turnbow, Judah Nativio, Kelsey Andrews, William E.
Smith, John Townsend, Nicole Busser, James Will, Kathryn Burr, Forrest K. Jones,
Gilberto A. Santiago, Kelly A. Fitzpatrick, Irene Ruberto, Kathryn Fitzpatrick, Jessica R.
White, Laura Adams, and Rebecca H. Sunenshine. Notes from the field: First evidence of
locally acquired dengue virus infection—maricopa county, arizona, november 2022. Morb.
Mortal. Wkly. Rep., 72 (11):290–291, 2023.

[6] CDC. Important updates on locally acquired malaria cases identified in Florida, Texas,
and Maryland. CDC Health Alert Network, 2023:HAN00496, 2023.

[7] Daniel P. Oran and Eric J. Topol. Prevalence of asymptomatic sars-cov-2 infection. Ann.
Intern. Med., 173 (5):362–367, 2020.

[8] Sandra Crouse Quinn and Supriya Kumar. Health inequalities and infectious disease epi-
demics: A challenge for global health security. Biosecur. Bioterror., 12 (5):263–273, 2014.

[9] Megan B. Diamond, Aparna Keshaviah, Ana I. Bento, Otakuye Conroy-Ben, Erin M.
Driver, Katherine B. Ensor, Rolf U. Halden, Loren P. Hopkins, Katrin G. Kuhn, Chris-
tine L. Moe, Eric C. Rouchka, Ted Smith, Bradley S. Stevenson, Zachary Susswein, Ja-
son R. Vogel, Marlene K. Wolfe, Lauren B. Stadler, and Samuel V. Scarpino. Wastewater
surveillance of pathogens can inform public health responses. Nat. Med., 28:1992–1995,
2022.

[10] Shimoni Shah, Sylvia Xiao Wei Gwee, Jamie Qiao Xin Ng, Nicholas Lau, Jiayun Koh,
and Junxiong Pang. Wastewater surveillance to infer covid-19 transmission: A systematic
review. Sci. Total Environ., 804:150060, 2022.

[11] Jordan Peccia, Alessandro Zulli, Doug E. Brackney, Nathan D. Grubaugh, Edward H. Ka-
plan, Arnau Casanovas-Massana, Albert I. Ko, Amyn A. Malik, Dennis Wang, Mike Wang,
Joshua L. Warren, Daniel M. Weinberger, Wyatt Arnold, and Saad B. Omer. Measurement
of sars-cov-2 rna in wastewater tracks community infection dynamics. Nat. Biotechnol.,
38:1164–1167, 2020.

[12] Joshua I. Levy, Kristian G. Andersen, Rob Knight, and Smruthi Karthikeyan. Wastewater
surveillance for public health. Science, 379 (6627):26–27, 2023.

[13] Yue Huang, Nan Zhou, Shihan Zhang, Youqin Yi, Ying Han, Minqi Liu, Yue Han, Naiyang
Shi, Liuqing Yang, Qiang Wang, Tingting Cui, and Hui Jin. Norovirus detection in wastew-
ater and its correlation with human gastroenteritis: a systematic review and meta-analysis.
Environ. Sci. Pollut. Res., 29:22829–22842, 2022.

[14] Elisabeth Mercier, Patrick M. D’Aoust, Thakali Ocean, Nada Hegazy, Jian-Jun Jia, Zhihao
Zhang, Walaa Eid, Julio Plaza-Diaz, Md Pervez Kabir, Wanting Fang, Aaron Cowan,
Sean E. Stephenson, Lakshmi Pisharody, Alex E. MacKenzie, Tyson E. Graber, Shen Wan,

10

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


and Robert Delatolla. Municipal and neighbourhood level wastewater surveillance and
subtyping of an influenza virus outbreak. Sci. Rep., 12:15777, 2022.

[15] William Chen and Kyle Bibby. Model-based theoretical evaluation of the feasibility of
using wastewater-based epidemiology to monitor monkeypox. Environ. Sci. Technol. Lett.,
9 (9):772–778, 2022.

[16] Ananda Tiwari, Sangeet Adhikari, Devrim Kaya, Md. Aminul Islam, Bikash Malla, Samen-
dra P. Sherchan, Ahmad I. Al-Mustapha, Manish Kumar, Srijan Aggarwal, Prosun Bhat-
tacharya, Kyle Bibby, Rolf U. Halden, Aaron Bivins, Eiji Haramoto, Sami Oikarinen, An-
namari Heikinheimo, and Tarja Pitkanen. Monkeypox outbreak: Wastewater and environ-
mental surveillance perspective. Sci. Total Environ., 856 (2):159166, 2023.

[17] Alexandria B. Boehm, Bridgette Hughes, Dorothea Duong, Vikram Chan-Herur, Anna
Buchman, Marlene K. Wolfe, and Bradley J. White. Wastewater concentrations of human
influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and sea-
sonal coronavirus nucleic-acids during the covid-19 pandemic: a surveillance study. Lancet
Microbe, 2023.

[18] Anh Q. Nguyen, Hang P. Vu, Luong N. Nguyen, Qilin Wang, Steven P. Djordjevic, Er-
ica Donner, Huabing Yin, and Long D. Nghiem. Monitoring antibiotic resistance genes
in wastewater treatment: Current strategies and future challenges. Sci. Total Environ.,
783:146964, 2021.

[19] Ananda Tiwari, Paula Kurittu, Ahmad I. Al-Mustapha, Viivi Heljanko, Venla Johansson,
Ocean Thakali, Shyam Kumar Mishra, Kirsi-Maarit Lehto, Anssi Lipponen, Sami Oikari-
nen, Tarja Pitkanen, WastPan Study Group, and Annamari Heikinheimo. Wastewater
surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front. Micro-
biol., 13:977106, 2022.

[20] Lyle R. Petersen, Aaron C. Brault, and Roger S. Nasci. West nile virus: Review of the
literature. JAMA, 310 (3):308–315, 2013.

[21] Rebecca J. Eisen and Christopher D. Paddock. Tick and tickborne pathogen surveillance
as a public health tool in the united states. J. Med. Entomol., 58 (4):1490–1502, 2021.

[22] Meghan E. Hermance and Saravanan Thangamani. Powassan virus: An emerging arbovirus
of public health concern in north america. Vector Borne Zoonotic Dis., 17 (7):453–462,
2017.

[23] Michael A. Pfaller. Molecular approaches to diagnosing and managing infectious diseases:
Practicality and costs. Emerging Infect. Dis., 7 (2):312–318, 2001.

[24] Gonzalo M. Vazquez-Prokopec, Luis F. Chaves, Scott A. Ritchie, Joe Davis, and Uriel
Kitron. Unforeseen costs of cutting mosquito surveillance budgets. PLOS Negl. Trop. Dis.,
4 (10):e858, 2010.

[25] Marieta Braks, Jolyon M. Medlock, Zdenek Hubalek, Marika Hjertqvist, Yvon Perrin, Re-
naud Lancelot, Els Duchyene, Guy Hendrickx, Arjan Stroo, Paul Heyman, and Hein Sprong.
Vector-borne disease intelligence: strategies to deal with disease burden and threats. Front.
Public Health, 2:280, 2014.

[26] Rose S. Kantor, Hannah D. Greenwald, Lauren C. Kennedy, Adrian Hinkle, Sasha Harris-
Lovett, Matthew Metzger, Melissa M. Thornton, Justin M. Paluba, and Kara L. Nelson.
Operationalizing a routine wastewater monitoring laboratory for sars-cov-2. PLOS Water,
1 (2):e0000007, 2022.

[27] Lucky G. Ngwira, Bhawana Sharma, Kabita Bade Shrestha, Sushil Dahal, Reshma Tulad-
har, Gerald Manthalu, Ben Chilima, Allone Ganizani, Jonathan Rigby, Oscar Kanjerwa,

11

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


Kayla Barnes, Catherine Anscombe, Joseph Mfutso-Bengo, Nicholas Feasey, and Mercy
Mvundura. Cost of wastewater-based environmental surveillance for sars-cov-2: Evidence
from pilot sites in blantyre, malawi and kathmandu, nepal. PLOS Glob. Public Health, 2
(12):e0001377, 2022.

[28] Brittany Hagedorn, Nicolette A. Zhou, Christine S. Fagnant-Sperati, Jeffry H. Shirai, Jillian
Gauld, Yuke Wang, David S. Boyle, and John Scott Meschke. Estimates of the cost to build
a stand-alone environmental surveillance system for typhoid in low- and middle-income
countries. PLOS Glob. Public Health, 3 (1):e0001074, 2023.

[29] Marta Gwinn, Duncan R. MacCannell, and Rima F. Khabbaz. Integrating advanced molec-
ular technologies into public health. J. Clin. Microbiol., 55 (3):703–714, 2017.

[30] Amy E. Kirby, Maroya Spalding Walters, Wiley C. Jennings, Rebecca Fugitt, Nathan
LaCross, Mia Mattioli, Zachary A. Marsh, Virginia A. Roberts, Jeffrey W. Mercante,
Jonathan Yoder, and Vincent R. Hill. Using wastewater surveillance data to support the
covid-19 response—united states, 2020–2021. Morb. Mortal. Wkly. Rep., 70 (36):1242–1244,
2021.

[31] Weidong Gu, Thomas R. Unnasch, Charles R. Katholi, Richard Lampman, and Robert J.
Novak. Fundamental issues in mosquito surveillance for arboviral transmission. Trans. R.
Soc. Trop. Med. Hyg., 102 (8):817–822, 2008.

[32] P. N. Thompson and E. Etter. Epidemiological surveillance methods for vector-borne
diseases. Rev. Sci. Tech. Off. Int. Epiz., 34 (1):235–247, 2015.

[33] Florence Fournet, Frederic Jourdain, Emmanuel Bonnet, Stephanie Degroote, and Valery
Ridde. Effective surveillance systems for vector-borne diseases in urban settings and trans-
lation of the data into action: a scoping review. Infect. Dis. Poverty, 7:99, 2018.

[34] Warish Ahmed, Aaron Bivins, Paul M. Bertsch, Kyle Bibby, Phil M. Choi, Kata Farkas,
Pradip Gyawali, Kerry A. Hamilton, Eiji Haramoto, Masaaki Kitajima, Stuart L. Simpson,
Sarmila Tandukar, Kevin V. Thomas, and Jochen F. Mueller. Surveillance of sars-cov-2 rna
in wastewater: Methods optimization and quality control are crucial for generating reliable
public health information. Curr. Opin. Environ. Sci. Health, 17:82–93, 2020.

[35] I. Michael-Kordatou, P. Karaolia, and D. Fatta-Kassinos. Sewage analysis as a tool for the
covid-19 pandemic response and management: the urgent need for optimised protocols for
sars-cov-2 detection and quantification. J. Environ. Chem. Eng., 8 (5):104306, 2020.

[36] Aparna Keshaviah, Xindi C. Hu, and Marisa Henry. Developing a flexible national wastewa-
ter surveillance system for covid-19 and beyond. Environ. Health Perspect., 129 (4):045002,
2021.

[37] Jakob Zinsstag, Jurg Utzinger, Nicole Probst-Hensch, Lv Shan, and Xiao-Nong Zhou. To-
wards integrated surveillance-response systems for the prevention of future pandemics. In-
fect. Dis. Poverty, 9:140, 2020.

[38] Aaron S. Bernstein, Amy W. Ando, Ted Loch-Temzelides, Mariana M. Vale, Binbin V.
Li, Hongying Li, Jonah Busch, Colin A. Chapman, Margaret Kinnaird, Katarzyna Nowak,
Marcia C. Castro, Carlos Zambrana-Torrelio, Jorge A. Ahumada, Lingyun Xiao, Patrick
Roehrdanz, Les Kaufman, Lee Hannah, Peter Daszak, Stuart L. Pimm, and Andrew P.
Dobson. The costs and benefits of primary prevention of zoonotic pandemics. Sci. Adv., 8
(5):eabl4183, 2022.

[39] Milton C. Weinstein, George Torrance, and Alistair McGuire. Qalys: The basics. Value
Health, 12 (1):S5–S9, 2009.

[40] Caitlin Pley, Megan Evans, Rachel Lowe, Hugh Montgomery, and Sophie Yacoub. Digital
and technological innovation in vector-borne disease surveillance to predict, detect, and
control climate-driven outbreaks. Lancet Planet. Health, 5 (10):e739–e745, 2021.

12

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


[41] Hailay Desta Teklehaimanot, Joel Schwartz, Awash Teklehaimanot, and Marc Lipsitch.
Alert threshold algorithms and malaria epidemic detection. Emerg. Infect. Dis., 10
(7):1220–1226, 2004.

[42] Marc Lipsitch, Steven Riley, Simon Cauchemez, Azra C. Ghani, and Neil M. Ferguson.
Managing and reducing uncertainty in an emerging influenza pandemic. N. Engl. J. Med.,
361 (2):112–115, 2009.

[43] Corey M. Peak, Lauren M. Childs, Yonatan H. Grad, and Caroline O. Buckee. Comparing
nonpharmaceutical interventions for containing emerging epidemics. Proc. Natl. Acad. Sci.
U.S.A., 114 (15):4023–4028, 2017.

[44] Nicholas B. DeFelice, Eliza Little, Scott R. Campbell, and Jeffrey Shaman. Ensemble
forecast of human west nile virus cases and mosquito infection rates. Nat. Commun.,
8:14592, 2017.

13

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


Supplementary Information:
Optimal environmental testing frequency

for outbreak surveillance

Jason W. Olejarz, Kirstin I. Oliveira Roster, Stephen M. Kissler,
Marc Lipsitch, Yonatan H. Grad

This Supplementary Information is organized as follows: In Section 1, we describe the
surveillance protocol under consideration, and we derive the surveillance cost per unit time.
In Section 2, we define the process by which new pathogens emerge, we define the dynamics
of a pathogen that is growing in abundance, we define the manner in which each pathogen
is detected, and we calculate the expected infection cost per unit time. In Section 3, we
calculate the expected total cost per unit time, and we determine the optimal testing fre-
quency. In Section 4, we describe how our model generalizes to account for the emergence
of pathogens with different characteristics.

1 Surveillance cost

An important consideration for implementing environmental surveillance for pathogens is
the frequency at which tests are performed. Environmental sampling and testing should
be done frequently enough that an emerging pathogen is intercepted quickly, but not so
frequently that surveillance costs outweigh the benefits of early detection. Here, we assume
that whenever the environment is sampled and a test is conducted, a surveillance cost equal
to c1 is incurred. We also assume that surveillance costs are additive, so that if n tests are
performed, then the total surveillance cost is equal to nc1.

We consider that environmental tests are performed with period T . Since the cost of a
single test is equal to c1, and since the time between tests is equal to T , the surveillance cost
per unit time is given by

C1 =
c1
T

(1)

2 Expected infection cost

The costs incurred from the surveillance program itself must be considered in the context of
infection-related costs. The costs due to an outbreak can vary depending on several factors:

• When the pathogen first appears in relation to the first environmental test that is
performed following its introduction
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• How the pathogen grows after it is introduced

• The sensitivity of the environmental testing program for detecting the pathogen

• The per-case infection cost

In this section, we describe each of these points in detail. Considering the full stochastic dy-
namics of pathogen initiation, pathogen growth, and pathogen detection, we derive a solution
for the expected size of an outbreak when it is detected. We then derive an approximation
for the expected size of an outbreak by assuming deterministic growth of a pathogen after
it is initiated.

2.1 Emergence of a pathogen

For determining the optimal testing frequency, we require knowledge of how new pathogens
are introduced. We assume that the introduction of new pathogens follows a Poisson process.
New pathogens are initiated independently and continuously in time at rate λ.

2.2 Growth of a pathogen

We also require knowledge of how a pathogen increases in abundance once it first appears.
Here, we assume that each instance of the pathogen makes new instances of the pathogen
at rate r according to a Poisson process. Let xm,n(t) denote the probability that there are n
copies of the pathogen at time t, given that there are m copies of the pathogen at time 0. In
this section, we present the steps for calculating xm,n(t), beginning with the simplest cases
and then progressing to the solution for any values of m and n, where m ≤ n.

2.2.1 m = 1, n = 1

Suppose we start with a single instance of the pathogen at time 0 (m = 1). x1,1(t) gives the
probability that the original instance of the pathogen has not produced any new instances
of the pathogen up to time t (n = 1). x1,1(t) is given by

x1,1(t) = e−rt

2.2.2 m = 1, n = 2

Next, consider x1,2(t), which is the probability that the original instance of the pathogen has
produced a single new instance of the pathogen by time t (n = 2). For this to occur, three
things must happen: The original instance of the pathogen does not make any new instances
of the pathogen between times 0 and t1, the original instance of the pathogen makes a new
copy of itself at time t1, and neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times t1 and t. We must integrate over all values of
t1 between 0 and t:

x1,2(t) =

∫ t

t1=0

e−rt1(r dt1)e
−2r(t−t1)
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Simplifying, we have

x1,2(t) =

(∫ t

t1=0

ert1(r dt1)

)
e−2rt

Performing the integration, we get

x1,2(t) =
(
ert − 1

)
e−2rt

This then becomes
x1,2(t) =

(
1− e−rt

)
e−rt

2.2.3 m = 1, n = 3

Next, consider x1,3(t), which is the probability that the original instance of the pathogen has
led to two new instances of the pathogen by time t (n = 3). For this to occur, five things
must happen: The original instance of the pathogen does not make any new instances of
the pathogen between times 0 and t2, the original instance of the pathogen makes a new
copy of itself at time t2, neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times t2 and t1, one of the two instances of the
pathogen makes a new copy of itself at time t1, and none of the three resulting instances
of the pathogen make any new instances of the pathogen between times t1 and t. We must
integrate over all values of t2 between 0 and t1, and we must integrate over all values of t1
between 0 and t:

x1,3(t) =

∫ t

t1=0

∫ t1

t2=0

e−rt2(r dt2)e
−2r(t1−t2)(2r dt1)e

−3r(t−t1)

We can extend the range of the integration over t2 from t2 = 0 to t2 = t if we also divide by
2:

x1,3(t) =
1

2

∫ t

t1=0

∫ t

t2=0

e−rt2(r dt2)e
−2r(t1−t2)(2r dt1)e

−3r(t−t1)

Simplifying, we have

x1,3(t) =

(∫ t

t2=0

ert2(r dt2)

)(∫ t

t1=0

ert1(r dt1)

)
e−3rt

Performing the integration, we get

x1,3(t) =
(
ert − 1

)2
e−3rt

This then becomes
x1,3(t) =

(
1− e−rt

)2
e−rt

2.2.4 m = 1, n = 4

Next, consider x1,4(t), which is the probability that the original instance of the pathogen
has led to three new instances of the pathogen by time t (n = 4). For this to occur, seven
things must happen: The original instance of the pathogen does not make any new instances

3
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of the pathogen between times 0 and t3, the original instance of the pathogen makes a new
copy of itself at time t3, neither of the two resulting instances of the pathogen make any new
instances of the pathogen between times t3 and t2, one of the two instances of the pathogen
makes a new copy of itself at time t2, none of the three resulting instances of the pathogen
make any new instances of the pathogen between times t2 and t1, one of the three instances
of the pathogen makes a new copy of itself at time t1, and none of the four resulting instances
of the pathogen make any new instances of the pathogen between times t1 and t. We must
integrate over all values of t3 between 0 and t2, we must integrate over all values of t2 between
0 and t1, and we must integrate over all values of t1 between 0 and t:

x1,4(t) =

∫ t

t1=0

∫ t1

t2=0

∫ t2

t3=0

e−rt3(r dt3)e
−2r(t2−t3)(2r dt2)e

−3r(t1−t2)(3r dt1)e
−4r(t−t1)

We can extend the range of the integration over t3 from t3 = 0 to t3 = t and the range of
the integration over t2 from t2 = 0 to t2 = t if we also divide by 3!:

x1,4(t) =
1

3!

∫ t

t1=0

∫ t

t2=0

∫ t

t3=0

e−rt3(r dt3)e
−2r(t2−t3)(2r dt2)e

−3r(t1−t2)(3r dt1)e
−4r(t−t1)

Simplifying, we have

x1,4(t) =

(∫ t

t3=0

ert3(r dt3)

)(∫ t

t2=0

ert2(r dt2)

)(∫ t

t1=0

ert1(r dt1)

)
e−4rt

Performing the integration, we get

x1,4(t) =
(
ert − 1

)3
e−4rt

This then becomes
x1,4(t) =

(
1− e−rt

)3
e−rt

2.2.5 m = 1, any n

We can generalize the calculation to arbitrary values of n:

x1,n(t0) =

(
n−1∏
j=1

∫ tj−1

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)r dtj

)
e−rtn−1

Changing the integration limits, we have

x1,n(t0) =
1

(n− 1)!

(
n−1∏
j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)r dtj

)
e−rtn−1

This simplifies to

x1,n(t0) =

(
n−1∏
j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)r dtj

)
e−rtn−1

4
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This becomes

x1,n(t0) =

(∫ t0

t=0

ertr dt

)n−1
e−nrt0

Performing the integration, we get

x1,n(t) =
(
1− e−rt

)n−1
e−rt

2.2.6 Any m and n

Following the same procedure, we can calculate xm,n(t):

xm,n(t0) =

(
n−1∏
j=m

∫ tj−1

tj=0

e−(n−j+m)r(tj−m−tj−m+1)(n− j +m− 1)r dtj−m+1

)
e−mrtn−m

Changing the integration limits, we have

xm,n(t0) =
1

(n−m)!

(
n−1∏
j=m

∫ t0

tj=0

e−(n−j+m)r(tj−m−tj−m+1)(n− j +m− 1)r dtj−m+1

)
e−mrtn−m

This simplifies further:

xm,n(t0) =
(n− 1)!

(n−m)!(m− 1)!

(
n−1∏
j=m

∫ t0

tj=0

e−(n−j+m)r(tj−m−tj−m+1)r dtj−m+1

)
e−mrtn−m

We can rewrite this as

xm,n(t0) =

(
n− 1

m− 1

)(n−1∏
j=m

∫ t0

tj=0

e−(n−j+m)r(tj−m−tj−m+1)r dtj−m+1

)
e−mrtn−m

This becomes

xm,n(t0) =

(
n− 1

m− 1

)(∫ t0

t=0

ertr dt

)n−m
e−mrt0

Performing the integration, we get

xm,n(t) =

(
n− 1

m− 1

)(
1− e−rt

)n−m
e−mrt (2)

2.3 Detection of a pathogen

We further require an understanding of how the outbreak is detected. Consider that there
are n instances of the pathogen within a particular lineage when the environment is tested.
We assume that each instance of the pathogen is not detected independently with probability
q. The outbreak is not detected if and only if no instance of the pathogen is detected, which
occurs with probability qn. Therefore, the pathogen is detected with probability 1− qn.

We further assume that each lineage of the pathogen is detected independently of any
other lineage. For example, suppose that two lineages of the pathogen are simultaneously

5
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present. Suppose that when the environment is tested, Lineage A contains nA copies of the
pathogen, and Lineage B contains nB copies of the pathogen. In this case, Lineage A is
detected with probability 1 − qnA , and Lineage B is detected with probability 1 − qnB . (If
the rate of introduction of new pathogens, λ, is small, then simultaneous presence of two
lineages would be a rare occurrence. Nonetheless, we describe this possibility so that the
stochastic dynamics of pathogen initiation, pathogen growth, and pathogen detection are
completely specified.)

2.4 Expected size of an outbreak when it is detected

Using the stochastic rules presented above, and using Equation (2), we can derive a formula
for the expected size of an outbreak when the pathogen is detected. For understanding the
steps of the calculation, we define Xi(ai) to be the probability that there are i testing events
following the appearance of the pathogen that fail to detect the pathogen, and that there
are ai infections when the pathogen is detected.

We first consider the following question: What is the probability that the pathogen is
detected in the first test following its appearance and that there are a0 instances of the
pathogen when it is detected. This probability, which we denote X0(a0), is given by

X0(a0) =

∫ T

0

(
dτ

T

)
x1,a0(τ)(1− qa0)

There are three components to this calculation:

• The pathogen is initiated at time τ before the testing event that detects it occurs. If
the pathogen emerges just before the test that detects it is performed, then τ is slightly
greater than 0. If the pathogen emerges just after the previous test, then τ is slightly
less that T . Therefore, we have 0 ≤ τ < T . Since new lineages appear independently
and continuously in time, τ is equiprobably distributed between 0 and T , hence the
integration

∫ T
0

dτ/T .

• The pathogen begins as a single infection, and it grows to a0 infections at time τ since
its appearance with probability x1,a0(τ).

• At least one of the a0 infections is detected with probability 1− qa0 .

Next, we can ask: What is the probability that the pathogen is detected in the second
test following its appearance and that there are a1 instances of the pathogen when it is
detected. This probability, which we denote X1(a1), is given by

X1(a1) =

∫ T

0

dτ

T

a1∑
a0=1

x1,a0(τ)qa0xa0,a1(T )(1− qa1)

This calculation is understood as follows: The first test occurs at time τ after the pathogen
appears, the pathogen grows to a0 infections at time τ after its emergence, none of those
a0 infections are detected in the first test, the pathogen then grows to a1 infections at time

6
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τ + T after its emergence, and at least one of those a1 infections is detected in the second
test. (We must sum over all values of a0 between 1 and a1.)

We can further ask: What is the probability that the pathogen is detected in the third
test following its appearance and that there are a2 instances of the pathogen when it is
detected. This probability, which we denote X2(a2), is given by

X2(a2) =

∫ T

0

dτ

T

a2∑
a1=1

a1∑
a0=1

x1,a0(τ)qa0xa0,a1(T )qa1xa1,a2(T )(1− qa2)

This calculation is understood as follows: The first test occurs at time τ after the pathogen
appears, the pathogen grows to a0 infections at time τ after its emergence, none of those
a0 infections are detected in the first test, the pathogen then grows to a1 infections at time
τ + T after its emergence, none of those a1 infections are detected in the second test, the
pathogen then grows to a2 infections at time τ + 2T after its emergence, and at least one of
those a2 infections is detected in the third test. (We must sum over all values of a1 between
1 and a2 and over all values of a0 between 1 and a1.)

The calculation of X3(a3) follows in the same manner:

X3(a3) =

∫ T

0

dτ

T

a3∑
a2=1

a2∑
a1=1

a1∑
a0=1

x1,a0(τ)qa0xa0,a1(T )qa1xa1,a2(T )qa2xa2,a3(T )(1− qa3)

To calculate the expected size of an outbreak, we sum Xm(am)am over all possible num-
bers of failed tests (0 ≤ m < ∞) and over all possible sizes of the outbreak when the
pathogen is detected (1 ≤ am <∞):

〈n〉 =
∞∑
m=0

∞∑
am=1

Xm(am)am (3)

Equation (3) can be alternatively written as follows:

〈n〉 =

∫ T

0

dτ

T

∞∑
a0=1

x1,a0(τ)
∞∑
m=0

∑ ∏
1≤j≤m
aj−1≤aj

qaj−1xaj−1,aj(T )

 (1− qam)am (4)

2.5 Approximation for 〈n〉
Equation (4) is analytically unwieldy. To make progress, we derive an approximate solution
for the expected size of an outbreak by assuming that the pathogen grows deterministically
after it is initiated (Figure S1). The first several steps of this process are as follows:

• The first infection occurs, and at time τ after its emergence, a test is performed. The
size of the outbreak when the first test is performed is equal to erτ .

• If the pathogen is not detected in the first test, which occurs with probability qe
rτ

,
then the pathogen grows until the second test is performed, and the amount of growth
of the pathogen between the first and second tests is equal to er(τ+T ) − erτ .

7
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Figure S1: Schematic showing deterministic growth of the pathogen. For calculating
an approximation for the expected size of an outbreak when it is detected, we can assume
that the size of the outbreak grows deterministically.

• If the pathogen is not detected in the first test and the second test, which occurs with
probability qe

rτ
qe
r(τ+T )

, then the pathogen grows until the third test is performed, and
the amount of growth of the pathogen between the second and third tests is equal to
er(τ+2T ) − er(τ+T ).

• If the pathogen is not detected in the first test, the second test, and the third test,
which occurs with probability qe

rτ
qe
r(τ+T )

qe
r(τ+2T )

, then the pathogen grows until the
fourth test is performed, and the amount of growth of the pathogen between the third
and fourth tests is equal to er(τ+3T ) − er(τ+2T ).

This process continues until the pathogen is detected. We therefore have the following result
for the expected size of an outbreak:

〈n〉 =

∫ T

0

dτ

T

[
erτ

+ qe
rτ (

er(τ+T ) − erτ
)

+ qe
rτ

qe
r(τ+T ) (

er(τ+2T ) − er(τ+T )
)

+ qe
rτ

qe
r(τ+T )

qe
r(τ+2T ) (

er(τ+3T ) − er(τ+2T )
)

+ · · ·
]

More compactly:

〈n〉 =

∫ T

0

dτ erτ

T

[
1 +

(
erT − 1

) ∞∑
k=0

ekrT q(k+1)erτ+ekrT
∑k−1
x=0 e

−xrT

]
(5)

The process can also be considered by defining

p ≡ 1− q (6)
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Here, p is the probability that a single infection is detected in a testing event, so that the
probability that an outbreak of size n is detected in a testing event is given by 1− (1− p)n.
Substituting Equation (6) into Equation (5), we have

〈n〉 =

∫ T

0

dτ erτ

T

[
1 +

(
erT − 1

) ∞∑
k=0

ekrT (1− p)(k+1)erτ+ekrT
∑k−1
x=0 e

−xrT

]
(7)

Next, we simplify Equation (7) in two limits: for the case p→ 1 and for the case p→ 0. We
then construct an approximation for 〈n〉 for any value of p.

2.5.1 p→ 1

In the limit p→ 1, Equation (7) simplifies:

lim
p→1
〈n〉 =

∫ T

0

dτ erτ

T

Performing the integration, we obtain

lim
p→1
〈n〉 =

erT − 1

rT
(8)

2.5.2 p→ 0

We can rewrite Equation (7) as follows:

〈n〉 =

∫ T

0

dτ erτ

T
+
erT − 1

T

∞∑
k=0

(∫ T

0

dτ erτelog(1−p)(k+1)erτ
)
ekrT (1− p)ekrT

∑k−1
x=0 e

−xrT

Performing the integration, this becomes

〈n〉 =
erT − 1

rT

+
erT − 1

rT log(1− p)

∞∑
k=0

(
elog(1−p)(k+1)erT − elog(1−p)(k+1)

k + 1

)
ekrT (1− p)ekrT

∑k−1
x=0 e

−xrT
(9)

If p is small, then for an outbreak to be detected quickly, the testing period, T , must also
be small. Considering that p � 1 and that rT � 1, the numerator of the expression in
parentheses in Equation (9) can be approximated:

〈n〉
∣∣
p,rT�1

≈ erT − 1

rT

+
erT − 1

rT log(1− p)

∞∑
k=0

(
[1 + log(1− p)(k + 1)(1 + rT )]− [1 + log(1− p)(k + 1)]

k + 1

)
× ekrT (1− p)ekrT

∑k−1
x=0 e

−xrT

9
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This becomes

〈n〉
∣∣
p,rT�1

≈ erT − 1

rT
+
(
erT − 1

) ∞∑
k=0

ekrT elog(1−p)e
krT

∑k−1
x=0 e

−xrT

Next, we approximate
∑k−1

x=0 e
−xrT by

(
1− e−rT

)−1
, and we approximate the summation over

k by an integration over k:

〈n〉
∣∣
p,rT�1

≈ erT − 1

rT
+
(
erT − 1

) ∫ ∞
0

dk ekrT elog(1−p)e
krT (1−e−rT )

−1

Performing the integration, this becomes

〈n〉
∣∣
p,rT�1

≈ erT − 1

rT
−
(
erT − 1

) (
1− e−rT

)
rT log(1− p)

Simplifying, we have

〈n〉
∣∣
p,rT�1

≈ erT − 1

rT

(
1− 1− e−rT

log(1− p)

)
(10)

2.5.3 0 < p ≤ 1

Notice that in the limit p→ 1, Equation (10) becomes equivalent to Equation (8). Therefore,
for any value 0 < p ≤ 1, we have the following approximate solution for 〈n〉:

〈n〉 ≈ erT − 1

rT

(
1− 1− e−rT

log(1− p)

)
(11)

3 Expected total cost per unit time

For optimizing the testing frequency, the quantity of interest is the expected total cost per
unit time. The surveillance cost per unit time, C1, is given by Equation (1). Let 〈C2〉
denote an approximation for the expected infection cost per unit time, and let 〈C〉 denote
an approximation for the expected total cost per unit time. We have

〈C〉 = C1 + 〈C2〉 (12)

For determining 〈C2〉, we assume that each infection contributes a cost c2. If new lineages
appear at rate λ, then 〈C2〉 is given by

〈C2〉 = λc2〈n〉 (13)

Substituting Equations (1), (13), and (11) into Equation (12), we obtain

〈C〉 =
c1
T

+ λc2

(
erT − 1

rT

)(
1− 1− e−rT

log(1− p)

)
(14)

10
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3.1 Optimal testing frequency

Equation (14) specifies the expected total surveillance and pathogen cost. 〈C〉 is a function
of the testing period, T , and we seek the value of T for which 〈C〉 is minimal. The first
step is to show that 〈C〉 has a single minimum at a particular value of T . To do this, we
differentiate 〈C〉 twice with respect to T :(

rT 2

λc2

)
d〈C〉
dT

= − rc1
λc2

+
[
(rT − 1)erT + 1

](
1− 2

log(1− p)

)
− 2 [sinh(rT )− rT cosh(rT )]

log(1− p)

(15)

(
rT 3

λc2

)
d2〈C〉
dT 2

=
2rc1
λc2

+
{

[(rT − 1)2 + 1]erT − 2
}

− [(rT − 1)2 + 1]erT − 2

log(1− p)

− [(rT + 1)2 + 1]e−rT − 2

log(1− p)

(16)

In Equation (16), the quantity rT 3/(λc2) is necessarily positive. If the right-hand side of
Equation (16) is positive for positive values of T , then d2〈C〉/dT 2 is necessarily positive.
Note that

lim
T→0

[(
rT 3

λc2

)
d2〈C〉
dT 2

]
=

2rc1
λc2

> 0 (17)

We also have
d

dT

[(
rT 3

λc2

)
d2〈C〉
dT 2

]
= erT − 2 sinh(rT )

log(1− p)
> 0 (18)

From Equations (17) and (18), it follows that the right-hand side of Equation (16) is neces-
sarily positive. Therefore,

d2〈C〉
dT 2

> 0 (19)

Next, note that

lim
T→0

d〈C〉
dT

= −∞ (20)

We also have

lim
T→∞

d〈C〉
dT

=∞ (21)

From Equations (20), (21), and (19), it follows that there is a single value of T for which
〈C〉 is minimized.

To determine the optimal testing period, we set d〈C〉/dT = 0 and T = T ∗ in Equa-
tion (15). We arrive at an implicit solution for the optimal testing period, T ∗:

rc1
λc2

=
[
(rT ∗ − 1)erT

∗
+ 1
](

1− 2

log(1− p)

)
− 2 [sinh(rT ∗)− rT ∗ cosh(rT ∗)]

log(1− p)
(22)

The optimal testing frequency is given by

f ∗ =
1

T ∗
(23)
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3.1.1 Asymptotic behavior as p→ 1

Taking the limit p→ 1 in Equation (22), we obtain the following equation for T ∗:

rc1
λc2
≈ (rT ∗ − 1)erT

∗
+ 1

Letting W0(x) denote the principal branch of the Lambert W function, and using Equa-
tion (23), we obtain an explicit approximation for the optimal testing frequency:

f ∗ ∼ r

{
1 +W0

(
1

e

[
rc1
λc2
− 1

])}−1
(p→ 1) (24)

In Figure S2, we plot Equation (24) as a function of c2 for several sets of parameter values. We
also plot measurements of the optimal testing frequency from simulating the true stochastic
process.
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Figure S2: Optimal testing frequency for p = 1. For different values of r, we plot the
optimal testing frequency, f ∗, given by Equation (24), as a function of c2. The black dots are
measurements of the optimal testing frequency from simulating the true stochastic process.
The 95% confidence intervals are smaller than the size of the data points.

3.1.2 Asymptotic behavior as p→ 0

For small values of p, the optimal testing frequency, T ∗, is also small. To determine
T ∗, we consider that p � 1 and that rT ∗ � 1 in Equation (22). We use the ap-
proximations log(1− p) ≈ −p, erT ∗ ≈ 1 + rT ∗ + (rT ∗)2/2, sinh(rT ∗) ≈ rT ∗ + (rT ∗)3/3!, and
cosh(rT ∗) ≈ 1 + (rT ∗)2/2:

rc1
λc2
≈
[
(rT ∗ − 1)

(
1 + rT ∗ +

(rT ∗)2

2

)
+ 1

](
1 +

2

p

)
+

2

p

[(
rT ∗ +

(rT ∗)3

3!

)
− rT ∗

(
1 +

(rT ∗)2

2

)]
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Simplifying, we have
rc1
λc2
≈ (rT ∗)2

p

(
1− 2rT ∗

3

)
For small values of rT ∗, the second term on the right-hand side is negligible relative to the
first. Using Equation (23), we solve approximately for the optimal testing frequency:

f ∗ ∼

√
rλc2
pc1

(p→ 0) (25)

In Figure S3, we plot f ∗ from Equations (22) and (23) as a function of p for several sets
of parameter values. We also plot measurements of the optimal testing frequency from
simulating the true stochastic process. For small values of p, f ∗ is approximately given by
Equation (25).
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Figure S3: Optimal testing frequency for p ≤ 1. For different values of c2, we plot the
optimal testing frequency, f ∗, given by Equations (22) and (23), as a function of p. The black
dots are measurements of the optimal testing frequency from simulating the true stochastic
process. The 95% confidence intervals are smaller than the size of the data points.

4 Distribution of pathogen-related parameters

The calculation of the expected infection cost per unit time, 〈C2〉, assumes that, for each
lineage that appears, the pathogen-specific parameters c2, r, and p are the same. The
expected infection cost per unit time is then just the expected cost due to a single lineage
multiplied by the rate, λ, at which those lineages arise.

More generally, we can consider dc2 dr dp λ′(c2, r, p) to be the (infinitesimal) rate at which
lineages with pathogen-specific parameters c2, r, and p appear. In this generalized model,
let 〈C ′2〉 denote an approximation for the expected infection cost per unit time, and let 〈C ′〉
denote an approximation for the expected total cost per unit time. We have

〈C ′〉 = C1 + 〈C ′2〉 (26)

13

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23295550doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23295550
http://creativecommons.org/licenses/by/4.0/


With knowledge of the rate density function, λ′(c2, r, p), we are able to compute the expected
infection cost per unit time by integrating over all possible values of c2, r, and p:

〈C ′2〉 =

∫ ∞
0

dc2

∫ ∞
0

dr

∫ 1

0

dp {λ′(c2, r, p) c2〈n〉} (27)

Substituting Equations (1) and (27) into Equation (26), we obtain

〈C ′〉 =
c1
T

+

∫ ∞
0

dc2

∫ ∞
0

dr

∫ 1

0

dp

{
λ′(c2, r, p)

[
c2

(
erT − 1

rT

)(
1− 1− e−rT

log(1− p)

)]}
(28)

The optimal testing frequency is given by

F ∗ =
1

arg minT 〈C ′〉
(29)

Equations (28) and (29) can be solved numerically to determine the optimal testing frequency.
Below, we consider several simple examples for which Equation (28) can be solved analytically
to show how the model works.

4.1 Example 1

As the simplest example of using Equation (28), consider that only a single type of pathogen
can emerge. The pathogen has per-case cost c′2, growth rate r′, and probability of detection
p′, and new lineages are introduced at rate λ. The rate density function, λ′(c2, r, p), is given
by

λ′(c2, r, p) = λδ(c2 − c′2)δ(r − r′)δ(p− p′)
Here, δ denotes the Dirac delta function. When this form for λ′(c2, r, p) is substituted into
Equation (28) and the integrations over c2, r, and p are performed, we obtain

〈C ′〉 =
c1
T

+ λc′2

(
er
′T − 1

r′T

)(
1− 1− e−r′T

log(1− p′)

)
Thus, Equation (28) reduces to Equation (14) for the case where only a single type of
pathogen with fixed parameters can emerge.

4.2 Example 2

Next, consider the possibility that two different types of pathogens can emerge. Pathogen 1
has parameters c′2, r

′, and p′, while Pathogen 2 has parameters c′′2, r′′, and p′′. Lineages of
Pathogen 1 are introduced at rate λ1, and lineages of Pathogen 2 are introduced at rate λ2.
The corresponding rate density function is

λ′(c2, r, p) = λ1δ(c2 − c′2)δ(r − r′)δ(p− p′) + λ2δ(c2 − c′′2)δ(r − r′′)δ(p− p′′)

When this form for λ′(c2, r, p) is substituted into Equation (28) and the integrations are
performed, we obtain

〈C ′〉 =
c1
T

+ λ1c
′
2

(
er
′T − 1

r′T

)(
1− 1− e−r′T

log(1− p′)

)
+ λ2c

′′
2

(
er
′′T − 1

r′′T

)(
1− 1− e−r′′T

log(1− p′′)

)
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The expected total cost per unit time, 〈C ′〉, is therefore equal to the surveillance cost per
unit time, plus the expected infection cost per unit time for Pathogen 1, plus the expected
infection cost per unit time for Pathogen 2.

4.3 Example 3

These considerations can be extended to the case where many different types of pathogens
can emerge. Let Pathogen n have per-case cost c2,n, growth rate rn, and probability of
detection pn. The rate density function, λ′(c2, r, p) is given by

λ′(c2, r, p) =
∑
n

λnδ(c2 − c2,n)δ(r − rn)δ(p− pn)

Substituting this into Equation (28) and integrating yields

〈C ′〉 =
c1
T

+
∑
n

λnc2,n

(
ernT − 1

rnT

)(
1− 1− e−rnT

log(1− pn)

)
The expected infection cost is therefore linear—i.e., we add together the expected infection
costs for each of the n possible types of pathogens, and this sum equals the total expected
infection cost.

4.4 Example 4

The possible parameter values that any new pathogen can have are not discrete. They
are continuous. To show how this works, consider the following form for the rate density
function:

λ′(c2, r, p) = λ

[(
2

√
a

π

)
e−ac

2
2

]
δ(r − r′)δ(p− p′)

For this case, new pathogens have growth rate r′ and probability of detection p′. New
pathogens can, however, have any real value of c2 that is nonnegative. For any lineage that
is introduced, it’s value of c2 is most likely to be close to zero, while larger values of c2
occur more rarely. The parameter a controls with with of the probability density function
for c2. For smaller values of a, this distribution has a longer tail, and the expected value of
c2 for any new pathogen increases. Substituting this form for the rate density function into
Equation (28) and integrating, we have

〈C ′〉 =
c1
T

+
λ√
πa

(
er
′T − 1

r′T

)(
1− 1− e−r′T

log(1− p′)

)
4.5 Example 5

For this example, we suppose that any new pathogen has per-case infection cost c′2 and
probability of detection p′, while the growth rate, r, can be any nonnegative real number.
We use the following form for the rate density function:

λ′(c2, r, p) = λδ(c2 − c′2)
[
b2re−br

]
δ(p− p′)
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Substituting this into Equation (28) and integrating, we have

〈C ′〉 =
c1
T

+
λb2c′2
T

{(
1

b− T
− 1

b

)
+

[(
1

b− T
− 1

b

)
−
(

1

b
− 1

b+ T

)](
−1

log(1− p′)

)}

4.6 Example 6

We can also model the case where new pathogens have per-case cost c′2 and growth rate r′,
while the probability of detection, p, can be any real number between 0 and 1. Suppose that
the rate density function has the following form:

λ′(c2, r, p) = λδ(c2 − c′2)δ(r − r′)
[

[θ(p− a)− 1] log(1− p)
(1− a) log(1− a) + a

]
Here, θ denotes the Heaviside step function. Substituting this into Equation (28) and inte-
grating, we obtain

〈C ′〉 =
c1
T

+ λc′2

(
er
′T − 1

r′T

)(
1 +

a(1− e−r′T )

(1− a) log(1− a) + a

)
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