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Abstract 

Background Non-pharmaceutical interventions (NPIs) and vaccines have been widely used 

to manage the COVID-19 pandemic. However, uncertainty persists regarding the 

effectiveness of these interventions due to data quality issues, methodological challenges, and 

differing contextual factors. Accurate estimation of their effects is crucial for future epidemic 

preparedness. 

Methods To address this, we developed a population-based mechanistic model that includes 

the impact of NPIs and vaccines on SARS-CoV-2 transmission and hospitalization rates. Our 

statistical approach estimated all parameters in one step, accurately propagating uncertainty. 

We fitted the model to comprehensive epidemiological data in France from March 2020 to 

October 2021. With the same model, we simulated scenarios of vaccine rollout. 

Results The first lockdown was the most effective, reducing transmission by 84% (95% 

confidence interval (CI) 83-85). Subsequent lockdowns had diminished effectiveness 

(reduction of 74% (69-77) and 11% (9-18), respectively). A 6 pm curfew was more effective 

than one at 8 pm (68% (66-69) vs. 48% (45-49) reduction), while school closures reduced 

transmission by 15% (12-18). In a scenario without vaccines before November 2021, we 

predicted 159,000 or 168% (95% prediction interval (PI) 70-315) more deaths and 1,488,000 

or 300% (133-492) more hospitalizations. If a vaccine had been available after 100 days, over 

71,000 deaths (16,507-204,249) and 384,000 (88,579-1,020,386) hospitalizations could have 

been averted.  

Conclusion Our results highlight the substantial impact of NPIs, including lockdowns and 

curfews, in controlling the COVID-19 pandemic. We also demonstrate the value of the 100 

days objective of the Coalition for Epidemic Preparedness Innovations (CEPI) initiative for 

vaccine availability. 
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1. Introduction 

The COVID-19 pandemic has caused substantial morbidity and mortality and taken a heavy 

toll on healthcare systems globally. As no vaccine or other treatment for COVID-19 was 

available at the beginning of the pandemic, governments around the world implemented non-

pharmaceutical interventions (NPIs) with mostly unknown epidemiological and societal 

impacts to contain viral spread. Such NPIs consisted for example of border closures, 

cancellation of public events and gatherings, school and workplace closures, stay-at-home 

restrictions, testing and contact tracing, and mandated wearing of face masks.1 Due to the 

high transmissibility of SARS-CoV-2, rapid vaccine development and distribution programs 

were implemented, and in late 2020, several became available. By the Spring of 2021, 

vaccination efforts were ramped up, and booster doses were made available in the Fall of 

2021 in high-income countries because of waning vaccination immunity.2 Due to good 

protection against severe disease, NPIs were relaxed in the Summer of 2021 in countries with 

high vaccination coverage, despite the emergence of viral variants of concern (VoCs) with 

increased transmission and virulence. 

Despite numerous studies,3-5 the effectiveness of NPIs on decreasing SARS-CoV-2 

transmission remains uncertain, especially over longer periods of time and at a high 

geographical resolution. However, given the economic, psychological, and social costs 

associated with these interventions, estimating their effectiveness, particularly in combination 

with vaccination, is crucial. Previous studies on the effectiveness of NPIs, such as lockdowns 

and school closures, during the COVID-19 pandemic have yielded mixed results,3,6 and many 

of the studies have focused solely on the first pandemic wave, either estimating NPI 

effectiveness7 or simulating NPI exit scenarios.8 However, relying solely on first-wave 

estimates is not sufficient to fully comprehend the effects of NPIs during a pandemic. After 

the initial wave, social interactions did not return to pre-pandemic levels, population 

compliance with NPIs decreased,9 viral mutations started to emerge, and population 

immunity increased through vaccination and previous infections. Several simulation studies 

investigated optimized vaccine rollout and NPI relaxation scenarios,10 but there is a lack of 

retrospective analyses of vaccine rollout and studies which include estimates on NPI and 

vaccine effectiveness from observational studies. Additionally, weather is hypothesized to 

have an impact on SARS-CoV-2 transmission, with higher temperatures and ambient 

humidity decreasing transmission. 11-13 
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Country-specific cultural, demographic, and environmental factors make it relevant to look at 

NPIs in different contexts. International studies combining data from multiple countries have 

been conducted, but they often ignore geographical variability, use heterogeneous NPI 

definitions, and suffer from cross-country confounding. This is why in the present study, we 

focus on the level of administrative sub-regions of France, where exceptionally rich data were 

available on a daily basis thanks to the Santé Publique France agency. 

We aim to build on previous work conducted in France14,15 by extending the study period, 

including a more granular analysis of VoCs and explicit modelling of vaccinations in the 

epidemic dynamics. To this end, we propose a SARS-CoV-2 compartmental model that 

incorporates the effect of NPIs, vaccination, viral variants of concern (VoCs), and weather. 

To ensure accurate propagation of uncertainty, we employ a statistical approach that 

estimates all model parameters in one step. A further refinement is the quality of the 

information used to estimate these effects, as we use four types of observations and 

retrospectively corrected data. To better illustrate the impact of vaccines and the complex 

interplay between NPIs and vaccination, we perform simulations of various counterfactual 

scenarios. 

2. Methods 

2.1. Data 

2.1.1. COVID-19 hospitalizations, deaths, and cases 

We used four types of observational data, aggregated at the departmental level, published by 

Santé Publique France. In France, a department is an administrative area with a median of 

approx. 500k inhabitants (Figure S1). As all data were available in aggregated form in the 

public domain, no ethical regulations were applicable to this study. For each department, 

daily COVID-19-related hospital data, including admissions and occupancy from the SI-VIC 

database16 (available since March 1st, 2020), deaths in hospitals from SI-VIC16 (available 

since March 18th, 2020), and PCR-confirmed COVID-19 cases from the SI-DEP database17 

(available since May 13th, 2020), were collected on a daily basis until October 31st, 2021. In 

April 2022, we downloaded the final dataset encompassing this entire period. More 

information on epidemiological data can be found in the Supplementary Methods. We 

excluded the two Corsican departments entirely from the analysis, and department 5 (Hautes 

Alpes) from February 17, 2021, onwards, due to missing weather data. We smoothed the 

hospital admission, death and case time series with a centered 7-day moving average to 
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account for the day-of-week effect. Our study period extended until October 31st, 2021. After 

this date, very few NPIs were enforced in France, and the Omicron VoC disrupted the 

epidemiological dynamics. 

2.1.2. Non-pharmaceutical interventions 

During the study period, a wide range of NPIs of varying stringency were implemented in 

France. We collected the NPI data from official government websites and news articles and 

focused on the following NPIs: i) The three periods of lockdowns with varying levels of 

restrictions, including a separate lockdown 2 before Christmas, where stores were allowed to 

re-open, which we refer to as “lockdown 2 light”; ii) school closures; iii) curfews either 

starting at 8 or 9 pm or at 6 or 7 pm; and iv) four periods of barrier gestures, where the first 

three directly follow the lifting of lockdowns, and the fourth period starts with the 

implementation of a vaccine passport, which restricted access to public areas for the 

unvaccinated. Barrier gestures encompass NPIs and behavioral changes, such as mask 

wearing, remote working, and compliance with hygiene protocols, which we were not able to 

model separately. The population adherence to these measures was parameterized based on 

surveys of barrier gesture adoption in France by Santé Publique France 18 as a continuous 

variable ranging between 1 (indicating full population compliance) and 0 (no compliance). A 

more in-depth description of NPIs can be found in the Supplementary Methods. Due to 

identifiability issues, we did not succeed in quantifying the effect of bar and restaurant 

closures, workplace closures, bans on large public events, travel bans, enhanced testing, or 

contact tracing. Some of these effects may thus be absorbed in lockdowns, curfews, and 

barrier gestures. 

2.1.3. Exogeneous variables: SARS-CoV-2 variants of concern, vaccinations, weather 

Variants of concern During our study period, the predominant VoCs in France were B.1.1.7 

(Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). The percentage of SARS-

CoV-2 VoCs among all sequenced samples at the departmental level was published by SI-

DEP starting February 12th, 2021. More information on reporting of VoCs by SI-DEP can be 

found in the Supplementary Methods. As no VoC data were available before this date, we 

used a logistic regression model to extrapolate departmental Alpha and Beta/Gamma 

circulation, assuming no VoC circulation before January 1st, 2021. We fit binomial models 

separately for each department and VoC. The proportion of circulating VoC was regressed on 

the calendar day as the only predictor, using data of the first three months of VoC circulation 

(February 2021-April 2021). The predictions from these models were then used to impute 
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VoC circulation for each department between January 1st, 2021 and February 12th, 2021. 

Since the reported data were aggregated by week and there was high variance in the VoCs 

captured by sequencing, the percentages of VoCs among all sequenced samples were 

smoothed over 14 days to account for random fluctuations in testing.  

Vaccination The proportion of the population vaccinated with one or two doses was obtained 

from the VAC-SI database.19  We did not consider additional vaccine doses as the proportion 

of people who received a booster by the end of our analysis period was low (2.7% of the 

population). The effects of vaccine doses were lagged by 21 days to account for the time 

needed to develop immunity after vaccination. 

Weather To account for the potential impact of climate on SARS-CoV-2 transmission,20 we 

extracted daily weather data from the National Oceanic and Atmospheric Administration 

database using the R package worldmet. The data was collected from all meteorological 

stations located in France. We calculated a daily weather variable for each department 

combining temperature and humidity (see Supplementary Methods). 

2.2. Modeling approach and estimation 

We modeled the SARS-CoV-2 epidemic in France from March 1st, 2020, to Oct 31st, 2021, 

using an extended SEIR model, adapted from previous studies.14,21-24 This model has already 

undergone strong identifiability analysis,14 but compared to previous models, our model has 

some novelties. First, we divided the population into seven compartments: Susceptible (S), 

latently Exposed (E), symptomatically Infected (I), Asymptomatically infected (A), 

Hospitalized (H), Recovered (R), and Deceased (D). We modeled the flow of individuals in 

the population through these compartments according to the diagram shown in Figure 1a. In 

short, viral transmission occurs from the individuals in the I and A compartments to the S 

compartment. After a latent period with an average duration of 5 days in the E compartment, 

infected individuals progress to the I or A compartments. Individuals in I will become 

symptomatic during their infection, while individuals in A will stay asymptomatic for the 

whole duration of their infection. From there, they can either recover and progress to the R 

compartment, or symptomatically infected individuals can be hospitalized. We assumed that 

individuals in the H compartment are no longer infectious and can either recover or progress 

to the D compartment. For a more comprehensive description of the model dynamics, the 

differential equations, and the parameters governing the system, the reader is referred to the 

Supplementary Methods Section 2.1 and Table S1.  
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Figure 1: SEIRAHD model representation and model fits. (a) The 7 compartments of our model structure with 
the transition parameters are shown. (b) Model fits for all four types of observed data for the entirety of France 
are shown. Black lines indicate the observed data, red lines the model fit, and shaded areas the 95% prediction 
interval. 

Second, we linked the mechanistic model to a linear mixed effects model of the viral 

transmission rate b. This model represents the time-varying transmission rate bt  as a function 

of a basic transmission rate bo, NPIs, weather, and VoCs, as in Collin et al.14

,   

where  for department i at time t, NPI j, and VoC k. The basic transmission 

rate bo is thus allowed to vary across departments, which accounts for inter-departmental 

variations in age structure, population density, and contact patterns. The percent transmission 

reduction of NPIs was calculated with the respective β coefficients as . 

Third, we included the effects of vaccination as the population vaccine effect against 

transmission (evI) and the population vaccine effect against hospitalization (evH) directly in 

the compartmental model. We define the vaccine effect to be the product of the vaccine 

efficacy (estimated by the model) and the population vaccine coverage at the departmental 

level. Lastly, we explicitly modelled the effect of VoCs on transmission and risk of 

hospitalization, with VoCs increasing both transmission and risk of hospitalization according 

to strain-specific, previously published values (Table S1). As observations, we jointly 

modelled COVID-19 deaths, cases, hospital admissions, and hospital occupancy, assuming 

Normal distributions and combined error models. Hospital admissions were modeled as the 

influx of individuals into the H compartment, hospital occupancy as the number of 

individuals in the H compartment, cases as the influx of individuals into the I compartment, 

and deaths as the influx of individuals into the D compartment for all departments i and all 

observation times t. All modelling choices and assumptions are recalled and discussed in the 

Supplementary Methods Section 2. Parameters were estimated using maximum likelihood 
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estimation using a stochastic approximation expectation maximization (SAEM) algorithm 

implemented in the software Monolix, version 2019R2 (http://www.lixoft.com). Due to 

practical identifiability issues, some parameters were fixed or estimated with profile 

likelihood estimation (see Supplementary Methods Section 2.4). Standard errors for the 

calculation of 95% confidence intervals were obtained by 100 bootstrap replicates. For each 

bootstrap replicate, we randomly sampled 94 departments (with replacement) from the entire 

department pool and conducted the estimation procedure. (see Supplementary Methods).  

Furthermore, for each estimation, the initial population parameters were randomly sampled 

from a uniform distribution ranging between half and twice the assumed values. We repeated 

the bootstrap procedure 100 times and determined the lower and upper limits of the 95% 

confidence intervals by extracting the 2.5th and 97.5th percentiles from each parameter 

distribution. 

For comparability with other studies, we calculated the basic reproductive number R0 and the 

effective reproductive number over time Reff(t) with a next-generation matrix from the basic 

transmission rate b0 and the time-varying transmission rate, respectively14,25 (see 

Supplementary Methods). 

We performed extensive model selection and goodness-of-fit analyses to arrive at our final 

model. First, we checked for structural identifiability using DAISY (Differential Algebra 

for Identifiability of Systems)26 and we ensured that no NPIs in our NPI matrix effect 

overlapped completely (Figure S2 in Supplementary Methods). Next, we checked practical 

identifiability by performing convergence assessments, in which we confirmed the 

stabilization of the SAEM algorithm towards the same value from a wide range of starting 

values (Section 2.7 in Supplementary Methods). Then, we performed parameter selection, 

with final models being chosen based on the Akaike Information Criterion (AIC), while 

paying attention to the problems of non-identifiability of effects. 

2.3. Simulations 

We simulated the following scenarios: No vaccine availability until the end of the study 

period, faster vaccine rollout (1% of the population vaccinated per day), and the vaccine 

becoming available after 100 days, as called for by the Coalition for Epidemic Preparedness 

Innovations (CEPI) initiative (www.cepi.net). t0 for the 100-day scenario was January 11th, 

2020, following the publication of the complete genomic sequence of SARS-CoV-2. 27 Thus, 

in this scenario, vaccinations started approximately 8 months earlier than the actual vaccine 
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rollout in France. Compared to the fast rollout scenario, the observed vaccine rollout was 

very slow in the first months, with no more than 0.3% of the population vaccinated per day, 

and picked up speed when more vaccine doses were available. However, it never passed 

0.8% of the population vaccinated per day. Additionally, we conducted simulations in which 

the first lockdown was implemented one or two weeks earlier. For each week shift, we 

simulated two scenarios: in one, the lockdown 1 was lifted as observed (May 5th, 2020) and 

one where the length of the lockdown was kept constant (54 days).  

Simulations were performed with Simulx software version 2020R1 (http://www.lixoft.com). 

We conducted 1000 simulations per scenario, with parameters drawn from their respective 

estimated distributions. 95% prediction intervals were derived by taking the 2.5th and 97.5th 

percentile of the distribution of simulations. We chose to use the model's predictions under 

the observed scenario as comparisons for the counterfactual scenarios instead of the actual 

data. This ensures more accurate comparisons, considering the model's imperfect fit to the 

observed data. For all simulations, we assumed that immunity through vaccination did not 

decline or that booster vaccinations were available to maintain protection. Moreover, we 

assessed all scenarios under waning immunity. We assumed that the protection from vaccines 

waned according to results from Clairon et al., who modeled waning immunity as the 

probability of detecting neutralizing antibodies above a protective threshold.28 We applied 

these waning curves to the daily number of vaccinations to derive the percentage of the 

population with active protection against the original SARS-CoV-2 strain and the Delta VoC 

at each day.  

3. Results 

3.1. Rt over time 

The model effectively captured the trajectories of all four types of observations, although it 

exhibited a slight underestimation during the second wave (around November/December 

2020) and for deaths (Figure 1b for the entirety of France and Figure S1 in Supplementary 

Results for selected departments). Before the initial lockdown, our model estimated that Rt 

varied around three. However, with the implementation of the lockdown, it decreased to 

below one, and subsequently fluctuated around one with two notable increases. The first 

occurred in Fall 2020 at the onset of the second wave, while the second happened in the 

summer of 2021 due to the increased circulation of the Delta VoC (Figure 2). 
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Figure 2: Effective reproductive number Rt as estimated by the model in relation to implemented NPIs, 
variants of concern (VoC) and vaccinations. The thin black lines depict Rt trajectories for each French 
department, while the thick black line shows the average across France. The NPI lines are plotted if the NPI 
was active in at least one department. The dashed line indicates the Rt threshold of 1, below which an epidemic 
will eventually die out. 

 

3.2. Effects of NPIs and vaccination 

Based on the calibrated model representing the COVID-19 epidemic in France, we 

demonstrated that all the tested NPIs deployed by the French government significantly 

reduced SARS-CoV-2 transmission. Specifically, the first lockdown led to an 84% decrease 

in viral transmission (95% CI 83.1 - 84.7), while the second and third lockdowns resulted in a 

73.8% (69.4 - 76.5) and 11.2% (9.4 - 18.3) reduction in transmission, respectively (Figure 3). 

We also found that the 6/7 pm curfew was more effective than the 8/9 pm curfew, reducing 

transmission by 67.9% (66.2 - 68.5) and 47.5% (45.0 - 49.0), respectively. Although school 

closures had a smaller effect, they still significantly reduced transmission by 14.5% (11.5 - 

17.8). We chose to include intermediate periods of moderate restrictions into our model 

(termed "barrier gestures"), which substantially reduced transmission (between 16.1% and 

60.1% with 70% adherence, which represented the median of population adherence). Finally, 

during the fourth period of barrier gestures, which included a vaccine passport in addition to 

hygiene protocols and mask-wearing, we estimated a reduction in transmission of 61.0% 

(59.6 - 62.9) due to this package of interventions, independently of the vaccine's effect. 
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We found that weather had a significant influence on SARS-CoV-2 transmission, with an 

average increase of 10% in winter conditions and an average decrease of 20% in summer 

conditions, compared to the average weather conditions in France over the whole study 

period.  The results were robust to changes in fixed parameters (see Supplementary Results 

Section 3). 

 

Figure 3: Estimation of the effect of NPIs and weather on SARS-CoV-2 transmission. Point estimates with 
95% confidence interval. A negative percent transmission reduction indicates an increase in transmission 
(observed only for weather effect during winter).   
Summer conditions during June - August, winter conditions during December - February. The transmission 
reduction of barrier gestures is shown assuming 70% population compliance, which was the median of the 
population compliance parameterization. 
*Confidence intervals are not available for parameters whose effect was estimated by profile likelihood. 

The population vaccine effect against both transmission and hospitalization increased over 

time as the population vaccine coverage increased (Figure 4a). However, after the emergence 

of the Delta variant, the vaccine's effect on transmission (evI) started to decline and first 

plateaued around 25% (95% CI 22 - 27) protective effect, indicating that it prevented 25% 

(22 - 27) of all new infections. With further increase in population vaccine coverage, evI 

stabilized at approximately 34% (30 - 38). evH increased steadily with increasing population 

vaccine coverage and was estimated to reach 84% (82 - 85) by the end of the study period. 

Thus, the overall protective effect against hospitalization, taking into account protection 

against infection and subsequent hospitalization, reached 89% (87-91) by the end of October 

2021. If the whole population had been fully vaccinated with two doses and only the original 
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strain of SARS-CoV-2 was circulating, our analysis therefore predicts a vaccine efficacy 

against hospitalization of 98% (85-100) and a vaccine efficacy against transmission of 87.5% 

(78-98). However, with 100% Delta VoC circulation, the vaccine efficacy against 

transmission reduced to 44% (39-49). 

 

Figure 4: Vaccine effects. (a) Estimated protective effect conferred by vaccination. The population vaccine 
effect against transmission evI is depicted in yellow, the population vaccine effect against hospitalization (evH) 
among infected in green, and the total population vaccine effect against hospitalization (evH·evI) in red. (b) 
Simulated hospital admissions in France under different vaccination scenarios. The solid lines depict the 
median of 1000 simulations, while the shaded areas show the 95% prediction interval. In the "Fast" scenario, 
the start of the vaccinations was held constant, but 1% of the population was vaccinated per day. In the "100 
days" scenario, the vaccine was available 100 days after the publication of the full genomic sequence of SARS-
CoV-2 (April 20, 2020). In the "No vaccination" scenario, no vaccines were available until the end of the study 
period. 

Compared to a scenario where no vaccines were available until the end of the study period 

and all NPIs were implemented and lifted as observed, the availability of vaccines saved 

158,523 lives (95% prediction interval [PI] 39,518-348,958) and prevented 1,488,142 

hospitalizations (95% PI 383,515-3,084,308) (Table 1). In relative terms, this corresponds to 

168% more deaths (95% PI 69.5-314.8) and 300.1% (95% PI 132.9-492.0) more hospitalized 

patients. This would have exceeded the hospital capacity of all existing beds except 

psychiatry (332,785 beds)29 on October 23, 2021, assuming that the entirety of hospital beds 

was available for COVID-19 patients. Under the more realistic assumption that 20% of the 

pre-pandemic hospital capacity would be available for COVID-19 patients, the national 

hospital bed capacity would have been exceeded by August 6, 2021. The importance of NPIs 

in the absence of vaccines is underscored by the fact that deaths and hospitalizations surged 

after NPIs were lifted in the summer of 2021 (Figure 4b). 
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  Number of 
observations*1000 
[95% PI]  

Difference to observed 
scenario*1000  
[95% PI] 

Percentage change to 
observed scenario 
[95% PI] 

Hospitalizations 

observed 470 [163; 1,348] NA NA 

fast 330 [131; 950] -146 [-373; -34] -29.5% [-45.9; -15.6] 

100 days 116 [85; 170] -384 [-1,020; -89] -79.9% [-89.1; -52.1] 

no vaccination 1,930 [534; 4,597] 1,488 [384; 3,084] 300.1% [132.9; 492.0] 

Deaths 

observed 92 [32; 262] NA NA 

fast 72 [28; 208] -20 [ -51; -5] -21.5% [-35.4; -11.1] 

100 days 24 [17; 37] -71 [-204; -17] -78.9% [-88.4; -51.3] 

no vaccination 249 [71; 619] 159 [40; 349] 168.3% [ 69.5; 314.8] 

Cases 

observed 10,306 [4,817; 25,264] NA NA 

fast 8,392 [4,388; 19,648] -2,007 [-5,277; -463] -19.2% [-34.4; -8.0] 

100 days 4,650 [3,560; 6,571] -6,141 [-16,114; -1,459] -62.1% [-77.3; -30.7] 

no vaccination 20,269 [7,489; 46,198] 10,174 [2,774; 19,654] 93.3% [ 43.9; 147.2] 

Table 1: Counterfactual vaccine scenarios. In the ”fast” scenario, the start of the vaccinations was held 
constant, but 1% of the population was vaccinated per day. In the ”100 days” scenario, the vaccine was 
available 100 days after the publication of the full genomic sequence of SARSCoV-2 (April 20, 2020). In the ”no 
vaccination” scenario, no vaccines were available until the end of the study period.  
NA not applicable, PI prediction interval 

If a vaccine had been available after 100 days and had been rolled out at the same speed and 

coverage as observed, but all NPIs had been implemented as they were in reality, 384,490 

(95% PI 88,579-1,020,386) fewer people would have been hospitalized and 71,398 (16,507-

204,249) fewer would have died. This corresponds to an 80% (95% CI 52-89) reduction in 

hospitalizations and 79% (51-88) reduction in deaths while maintaining NPIs. We also 

demonstrated a significant reduction of hospitalizations and deaths if the vaccine had been 

rolled out faster, with 1% of the population vaccinated each day. The simulation outcomes for 

scenarios involving waning immunity were not substantially changed, even in the 100-day 

scenario. This finding can be explained by the fact that the vaccines combined with NPIs 

would have been sufficiently efficient to limit further transmission, so that the epidemics in 

each department concluded before any notable decline in vaccine-induced immunity (Figure 

S2 and Table S1 in Supplementary Results). 

In our simulations of earlier lockdown 1 implementation, we found that if the lockdown 1 had 

been implemented one week earlier, but the length of the lockdown would have still been 54 
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days, 92k (95% CI 61-118k) hospitalizations and 20k (13-26k) deaths could have been 

prevented, which corresponds to a 20.1 (8.6-39.7) and 21.9 (10.5-40.6) percent reduction of  

hospitalizations and deaths, respectively. If the lockdown had been advanced by two weeks, 

33k (21-44k) lives could have been saved, which corresponds to a reduction in mortality of 

35.2% (18.6-58.8) over the whole study period. Additional results with longer lockdown 1 

duration are presented in the Supplementary Results Table S2 and Figure S3.   

4. Discussion 

Accurately estimating the effects of past interventions is critical for better preparation against 

future pandemics. In this study, we used a compartmental model to estimate the joint impact 

of NPIs and vaccinations in France over a prolonged period, with high geographic resolution.  

We found that all analyzed NPIs significantly reduced SARS-CoV-2 transmission. 

Nevertheless, we observed that the effectiveness of lockdowns decreased over time, 

potentially due to reduced intervention stringency and/or population compliance. During the 

third lockdown, VoC spread increased transmission while vaccinations were being rapidly 

administered, which may have weakened the effectiveness of this NPI. We also demonstrated 

that curfews were effective in reducing viral spread, with the 6/7 pm curfew being more 

effective than the 8/9 pm curfew. This suggests that earlier curfews were more effective, 

although one study in Greece concluded that an earlier curfew only led to a very minor 

increase in residential spaces, and no change in time spent in essential businesses.30 

Similar findings to ours were reported in two studies conducted on French data during a 

similar study period.14,15 However, our estimates for the first lockdown, curfews, and school 

closures are higher, while the third lockdown estimate is significantly lower. The effects of 

weather, parameterized as IPTCC by Collin et al. and included as only temperature by 

Paireau et al., were close to our estimates. The differences in results can be explained by the 

modeling approach used. Whereas Paireau et al. first estimated Rt from hospital admissions 

and then used a linear mixed regression model to derive NPI effectiveness estimates, Collin 

et al. used a two-step estimation procedure with a compartmental model and Kalman 

filtering. In contrast, we used a compartmental model that explicitly modeled the viral 

dynamics and vaccination and estimated all parameters in one step. By modeling the 

dynamics of the disease directly, we believe that our approach can give more accurate results 

than observing correlations in regression models. Additionally, our model is on a more 

granular geographical scale (departmental vs. regional) compared to Collin et al.14 
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Our study's estimates for the effectiveness of the first lockdown in France align with those 

found by Flaxman et al. (81% (75–87) reduction in Rt),
7 who conducted pooled analyses of 

European countries, and Salje et al. (77% (76-78) reduction in Rt),
31 who studied the 

effectiveness of the French lockdown during the first wave. Similar to our results, curfews 

were estimated to effectively reduce mobility in Quebec, Canada,32 and reduced viral 

transmission in French Guiana.33 However, conflicting results were found in Germany,34 

which suggests that curfews highly depend on the context in which they are implemented and 

on the stringency of implementation or the methods used to assess the effect. 

In contrast to the commonly used two-step study approach for estimating NPI effectiveness, 

which involves estimating an epidemic parameter (e.g., reproductive number) separately and 

then using it in a regression model,15,35 we estimated all model parameters simultaneously. 

This ensures accurate estimation of parameter uncertainty, in contrast to the two-step 

approach, where the uncertainty from the initial estimation step is not considered in the final 

result. Furthermore, regressions cannot account for population immunity and are susceptible 

to confounding, given the non-independent implementation of NPIs in relation to the 

epidemiological situation. In contrast, compartmental models offer the advantage of a clear 

causal framework,36 explicitly modelling epidemic dynamics and accounting for the depletion 

of susceptible individuals. 

Our results showed a strong effect of vaccines against hospitalization, which is consistent 

with previous studies,37 and a smaller but still significant real-life effectiveness of vaccines 

against transmission.38 Since we had precise data on the number of vaccine doses 

administered per day per department, it was not necessary to model vaccinated compartments 

as unknowns, but we included them as terms reducing transmission and hospitalization. The 

simulations showed that 158,523 (39,518 - 348,958) lives were saved, which conflicts with 

estimates from Watson et al., who suggest that vaccination averted 571,100 (535,700 - 

608,600) deaths in France over a study period of one month longer than our study.39 

However, the methodology used by Watson et al. to estimate excess deaths, on which their 

estimates are based, has been criticized for over-estimating deaths.40,41  

Our study has some limitations that must be acknowledged when interpreting our findings. 

First, we were unable to incorporate an age structure into our analysis due to the 

unavailability of age-stratified hospital data at the departmental level. Thus, we assumed 

uniform susceptibility across the population, which may lead to an underestimation of the 
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vaccine's effectiveness against hospitalization. This is because older individuals, who are 

more susceptible to severe disease, hospitalization, and death, were vaccinated first and have 

a higher vaccine coverage than younger age groups. We attempted to mitigate the problem by 

introducing random effects at the departmental level, which could take into account some of 

the intrinsic differences between the departments, such as the different age structure and 

population density. Nevertheless, our estimates should be considered conservative and a 

lower bound of the vaccine's effectiveness. Due to collinearity, the effects of other NPIs, such 

as non-essential store closures or bar and restaurant closures, could not be estimated 

separately. These effects are therefore included in the estimated NPIs and the moderate 

restriction periods. Several more complex alternatives to our chosen model could have been 

considered, such as incorporating an additional presymptomatic-and-infectious 

compartment,31,42 including vaccinated compartments,43,44 or chaining progressive stages of 

compartments.44,45 However, opting for such models requires the estimation or fixation of 

additional parameters. Faced with identifiability issues, we chose to adhere to a simpler 

model, as many models similar to ours have been used to fit SARS-CoV-2 dynamics.14,22-24 

In conclusion, our study provides valuable insights into the effectiveness of various NPIs and 

vaccines in reducing COVID-19 transmission, hospitalizations, and deaths in France. Our 

analysis shows that the implementation of stringent NPIs, such as lockdowns, curfews, and 

school closures, contributed significantly to reducing the spread of the virus. Moreover, 

vaccination was found to be effective in reducing COVID-19 hospitalizations, deaths, and 

infections. Our dynamical model allowed us to quantify the impact of vaccines in 

counterfactual scenarios, highlighting the importance of early and fast vaccine rollout in 

preventing further epidemic resurgences and controlling other emerging respiratory infectious 

diseases. Our findings can aid in the development of effective mitigation policies for future 

COVID-19 waves and other respiratory diseases. However, our findings should be 

generalized to other settings with caution, as the effectiveness of NPIs and vaccines may vary 

across different countries, depending on the local context, population behavior, and 

implementation strategies. Further research is needed to better understand the heterogeneity 

of NPI and vaccine effectiveness across regions and to inform mitigation policies for further 

COVID-19 waves or other respiratory diseases. 
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