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Abstract

Comparing COVID-19 non-pharmaceutical intervention (NPI) strategies across
nations is a key step in preparing for future pandemics. Conventional comparisons,
which rank individual NPI effects, are limited by: 1) vastly different political,
economic, and social conditions among nations, 2) NPIs typically being applied as
packages of interventions, and 3) an exclusive focus on epidemiological outcomes of
interventions. Here, we develop a coupled
epidemiological-behavioural-macroeconomic model that allows us to transfer NPI
strategies from a reference nation to a focal nation while preserving the packaged
nature of NPIs, controlling for differences among nations, and quantifying
epidemiological, behavioural and economic outcomes. As a demonstration, we take
Germany as our focal nation during Spring 2020, and New Zealand and
Switzerland as reference nations with contrasting NPI strategies. We show that,
while New Zealand’s more aggressive strategy would have yielded modest
epidemiological gains in Germany, it would have resulted in substantially higher
economic costs while dramatically reducing social contacts. In contrast,
Switzerland’s more lenient NPI strategy would have prolonged the first wave in
Germany, but would have also have increased relative costs. Our results
demonstrate that Germany’s intermediate strategy was effective in quelling the
first wave while mitigating both economic and social costs.
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Introduction 1

The COVID-19 pandemic caught the world unprepared and exposed critical weaknesses in 2

national pandemic response plans. Within four months of its emergence in Wuhan, China, the 3

disease had spread globally, and the World Health Organisation (WHO) upgraded COVID-19 4

to pandemic status in March 2020. Most national governments were not willing to allow 5

unchecked spread of SARS-CoV-2, but effective countermeasures were challenging and costly to 6

implement. Non-pharmaceutical interventions (NPIs), such as mask mandates, lockdowns, and 7

school closures, quickly became essential tools for combating the incipient COVID-19 8

pandemic [1–4]. NPIs were, consequently, applied around the world, but in heterogeneous ways 9

and with diverse outcomes. Even though the pandemic has not yet come to a complete 10

standstill worldwide (e.g., China), we believe that now is the right time to make retrospective 11

comparisons among the contrasting NPI approaches employed by different nations to identify 12

effective intervention strategies, and to be better prepared for future pandemics. 13

Multiple studies have assessed NPI deployment across nations and have attempted to rank 14

and evaluate NPIs in terms of their average epidemiological effectiveness [1, 5–8]. Most 15

commonly, NPIs are understood as effective if they impact specific epidemiological indicators, 16

in particular if they reduce the basic reproduction number, R0, or COVID-19-related 17

mortality [9–12]. Furthermore, several studies have compared how NPI effectiveness varied 18

among nations (Bo et al. [9], Liu et al. [10]), relying on data sets such as the Johns Hopkins 19

Coronavirus Resource Center [13] or the Oxford COVID-19 Government Response Tracker [14]. 20

Other studies have assessed NPI impacts in selected countries [15], on a regional scale [11,16], 21

or examined effectiveness in individual countries [17, 18]. Overall, NPIs such as school closures, 22

restricting gatherings, banning public events or mandating masks were found to be effective by 23

a range of studies [10,19]. 24

While providing a useful baseline, such comparisons are difficult to perform and subject to 25

a number of complications. First, NPI comparisons typically seek to isolate the effects of 26

individual NPIs, but there are very few situations in which individual measures have been 27

applied in isolation. Instead, interventions tend to be applied as packages, where the package 28

composition, the application sequence, and the timing of application are all important 29

(e.g., [20–23]). Second, cross-national comparisons are frequently confounded by each country 30

having its own set of circumstances including governance, financial, and public health systems 31

as well as education levels, political attitudes, income distributions, and myriad other factors, 32

which we collectively refer to as National Framework Conditions (NFCs) [24]. Finally, NPI 33

effectiveness has primarily been assessed from an epidemiological perspective, despite 34

widespread evidence of marked variation in social and economic consequences of such 35

interventions. A more balanced approach would also account for social and economic outcomes 36

when accessing NPI performance (e.g., [15, 25]; for sustainability implications see [26]). 37

Here, we propose a novel, scenario-based method of comparing NPI effectiveness across 38

nations that treats NPIs as packages of interventions, can control for NFCs, and integrates 39

economic and social considerations into the assessment. Our approach is based on an SIR-type 40

disease model coupled to elemental behavioural [27] and economic models [28], and can be fit 41

to data from different nations. Following Schüler et al. (2021) [29], we estimate the 42

time-dependent disease transmission rate for each nation as a piece-wise constant function with 43

breakpoints defined by the times of NPI implementation or removal. By treating bundles of 44

interventions as a package impacting the overall time-dependent transmission rate, this 45

approach obviates the need to identify separate effects of individual interventions and shifts the 46

focus to intervention strategies. It is then possible to quantify how a focal nation’s 47

epidemiological, social, and economic outcomes would have changed under the NPI strategy of 48

a reference nation via “what-if” scenario simulation. Specifically, we transfer a relativised 49

version of the time-dependent transmission rate estimated from the reference nation into the 50

focal nation’s model, simulate the epidemiological dynamics forward in time, and then calculate 51

the resulting social and economic costs. 52

For simplicity, we focus our case study on the first COVID-19 wave in Spring 2020, well 53

before vaccines became widely available. Additionally, we take Germany (DE) as our focal 54

nation, and we consider scenarios from reference countries that employed more stringent (New 55

Zealand, NZ) and less stringent (Switzerland, CH) NPI strategies relative to Germany. We find 56
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that the New Zealand scenario would have more quickly brought the first COVID wave in 57

Germany under control, but at the expense of much larger reductions in social contacts than 58

either the CH or DE scenarios. Additionally, compared to the strategy DE actually 59

implemented, both the CH and NZ scenarios would have resulted in substantially higher 60

economic costs, but for contrasting reasons. Finally, we demonstrate starkly different 61

epidemiological outcomes based on differential social dynamics between countries, particularly 62

when transferring the CH scenario to DE. 63

Materials and methods 64

Background: COVID-19 response in Germany, New Zealand, and 65

Switzerland during spring 2020 66

Many NFCs are correlated with COVID-19 outcomes across nations. Specifically, the age 67

structure, obesity, urbanisation, GDP per capita, and trust in the government are NFCs with 68

higher correlation coefficients [30–33]. It is therefore critical to control for variation in these 69

important NFCs in cross-national comparisons, which we do here in two ways. First, we have 70

chosen reference countries that are in many ways similar to Germany. Second, we transfer the 71

relativised contact rates from the two reference countries to the focal country, which we 72

describe in detail in the Scenario Transfer section below. 73

Comparing key NFCs across our case study nations, we see that these three countries are 74

quite similar in terms of age structure, obesity, urbanization, and the trust in their 75

governments compared to world averages (Fig 1). 76

Fig 1. A comparison of key NFCs between the focal countries, the reference country
and the world. The NFCs are the median age (Age, with the respective y-axis on the
right), the percentage of people being 65 years or older (Old Age), the percentage of
people having a BMI of over 30 (obesity), the percentage of people living in an urban
area (Urbanisation), the nominal GDP per capita in 1000$, and the percentage of
people trusting their government (Trust) [34].

We identified key milestones and turning points in the national responses to the COVID-19 77

pandemic based in early 2020 primarily on the COVID-19 Government Response Tracker data 78

set [14] and supplemented with sources specific to each nation [35–41]. Figure 2 shows, for each 79

of the three nations, the 7d incidence against the stringency index, which is a composite 80

indicator tracking nine NPIs on a scale between 0 and 100 [14]. In Annex A, we break down the 81

index into its nine constituents. A particular focus for comparing different response strategies 82
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is placed on the early days of the pandemic, as the reproduction number of the original variant 83

of COVID-19 without intervention was estimated to exceed 1 in most cases [42,43]. Thus, not 84

only the intensity of NPIs is relevant, but the timing of their deployment is crucial. 85

Germany implemented NPIs in a step-wise manner (Fig. 2A), including the cancellation of 86

large-scale events on March 10, the closing of schools and kindergartens in most federal states 87

by March 16, and culminating in a set of NPIs restricting private meetings and public life on 88

March 22 [35] . During the same time, NZ (Fig. 2B), and CH (Fig. 2C) adopted a more 89

stringent and a more lenient response, respectively. In CH, NPIs were deployed comparatively 90

late, initially relying on public information campaigns and the restriction of large gatherings. 91

Reacting to the strong increases in reported case numbers (Fig. 2C), CH implemented a variety 92

of NPIs effective immediately on March 16-17, including the closure of schools, non-essential 93

workplaces and the banning of public events [44]. In contrast, NZ issued quarantine orders for 94

international arrivals by March 14, banned indoor gatherings of more than 100 individuals by 95

March 19, and enacted a detailed four-tiered pandemic plan by March 21, 2020 at 96

comparatively low levels of infection. By March 25, the highest alert level (‘Lockdown’) was 97

announced, which banned all gatherings and travel, while mandating a strict stay-at-home 98

order [40]. 99

To account for differential timing of SARS-CoV-2 arrival, we now compare the timing of 100

NPI implementation relative to the timing of fast growth in case counts across the three 101

example nations. For each country, we therefore set a stringency index threshold of 40 and an 102

incidence growth rate threshold of 1.5 d−2. Comparing the time lags between dates at which 103

these thresholds where crossed, we see that NZ implemented strict NPIs 14 days before 104

reaching the incidence growth threshold, while DE began NPI implementation only 2 days 105

before crossing the growth threshold. In contrast, CH was slower to react and began NPI 106

implementation in earnest 4 days after the growth threshold was exceeded. Though our chosen 107

thresholds are somewhat arbitrary, the pattern of time lags across nations is robust to the 108

choice of thresholds. 109

Following reductions in reported infection levels throughout the following weeks, all three 110

nations responded with changes in NPI deployment. Germany and CH both gradually eased 111

NPI stringency, albeit with differences in timing and the extent to which restrictions were lifted 112

(cf. Fig. 2A, C): CH re-opened schools and non-essential commercial establishments earlier and 113

permitted contacts and public events under fewer restrictions. In NZ, NPIs were adjusted 114

based on the pandemic plan, reducing NPI stringency in three steps as the reported infection 115

levels fell (Fig. 2B). 116

Coupled model analysis 117

Here, we define each component of our coupled epidemiological-behavioural-macroeconomic 118

model, specify how the components interact, and then describe how we transfer estimated rate 119

functions from reference countries to DE. We specifically aim to keep the complexity of our 120

models at a minimum to preserve parameter identifiability, which allows us to directly link all 121

model components to data. 122

Epidemiological-behavioural model 123

We begin with a simple SIR compartment model to represent the epidemiological dynamics

Ṡ = −βj

N
IS (1)

İ =
βj

N
IS − γI (2)

Ṙ = γI (3)

(4)

where S, I, and R are the number of susceptible, infected, and recovered individuals, and 124

N = S + I +R. The parameters of this model are the recovery rate γ and the piece-wise 125

contact rate βj , where j indexes the dates at which national NPIs are introduced or lifted [29]. 126
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Fig 2. A comparison of the development over time of the stringency index (grey, left
y-axis) and the 7d incidence (right y-axis) for A) Germany, B) New Zealand, and C)
Switzerland. The grey vertical lines indicate the day at which the stringency index
surpasses the threshold of 40. The coloured vertical lines indicate the day at which the
time derivative of the 7d incidence surpasses the threshold of 1.5 d−2.

To incorporate behaviour in our model, we note that an individual’s perceived risk of an 127

infection, personal risk aversion, valuation of social contacts, and potential for income loss may 128

affect their decisions [45]. The resulting autonomous behavioural adjustments that individuals 129

make in response to an outbreak, when averaged over the population, can substantially affect 130

epidemiological dynamics [27]. Population-level differences in behavioural responses may 131

therefore represent an important source of variation in COVID outcomes among nations. To 132

capture this potential variation in our coupled model, we assume that individuals derive utility 133

u(βr) from social contacts, and following [27], model utility as 134

u(βr) =
1

1− ϵ
(τ1−ϵβϵ

r − ϵβr) , (5)

with βr ∈ (0, 1] being the relative contacts with respect to the pre-pandemic contact level and 135

ϵ ∈ (0, 1) captures how important it is to enjoy at least some contacts. The variable τ ∈ (0, 1] 136

models the contact reduction that results from the NPIs. If there are no NPIs, we set τ = 1 137

and the stricter the NPIs, the lower the value of τ . The level of social contacts that maximises 138

the utility is β̄r = τ , and the corresponding level of utility is normalised to u(β̄) = τ . In an 139

epidemic situation where almost all individuals are susceptible, the individual risk of an 140

infection can be approximated by βIS/N ≈ βI. 141
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A rational, risk-averse individual chooses their contacts as a trade-off between utility from 142

contacts and the expected utility loss from an infection ∆v (see Annex B). The number of 143

contacts is determined by 144

max
βr

{u(βr)− βrI∆v} . (6)

Solving this yields 145

β∗
r =

τ(
1 + 1−ϵ

ϵ
∆vI

) 1
1−ϵ

, (7)

and with β0
j being the contact rates without the behavioural model, we can calculate the 146

contact rates for the SIR model (1) - (3) with βj = β0
j β

∗
r . Following [27], we set ϵ = 0.7. The 147

parameter τ depends on the stringency of the current NPIs, and ∆v depends on individual risk 148

assessment and individual risk aversion and we assume it to be constant over the duration of 149

our scenarios. 150

The recovery rate γ of the epidemiological model, the stringency index τ , and the risk 151

aversion ∆v of the behavioural model are estimated inversely by solving a nonlinear 152

least-squares problem. 153

Macroeconomic model 154

The scenario analysis for economic activity is based on a model developed in [28]. First, we 155

model economic activity as a function of the time-dependent reproduction number, Rt, 156

following empirical relationships at the industry level to account for heterogeneous effects of an 157

aggregate NPI policy. Second, we simulate economic activity associated with different NPI 158

scenarios. A key assumption in this analysis is that the reproduction rate Rt is proportional to 159

the aggregate NPI policy such that Rt is lower the stricter the interventions. 160

To model economic activity as a function of Rt, we measure economic activity over two 161

time windows and link it to the associated reproduction numbers at those times. The first time 162

window, t1, is immediately after the first lockdown began to be lifted. The second time 163

window, t2, is after several step-wise relaxations of policy measures. We estimate the 164

associated reproduction numbers as follows. First, we fit the SIR model (1) - (3) to the entire 165

case data timeseries. Then, for each day in a given time window (t1 or t2), we extract the 166

model-fitted value of case numbers and estimate Rt according to Cori et al. 2013 [46]. Finally, 167

we average Rt values over all days in a given time window. Repeating this procedure separately 168

for t1 and t2 yields the estimates Rt1 and Rt2. Finally, we regress measures of monthly 169

economic activity ym(t1) and ym(t2) against Rt1 and Rt2 to estimate a linear relationship 170

between economic activity and the reproduction number at the industry level. 171

Specifically, the German government announced partial re-openings on April 20, so we set 172

the first time window to be April 27 to May 2, 2020 and estimated Rt1 = 0.84 (for comparison, 173

the official RKI nowcast value is Rt1,RKI = 0.82 [47]). Similarly, we estimated Rt2 = 0.95 174

(Rt2,RKI = 1.1) over the second window from June 9 to June 14 after several NPIs were lifted. 175

Economic activity was measured at the industry level (NACE Rev. 2) based on the ifo 176

Business Survey, a monthly survey among German firm managers that includes approximately 177

9,000 responses with respect to their current and expected business activities (see [48] for 178

details on survey methodology). 179

The second step in estimating the economic consequences of different NPI scenarios, which 180

vary in their degree of stringency, is to simulate the economic activity associated with each 181

scenario. All simulations start during the initial lockdown phase when Rt1 = 0.84 and then, for 182

each set of contact rates considered, proceed forward in time until either the modelled number 183

of newly reported cases falls below a threshold Imax, or a maximum time threshold TM = 300 d 184

is reached. The threshold Imax depends on the capacity of the public health system to control 185

the epidemic through contact tracing and isolation. For Germany, this threshold was estimated 186

early in the pandemic to be 300 newly reported cases per day, based on the number of health 187

departments (see [28] for details). The length of time from shutdown initiation until one of the 188

thresholds Imax or TM is reached, TS , defines the duration of lockdown, over which the 189

economic costs are calculated. 190

Each scenario is defined by time-dependent contact rates βj . For each set of βj , the 191

behavioural-epidemiological model is simulated to obtain the lockdown duration and 192
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corresponding Rt values throughout the lockdown. Given the Rt values, the sector-specific 193

economic activity can then be quantified throughout the lockdown via the regression estimated 194

in step one above (see Annex C for full details). The total cost for scenario i is then obtained 195

by summing over the lockdown period as 196

Ci =

Tend∑
m=1

16∑
k=1

100− yi,k
m (8)

where yi,k
m is the level of economic activity of sector k compared to pre-shutdown levels in 197

scenario i and month m. Full details of how yi,k
m are calculated over the lockdown periods can 198

be found in Annex C. 199

We then express the total cost for each scenario relative to a reference scenario in which 200

Rt2 = Rt1 and then plot total relative cost Ci vs. Ri
t2. First, this allows us to visualise how 201

the economic impact of a given NPI scenario, expressed as total relative cost, is driven by the 202

stringency of lockdown measures, measured as Rt. Second, this approach allows us to compare 203

different NPI strategies based on where they fall along the relative cost curve. 204

Scenario transfer 205

To transfer the NPI strategy of a reference country to the focal country, we first identify the
dates of NPI changes in both countries. Next, the model parameters are estimated for both
countries separately via model fit to each country’s COVID-19 incidence data. For the scenario
run, we use the first NPI dates and associated disease transmission rates of the focal country,
until the epidemic wave has fully evolved (i.e. the first two NPI dates of the focal country are
fixed). The subsequent NPI dates and disease transmission rates are then transferred from the
reference country to simulate how the wave would have further developed in the focal country
under the reference country’s NPI strategy. To transfer contact rates between nations, we
assume that NPIs have the same proportional effect in each nation, but NFCs cause the
proportionality constants to differ between countries. We therefore calculate the relativised,
transferred contact rates τT from the reference country (R) to the focal country (F) as:

τT
j = τF

j for j = 1, 2 (9)

τT
j = τF

j−1

τR
j

τR
j−1

= τR
j
τF
2

τR
2

for j = 3, 4, . . . (10)

The relativised contact rate transfers the effects of NPIs per se, but does not account for 206

differences in autonomous behavioural responses between reference and focal nations. To 207

account for behavioural differences, the estimated risk aversion parameter, ∆v, can also be 208

transferred from reference to the focal nation. To help separate these effects, we consider 209

scenarios with only NPI transfer, and with both NPI and risk aversion transfer. 210

Results 211

The dynamics of the first COVID-19 wave in DE can be successfully reproduced with the 212

coupled epidemiological (Eqs. (1) - (3)) and behavioural (Eq.(7)) model (Fig. 3A). Only the 213

small summer peak could not be captured by the model, as it cannot be explained by NPIs. 214

Similarly, the incidence curve for NZ can also be adequately reproduced (Fig. 3B), even though 215

the initial increase in cases is so steep that the model cannot keep up and therefore creates a 216

more gradual increase that, compared to the data, starts slightly earlier. The coupled model 217

can describe the CH data as well, where there was a rapid initial increase in cases with a 218

gradual decline thereafter (Fig. 3C). Overall, the epidemiological development during the first 219

wave is qualitatively similar in DE, CH, and NZ. In all three cases, we were able to 220

unambiguously identify reasonable estimates for all model parameters. 221

Transferring the relativised transmission rate (Eq. (9)) from NZ to DE from the second 222

NPI period onward demonstrates that the first wave would have been stopped earlier than was 223

actually observed in DE (Fig. 4A,C). Specifically, combining the NZ relativised transmission 224

rate with DE’s level of risk aversion would have led to the outbreak ending in early May 2020 225
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Fig 3. Fit of the coupled behavioural and epidemiological model to incidence data from
A) Germany (upper panel), B) New Zealand (lower left), and C) Switzerland (lower
right) during the first wave in Spring 2020.

(Fig. 4A), while the more conservative level of risk aversion apparent in NZ would have helped 226

end the outbreak by late April (Fig. 4C). 227

Applying the CH scenario to DE (Fig. 4B,D), we see that the first NPIs seem to be enough 228

to break the wave. In the transfer scenario with DE risk aversion (Fig. 4B), the subsequent 229

NPIs appear to be only stringent enough to create a dynamic balance with the 7d incidence 230

staying around 15 d−1 for about 3 months. In stark contrast, the transfer scenario with CH risk 231

aversion, which was markedly lower than for DE, would have resulted in a very large second 232

wave during summer 2020 (Fig. 4D). Comparing panels B and D in Fig. 4 shows that the 233

autonomous behavioural response, which is governed by risk aversion, can qualitatively change 234

the outcome of a given NPI regime when pronounced differences in risk aversion occur. 235

The parameterised models also contain information on reductions in social contacts via the 236

utility function (Eq. (6)). Specifically, the utility function quantifies the reduction in contacts 237

relative to pre-pandemic levels. The actual DE NPIs and the DE risk aversion reduce contacts 238

to a little less than 60% of pre-pandemic levels (Fig. 5, blue curve), and the CH scenario with 239

DE risk aversion also causes a similar reduction in contacts (Fig. 5, orange solid curve). In 240

contrast, the NZ scenario with DE risk aversion immediately reduces relative contacts to 30% 241

from the onset of the first wave, which then gradually increases to values above the DE and 242

CH scenarios, finally decreasing again to similar values as for DE and CH during the summer 243

of 2020 (Fig. 5, green solid curve). Transferring the NZ risk aversion results in no important 244

difference (Fig. 5, green dashed curve). The explosive increase in cases in the CH scenario with 245

transferred risk aversion ultimately breaks the assumption of the behavioural model that the 246

infection numbers are small, which results in relative contacts becoming negative during 247

summer 2020 (Fig. 5 orange dashed curve). However, we have included this result (truncated 248

at zero) both for the sake of completeness, and because it offers qualitative insight. Specifically, 249

it seems reasonable that the large second wave would indeed drive contacts below the level 250

observed during the first wave due to the autonomous behavioural response. As an external 251
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Fig 4. A) New Zealand (upper left panel) and B) Switzerland (upper right panel)
scenarios transferred to Germany from the second NPI date (second vertical dashed
line) onward. The lower panels show the effect of also transferring the estimated risk
aversion from the reference countries C) New Zealand and D) Switzerland to Germany.

check on our coupled model, we note that the relative contact reduction in DE estimated from 252

our model (Fig. 5, blue curve) agrees remarkably well with the results presented by Rüdiger et 253

al. 2021 ( [49], Fig. 2B). Importantly, they used mobile phone data to estimate a contact 254

reduction of approximately 50%, whereas our estimates were based entirely on incidence data. 255

The concordance between these differently estimated results suggests both that our behavioural 256

submodel is capturing the key drivers of contact reduction, and is estimable from incidence 257

data alone. 258

The relative cost function from our economic model is convex and asymmetric, showing 259

that long-run costs increase faster and reach higher levels under very lenient NPI scenarios 260

than under stricter NPI scenarios (Fig. 6). Economic activity is more sensitive to long 261

shutdown duration (lenient NPIs) than to shorter but stricter shutdowns. Germany imposed 262

measures that resulted in somewhat higher than optimal economic costs (Fig. 6, blue point). 263

The minimum is found at the midpoint between the shutdown costs (Rt1 = Rt2 = 0.84) and 264

partial opening costs (Rt2 = 0.95), suggesting that economic costs would have been minimised 265

if the partial opening measures in DE had been slightly more lenient compared to the actually 266

implemented strategy. 267

Despite resulting in divergent epidemiological outcomes (Fig. 4), and similarly large 268

differences in social outcomes (Fig. 5), the economic model suggests that both the NZ and CH 269

scenarios, when viewed in the context of DE, were suboptimal and would have resulted in 270

substantial relative cost increases (Fig. 6). Here, we focus only on the cases where German risk 271

aversion was used in both the CH and NZ scenarios, as: 1) differences in risk aversion had 272

negligible economic consequences in the NZ scenarios, and 2) CH risk aversion resulted in 273

Rt2 > 1, which violates one of the economic model’s assumptions. In the case of NZ, the more 274

stringent NPI response quickly brings the first wave to heel, but results in substantially 275

increased short-term economic impacts (Fig. 6, orange point). In contrast, the more lenient CH 276
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Fig 5. The dynamics of relative contact reduction for Germany and for the New
Zealand and Switzerland transfer scenarios with and without risk aversion transfer.

strategy has lower initial economic impact, but the resulting prolonged outbreak causes costs to 277

accumulate over the longer term, yielding an even higher relative cost increase than for the NZ 278

scenario (Fig. 6, green point). 279

Discussion 280

Being better prepared for the next pandemic requires that we learn as much as possible from 281

the unprecedented volume of data generated by COVID-19. Cross-national comparative studies 282

are foundational components of this learning process, but require special care given the myriad 283

differences among nations (i.e., NFCs) that may contribute to broadly different outcomes. In 284

the case of NPI strategies, such comparisons are further complicated by NPIs being applied as 285

packages of interventions, which makes it more difficult to quantify the effects of individual 286

measures in isolation. Conventional approaches to inter-country comparisons focus on teasing 287

apart individual effects of interventions and ranking them in terms of average effect 288

magnitude [1, 5]. Finally, most assessments of NPI effectiveness focus solely on epidemiological 289

outcomes, neglecting social and economic dimensions. In contrast, we have taken a novel, 290

scenario-based approach that can control for differences in NFCs, recognises the 291

non-independence of NPIs as applied in practice, and explicitly considers the economic and 292

social consequences of NPIs in the context of a focal country. 293

Choosing DE as our focal nation, and the first COVID-19 wave in Spring 2020 as our time 294

horizon, we have considered two scenarios with contrasting properties. New Zealand 295

implemented a very strict NPI strategy focused around an intense national lockdown, while CH 296

choose a much more lenient strategy specifically to avoid the economic and social consequences 297

a hard nationwide lockdown entails. When transferred to the context of DE, these strategies 298

produce markedly different epidemiological outcomes both relative to each other and relative to 299

DE’s realised NPI strategy. The NZ strategy results in a sharp, immediate decline in cases and 300

near total elimination of the outbreak in a very short time. When the NZ NPI strategy is 301
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Fig 6. Relative economic costs of the three different NPI strategies in the context of
Germany.

accompanied by the NZ level of risk aversion, which was higher than in DE, the outbreak is 302

extinguished a couple of weeks sooner, but the qualitative pattern does not change. 303

Switzerland’s strategy, coupled with DE risk aversion, stops further increases in cases, but also 304

fails to drive incidence levels towards zero. In contrast to the NZ scenarios, accounting for the 305

lower level of risk aversion in CH compared to DE changes the outcome of the simulated 306

transfer scenario both quantitatively and qualitatively. Specifically, a clear and much larger 307

second wave appears following the first, indicating that the later-stage CH NPIs would have 308

been inadequate to prevent a further outbreak in the context of DE. This qualitative shift 309

occurs because the CH NPIs were at the limit of being able to contain a further outbreak in 310

the DE context. Thus, a change in average individual risk aversion was sufficient to tip that 311

fragile balance in direction of another surge of infections. 312

The different strategies employed by DE, NZ, and CH have substantially varied social costs. 313

It is immediately apparent that the NZ strategy, when transferred to DE, would have resulted 314

in dramatic reductions in social contacts, either with or without NZ risk aversion. Given the 315

strong social and political reactions to lockdowns and loss of contacts that were actually 316

observed in Germany, such further reductions could have been extremely disruptive. In the CH 317

transfer cases, the difference in social costs, driven by differences between DE and CH levels of 318

risk aversion, is striking. In the DE risk aversion case, the predicted reduction in contacts is 319

comparable to what was actually observed in Germany, and much less than either of the NZ 320

transfer scenarios, at least until mid-May 2020. However, in the CH transfer scenario with CH 321

risk aversion, contacts are quickly driven to zero, resulting from a somewhat counter-intuitive 322

feedback loop. Specifically, lower risk aversion interacts with weaker NPIs to produce much 323

higher case counts. The exploding case numbers then drive an almost total loss of social 324

contacts due to individuals’ autonomous behavioural responses, even though risk aversion was 325

markedly lower in CH than in DE. In other words, a severe enough outbreak can trigger 326

dramatic reductions in social contacts even when risk aversion is low (but non-zero). However, 327

the behavioural model assumes low infection numbers. Therefore, at least the quantitative 328

results of the reduction in social contacts should be taken with caution. This is caveat is 329

discussed in more detail below. 330

When viewed through the lens of our DE-specific economic model, both the NZ and CH 331

scenarios prove to substantially increase relative costs, but for contrasting reasons. Specifically, 332

the NZ scenario incurs the immediate costs of a very strict lockdown, while only yielding 333
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modest epidemiological gains. In contrast, CH’s more relaxed approach gradually accumulates 334

costs resulting from a sustained, low-intensity lockdown and concomitant reductions in business 335

activity and efficiency. Relative to the ‘middle road’ strategy DE chose to implement, both of 336

these reference approaches perform poorly from an economic perspective, while only NZ’s 337

approach would have yielded epidemiological gains in the simulated DE national framework. 338

Though we were not able to calculate relative economic costs in the CH scenario with CH risk 339

aversion due to a violation of the economic model’s assumptions, we can surely conclude the 340

relative costs would have been even higher because it would have taken longer to bring the 341

daily number of cases back down to the threshold Imax. 342

Our goals here were to develop an elemental approach to scenario-based, inter-country 343

comparisons of NPI strategies, and to demonstrate the insights that can be gained from this 344

framework. We have therefore kept our component models as simple as possible. A clear 345

limitation of this approach is the fact that, in its current state, the economic model can’t 346

handle scenarios that feature Rt2 > 1, as happened in the CH scenario with CH risk aversion. 347

This scenario also highlights a limitation of the behavioural model, which is the assumption of 348

small case numbers I. This becomes problematic if we try to calculate the relative contact 349

reduction from Eq. (6) (see Fig. 5, orange dashed curve). In the asymptotic case for I → ∞, 350

the epidemiological part of the coupled models (1) - (3) and (7) would also break down. 351

However, large I values are only gradually reached from June 2020 onward and the risk aversion 352

parameter in Eq. (7) is generally small compared to the cases I, with ∆v < 10−4. This leads 353

to a situation, where the equations stay stable until the point where the threshold I > 1
∆v

is 354

reached. For the CH scenario with CH risk aversion, this stability threshold is not exceeded. 355

One could, of course, envision more elaborate versions of any of the pieces of our coupled model. 356

Such embellishments would need to carefully balance realism against tractability. In particular, 357

our approach hinges on being able to reliably estimate model parameters from epidemiological 358

and economic data. While more detailed models might be easier to justify mechanistically, this 359

may come at the cost of parameter identifiability, which is an issue that frequently plagues 360

complex compartment-type disease models [50,51]. Despite these concerns, we believe that 361

significant opportunities exist to build on the framework we have established here. 362

Finally, it is important to realise that the conclusions drawn from our scenario-based 363

analyses are specific to a particular focal country, in this case DE. Our approach is silent with 364

respect to the optimality of the reference country’s strategy in the context of the reference 365

country. For example, we concluded that DE’s realised NPI strategy achieved a more ideal 366

balance between epidemiological and economic goals than NZ’s strategy would have, had it 367

been implemented in DE. However, we draw no conclusions about how good NZ’s strategy was 368

for NZ. Similarly, we also did not explore how well DE’s strategy would have performed in 369

either NZ or CH. Doing so would require parameterising our economic model for these 370

countries, and then treating each as a focal country as we’ve done here for DE. Indeed, 371

expanding the catalogue of both focal and reference nations to which our approach can be 372

applied is a clear priority for subsequent work. We are therefore currently compiling the global 373

databases that would support more extensive comparisons, and intend to explore a broader 374

range of case studies in the future. 375

September 14, 2023 12/19

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.14.23294544doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.14.23294544
http://creativecommons.org/licenses/by/4.0/


Annex A: Stringency index breakdown and timeline 376

Fig 7. Stringency index composition: Germany (Mar-Aug 2020)

Fig 8. Stringency index composition: New Zealand (Mar-Aug 2020)
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Fig 9. Stringency index composition: Switzerland (Mar-Aug 2020)

Annex B: Derivation of reduced-form behavioural 377

model 378

The behavioral model (6) is a reduced form version of the model developed in [27], and closely
related to the approach proposed in [52]. According to that model, the expected present value
of life-time utility of a susceptible individual at time t is given by

V s
t = max

βt

{
u(βt) + (1− βt It)V

s
t+1 + βt It V

i
t+1

}
, (11)

where subscripts t denote the current time period, t+ 1 the next time period, etc. With
probability 1− βt It the individual stays susceptible and then will enjoy the expected present
value life-time utility of a susceptible individual in the next period, V s

t+1. With probability
βt It, the individual will get infected and the expected present value life-time utility is reduced
to that of an infected individual, V i

t+1, which may in the subsequent period stay infected,
recover, or die. In a fully dynamic and recursive model, all these present value utilities need to
be derived [27,52]. Here, we assume that the present value utilities are independent of time,
such that we can drop the time index of V i and V s, and (11) becomes

0 = max
βt

{
u(βt)− βt It

(
V s − V i

)
︸ ︷︷ ︸

:=∆v

}
. (12)

The zero on the left-hand side is a matter of normalisation of the utility function. The relevant
part is the model of behaviour, i.e. the maximisation of the right-hand side of (12), which
is (7). The corresponding first-order condition reads u′(β) = I∆v. Using the specification (5)
of the utility function, this becomes

ϵ

1− ϵ
τ1−ϵ βϵ−1 − ϵ

1− ϵ
= I∆v (13)

⇔ ϵ

1− ϵ
τ1−ϵ =

(
ϵ

1− ϵ
+ I∆v

)
β1−ϵ (14)

⇔ β =
τ(

1 + 1−ϵ
ϵ

I∆v
) 1

1−ϵ

, (15)

which is equation (7). 379
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Annex C: Economic model details and parameters 380

Here, we provide further details of how the sector-specific economic costs are calculated for a 381

given scenario over the resulting lockdown duration. Following Dorn et al. (2022) [28] we 382

calculate the activity of each sector for six different phases related to the shutdown: (a) 383

pre-shutdown economic activity, normalised to 1, (b) shutdown, (c) initial transition period 384

after implementation of policy change, (d) full transition period under partial restrictions, (e) 385

recovery period, and (f) complete recovery. The expected duration of recovery ∆t3 was inferred 386

from a special question in the ifo Business survey in June 2020. Given the regression 387

relationship between Rt and yi,k
m , economic costs for each phase are calculated as 388

yi,k
m (t) =

m∑
t



1 if t < t1 (a)

yk
t1 if t1 ≤ t < t2 (b)

yk
t1 + (t− t2 + 1d)

y
i,k
t2

−yk
t1

∆t2+1d
if t2 ≤ t < t2 +∆t2 (c)

yi,k
t2

if t2 +∆t2 ≤ t < t2 +∆t2 + t3 (d)

yi,k
t2

+ (t− t2 −∆t2 − t3 + 1d)
1−y

i,k
t2

∆t3+1d
if t2 +∆t2 + t3 ≤ t < t2 +∆t2 + t3 +∆t3 (e)

1 if t ≥ t2 +∆t2 + t3 +∆t3 (f)

(16)
where the dates t1, t2, t3 denote the shut-down, the partial re-opening, and the start of the 389

re-opening phase. The durations ∆t2,∆t3 denote the initial adjustment time of the re-opening 390

and the time of the recovery. yk
t1 is the economic activity of sector k during shutdown (t1 until 391

t2) and yi,k
t2

is the economic activity of sector k after the first re-opening under scenario i 392

(t2 +∆t2 until t2 +∆t2 + t3). The economic costs are aggregated over the sectors, weighted by 393

their shares out of overall gross value added, to monthly values, indicated by
∑m

t . 394

Parameter Value (baseline) Interpretation Source
Rt1 0.84 Stringency of shutdown model
Rt2 0.95 Stringency of policy change model
ykt1 [30, ..., 75] Economic activity of sector

k under shutdown
ifo Business
Survey

yi,kt2 [45, ..., 90] Economic activity of sector
k after first openings
under scenario i

ifo Business
Survey

Tend 36mo Time horizon of simulation Exogenous
TM 300 d Threshold duration for reopening Estimate
Imax 300 d−1 Threshold cases for reopening Estimate
t1 2020-03-19 Calendar day of shut-down

implementation
Government
announcement

t2 2020-04-20 Calendar day of policy change Government
announcement

t3 60 d Start of re-opening phase Exogenous
∆t2 21 d Initial adjustment duration Exogenous

∆ti,k3 8.2mo (Min., J)
10.5mo (Max., I)
9.0mo (Mean)

Duration of recovery under scenario i
in sector k

ifo Business
Survey

Table 1. Model summary
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Kulveit, Leonid Chindelevitch, Seth Flaxman, Yarin Gal, Swapnil Mishra, Samir Bhatt,
and Jan Markus Brauner. Understanding the effectiveness of government interventions
against the resurgence of COVID-19 in europe. Nature Communications, 12(1), October
2021.

17. Annabelle Collin, Boris P. Hejblum, Carole Vignals, Laurent Lehot, Rodolphe Thiébaut,
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