It is made available under a CC-BY-NC-ND 4.0 International license .

Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects

4

5 Hui Wang^{1,2}, Beth A Dombroski^{1,2}, Po-Liang Cheng^{1,2}, Albert Tucci³, Ya-Qin Si³, John J Farrell⁴,

6 Jung-Ying Tzeng³, Yuk Yee Leung^{1,2}, John S Malamon⁵, The Alzheimer's Disease Sequencing

7 Project, Li-San Wang^{1,2}, Badri N Vardarajan^{6,7}, Lindsay A Farrer^{4,8,9,10,11}, Gerard D Schellenberg^{1,2},

8 Wan-Ping Lee^{1,2}

9

¹Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of 10 Pennsylvania, PA 19104, USA, ²Penn Neurodegeneration Genomics Center, Perelman School of 11 Medicine, University of Pennsylvania, PA 19104, USA, ³Bioinformatics Research Center, North 12 Carolina State University, NC 27695, USA, ⁴Department of Medicine (Biomedical Genetics), Boston 13 University School of Medicine, MA 02118, USA, ⁵Department of Surgery, Scholl of Medicine, 14 University of Colorado, CO 80045, USA, ⁶Taub Institute for Research on Alzheimer's Disease and 15 the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA, 16 ⁷Department of Neurology, College of Physicians and Surgeons, Columbia University and the New 17 York Presbyterian Hospital, NY 10032, USA, ⁸Department of Neurology, Boston University School 18 of Medicine, MA 02118, USA, ⁹Department of Ophthalmology, Boston University School of 19 Medicine, MA 02118, USA, ¹⁰Department of Biostatistics, Boston University School of Public 20 Health, MA 02118, USA, ¹¹Department of Epidemiology, Boston University School of Public Health, 21 22 MA 02118, USA 23

24 Search Terms: Alzheimer's disease, Structural variation, Copy number variation

It is made available under a CC-BY-NC-ND 4.0 International license .

25 Abstract

26 Structural variations (SVs) are important contributors to the genetics of numerous human 27 diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to 28 challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the 29 Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 30 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases 31 (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events 32 (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, 33 APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in 34 linkage disequilibrium (LD) with known AD-risk variants. deletion e.g., a (chr2:105731359-105736864) in complete LD ($R^2=0.99$) with rs143080277 (chr2:105749599) in 35 36 NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related 37 pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD 38 genetics.

2

It is made available under a CC-BY-NC-ND 4.0 International license .

39 Introduction

40 Alzheimer's disease (AD) is a neurodegenerative disease characterized by abnormal deposits of 41 extracellular A β plaques and intracellular neurofibrillary tangles¹. Typically, the accumulation of 42 these neuropathological changes is accompanied by neuronal death, leading to various symptoms 43 such as memory loss, apathy, difficulty swallowing, and walking². Among individuals aged 65 and 44 older, AD has an incidence rate of 10.7% and is the fifth-leading cause of death².

45 Genetic factors play a significant role in the etiology of AD, with the estimate of heritability ranging from 58% to 79%³. However, genetic risk factors identified in previous studies explain only 46 47 a limited portion of heritability in AD. Mutations in APP, PSEN1, and PSEN2 cause an early-onset 48 form of AD that is inherited as an autosomal dominant trait with high penetrance, but these mutations only account for about 11% of early-onset AD that is approximately 0.6% of all AD⁴. APOE 49 50 genotype is the most prominent genetic risk factor for AD, and it is estimated that approximately 40-50% of individuals diagnosed with AD carry at least one copy of the APOE ε 4 risk allele⁵. 51 52 Overall, variations in APP, PSEN1, PSEN2, and APOE explain 20-50% of total genetic variance (heritability) of AD, with APOE ε 4 accounting for most of this fraction due to its high frequency⁶. 53 54 In the past decade, genome-wide association studies (GWASs) identified > 75 additional AD risk

⁵⁵ loci⁷⁻¹⁰. However, compared to *APOE* alleles, variants at those loci have a small effect size or are ⁵⁶ rare in the population, contributing little to the overall heritability. *APOE* alleles alone can achieve an ⁵⁷ AUC (Area Under the Receiver Operating Characteristic Curve) of 0.70 in predicting AD, whereas ⁵⁸ the best AUC is only 0.61 when all other common single nucleotide variants (SNVs) are combined¹¹. ⁵⁹ Even if all common SNVs, including *APOE* alleles, are considered, they only account for 24-33% of

It is made available under a CC-BY-NC-ND 4.0 International license .

60 phenotypic variance 12,13 , which is much lower than the estimated heritability of AD and thus suggests

61 a role for other genetic mechanism.

62 Structural variants (SVs) are genomic alterations larger than 50bp that include deletions, 63 duplications, inversions, insertions, translocations, and complex combinations of these events. SVs 64 contribute more to individual genetic variation in terms of total nucleotide content, and thus the 65 difference in genomic sequences between two humans can increase from 0.1% with SNVs alone to 1.5% when SVs are considered¹⁴. Moreover, SVs can have profound effects on diseases and other 66 67 traits by disrupting gene function and regulation or modifying gene dosage through copy number 68 changes, deleting exons, and creating new splicing acceptors or donor sites. Therefore, analyzing 69 SVs has the potential to identify new genetic associations and account for the missing heritability in 70 AD.

71 SVs have been identified in several genes implicated in AD. For instance, duplications in APP have been found to be the causal factor for autosomal dominant early-onset AD in a few families^{15–19}. 72 73 In addition, a deletion in exon 9 of *PSEN1* was identified in families with a form of early-onset AD characterized by spastic paraparesis and atypical plaques^{20,21}. A low-copy repeat of 18 Kb in length 74 75 within CR1, which creates an additional C3b/C4b-binding site, may account for some GWAS signals in the *CR1* region^{22,23}. The 1 Mb region on 17q21.31 containing *MAPT* has two major haplotypes H1 76 77 and H2, which are characterized by a ~900 \[Kb inversion flanked by a few duplication blocks and tagged by a 238 \Box bp deletion between exons 9 and 10 of $MAPT^{24}$. The H1 and H2 haplotypes are 78 associated with a range of neurodegenerative diseases including AD^{24-26} . Additionally, copy number 79 80 variants (CNVs) in AMY1, which are correlated with salivary amylase protein level and digestion of

It is made available under a CC-BY-NC-ND 4.0 International license .

81 starchy food, are associated with AD. Individuals with high copy numbers (≥ 10) of AMYI have a significantly lower risk of developing AD^{27} . These examples show that identification and analysis of 82 83 SVs in AD genetics hold great potential for uncovering new genetic associations and providing a 84 more comprehensive understanding of the genetic underpinnings of this complex disease. 85 To discover SV variants possibly contributing to AD risk, we evaluated SVs detected in 86 whole-genome sequence (WGS) data from 16,905 subjects from the Alzheimer's Disease 87 Sequencing Project (ADSP). We detected 400,234 SVs and found rare SVs in known AD genes, 88 including SORL1, ABCA7 and APP, as well as SVs in linkage disequilibrium (LD) with AD GWAS 89 signals. Moreover, we found an increased burden of deletions and duplications (particularly, 90 singleton and homozygous events) in AD and identified possible risk SVs in ADD3, ITPR2, and 91 NTM through association analysis.

It is made available under a CC-BY-NC-ND 4.0 International license .

92 **Results**

93 SV discovery and characteristics

94	The SV discovery pipeline, including the Manta ²⁸ , Smoove ²⁹ , Svimmer ³⁰ , and GraphTyper2 ³⁰ SV
95	callers (Methods), was applied to ADSP ³¹ R3 release (NG00067.v7) WGS data (N=16,905; Table 1).
96	We observed 400,234 SVs (231,385 deletions, 45,839 duplications, 119,648 insertions, and 3,362
97	inversions) of which 168,223 (98,805 deletions, 24,602 duplications, 44,130 insertions, and 506
98	inversions) were classified as high-quality calls (Table S1, Methods). Notably, genotype calls for
99	deletions exhibited superior quality with a lower missing genotype rate compared to duplications,
100	insertions, and inversions (Fig. S1). This observation highlights the higher quality of deletion
101	detection on WGS over other SV types using available callers.
102	On average, each individual had 14,607 (3,875 high-quality) deletions, 764 (288 high-quality)
103	duplications, 6,980 (2,504 high-quality) insertions, and 19 (3 high-quality) inversions. Individuals of
104	African ancestry had more SV calls compared to individuals of other ancestries (Fig. 1A), possibly
105	because the human reference genome is biased towards European ancestry or higher level of genetic
100	1^{2} $3^{2}-3^{4}$ $3^{2}-3^{4}$ $3^{2}-3^{4}$ $3^{2}-3^{4}$ $3^{2}-3^{4}$ $3^{2}-3^{4}$ $3^{2}-3^{4}$

106 diversity in Africans^{32–34}. Similar to SNVs, the first two principal components of common SVs

107 distinguished samples from different ancestral backgrounds (**Fig. 1B**). However, the third principal

108 component of SVs is associated with read length and sequencing platforms (Fig. S2), indicating

109 batch effect is an important confounding factor to consider when performing SV analysis.

110 Comparable to the allele frequency (AF) distribution of SNVs, most SVs are extremely rare.

111 Among 400,234 SVs, 94,923 (24%) are singletons, and 232,295 (58%) are rare with AF < 1% (Fig.

It is made available under a CC-BY-NC-ND 4.0 International license .

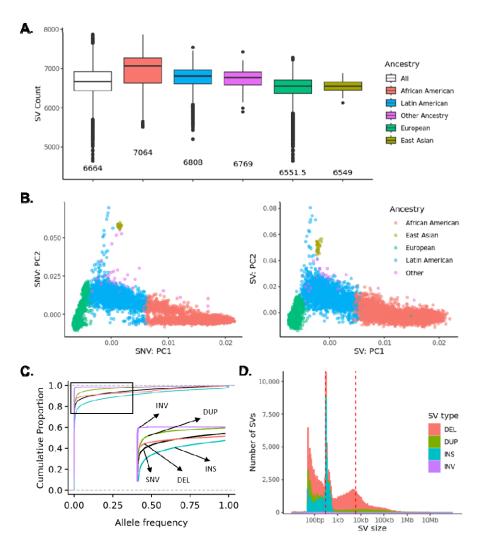
112	S3). When considering the 168,223 high-quality SVs, 67,595 (40%) are singletons, and 140,164
113	(83%) are rare with $AF < 1\%$. Fig. 1C shows that the AF distribution of deletions is more similar to
114	the AF distribution of SNVs compared to other SV types. Analysis of the size of the SVs revealed
115	two peaks centered around 300 bp and 6,000 bp (Fig. 1D), suggesting the possibility that many SVs
116	are introduced by transposons, particularly, Alus (~300 bp) and L1s (~6,000 bp).
117	Functional annotation analysis performed using AnnotSV ³⁵ showed that rare SVs are more likely
118	to be deleterious than common SVs (Wilcoxon Rank Sum $P < 0.0001$) (Fig. 2A). This finding was
119	confirmed using annotation from VEP ³⁶ , which shows that protein-altering SVs tend to be rare (odds
120	ratio [OR] = 4.71, Chi-Square $P < 0.0001$, Fig. 2B). Additionally, we observed a higher proportion of
121	singletons SVs in coding or regulatory regions (Fig. 2C), suggesting negative selection against
122	deleterious SVs in functionally important regions of the genome. Overall, our results highlight the
123	importance of evaluating rare SVs when studying genetic variation in human disease.

It is made available under a CC-BY-NC-ND 4.0 International license .

	AD (N = 6,646)	Control (N = 6,938)	Unknown AD status (N = 3,321)
Age (SD)	74.62 (10.44)	77.40 (7.98)	72.04 (9.28)
Sex (%)			
Female	3,998 (60%)	4,639 (67%)	1,586 (48%)
Male	2,648 (40%)	2,299 (23%)	1,735 (52%
APOE status ^a (%)			
ε4	3,552 (54%)	2,188 (32%)	972 (30%)
No ε4	3,084 (46%)	4,661 (68%)	2,279 (70%
Ancestry ^b (%)			
European	4,381 (66%)	3,214 (46%)	2,871 (86%)
African American	1,454 (22%)	2,036 (29%)	129 (4%)
Latin American	769 (12%)	1,655 (24%)	253 (8%)
East Asian	18 (0.27%)	9 (0.13%)	32 (0.96%)
Other	24 (0.36%)	24 (0.35%)	36 (1%)
Ethnicity (%)			
non-Hispanic	5,523 (85%)	4,912 (71%)	1,058 (80%)
Hispanic	1,022 (15%)	2,003 (29%)	265 (20%)

124 Table 1. Characteristics of study participants (N = 16,905)

125


126 AD, Alzheimer's disease; Age, age at onset for individuals with AD or age at last exam for non-AD

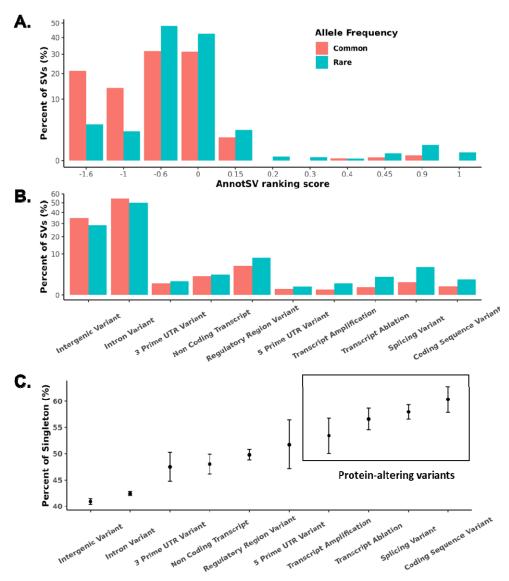
127 subjects; SD, standard deviation.

128 ^aAPOE ε 4 status is based on rs429358 observed from whole genome sequencing data.

^bAncestry is inferred using GRAF-pop³⁷.

It is made available under a CC-BY-NC-ND 4.0 International license .

130


131 Fig. 1: Characteristics of high-quality SVs

132 A. Number of high-quality SVs per individual by ancestry. B. Principal component analysis of

high-quality SV with MAF > 0.01 and Hardy-Weinberg Equilibrium (HWE) > 1e-5. C. The

134 cumulative fractions of variants by allele frequency. **D.** The size distribution of high-quality SVs.

It is made available under a CC-BY-NC-ND 4.0 International license .

135

136 **Fig. 2: Functional annotation of SVs.**

137A. AnnotSV ranking scores of common (AF ≥ 0.01) and rare (AF < 0.01) high-quality SVs. The</th>138rare SVs are more likely to be deleterious with higher AnnotSV ranking scores. **B.** VEP annotation of

139 common (AF \ge 0.01) and rare (AF < 0.01) high-quality SVs. The protein-altering SVs tend to be rare.

140 **C.** Percent of singletons in a specified functional category by VEP.

It is made available under a CC-BY-NC-ND 4.0 International license .

141 SV quality evaluation and laboratory validation

142	Evaluation of the sensitivity of SV calling pipeline using synthetic mutations ³⁸ (Methods)
143	revealed a sensitivity of 99.4% for 4,000 deletions and 94.4% for 1,500 inversions (Table S2). We
144	did not perform an evaluation for insertions since the inserted sequences and positions are ambiguous
145	in the simulation of synthetic mutations.

146 Then, we evaluated our SV call set against external SV databases. Approximately 50% of the

147 high-quality SVs were detected in the Genome Aggregation Database (gnomAD, 292,307 SV sites),

148 but there was less overlap with SVs in the 1000 Genomes Project (1KG, 66,505 SV sites) (Fig. S4).

149 The difference was due to fewer samples in 1KG compared to gnomAD. The SV callset before
150 high-quality filtering had a higher recall (a higher percentage of SVs from gnomAD and 1KG) at the

151 cost of lower precision (a lower percentage of SVs confirmed by gnomAD and 1KG) (Fig. S4, Fig.

152 **S5**).

Of 95 SVs selected for experimental validation (**Table S3**; **Methods**), 78 were confirmed, resulting in a sensitivity rate of 82%. When considering only high-quality SVs, the sensitivity increased to 85% with 61 out of 72 SVs being experimentally validated. On individual genotype level, an accuracy of 89% was achieved for 276 called genotypes for 95 SVs undergoing PCR validation (**Table S4**), and this value increased to 92% for 207 called genotypes for 72 high-quality SVs (**Table S4**).

159 SVs in linkage disequilibrium with known AD risk loci

160 SVs are larger genomic perturbations and may have more severe functional impact compared to

It is made available under a CC-BY-NC-ND 4.0 International license .

161 SNVs; therefore, SVs in LD with AD GWAS risk SNVs are more likely to account for the statistical 162 association in the regions, especially if the SNVs are not predicted to have an impact on protein 163 structure or gene expression. We identified 21 SVs (12 deletions, two duplications, and seven insertions) that are in LD with established AD GWAS loci⁸⁻¹⁰ (**Table 2**). Three deletions, in particular, 164 showed high LD ($R^2 > 0.9$) with GWAS signals near or in NCK2, NBEAL1, and TMEM106B. A 5.5 165 Kb deletion (chr2:105731359-105736864) located 8 Kb upstream of NCK2 is in perfect LD ($R^2 =$ 166 167 (0.99) with rs143080277 (chr2:105749599), which is a rare variant (AF = 0.005) in the intron of NCK2¹⁰. A 5.2 Kb deletion (chr2:203034369-203039560) in NBEAL1 intron and overlapping with 168 H3K27ac peak from Encode³⁹ is in high LD ($R^2 = 0.94$) with rs139643391 (chr2:202878716)¹⁰, 169 170 which is a 3 prime UTR variant of WDR12. A 323 bp (chr7:12242077-12242399) Alu deletion 171 located on the exon 8 of TMEM106B is in LD with TMEM106B intronic variants, rs5011436 $(chr7:12229132, R^2 = 0.92)^9$ and rs13237518 $(chr7:12229967, R^2 = 0.90)^{10}$, which are not only 172 173 associated with the risk of AD but also protect carriers of C9ORF72 repeat expansion from the risk of frontotemporal dementia⁴⁰. 174

Other deletions that are in moderate LD $(0.2 < R^2 < 0.9)$ with GWAS signals can impact exons. 175 176 enhancers, transposons, and conserved regions (Table 2). Α 446 bp deletion 177 (chr10:122457302-122457747) extending into exon 2 of ARMS2 is in LD (R² = 0.24) with 178 rs7908662 (chr10:122413396, PLEKHA1 intronic variant)¹⁰. Α 310 bp deletion 179 (chr14:106774952-106775261) overlaps an enhancer element in the IGH gene cluster and is in LD (\mathbf{R}^2) with rs10131280 $(chr14:106665591)^{10}$. 180 = 0.26) А 310 bp Alu deletion (chr12:113245316-113245625) in *TPCN1* intron is in LD ($R^2 = 0.73$) with rs6489896 181

It is made available under a CC-BY-NC-ND 4.0 International license .

182 $(chr12:113281983)^{10}$. A 365 bp deletion (chr7:28174681-28175045) in *JAZF1* intron overlapping 183 evolutionally conserved sequence defined by phastCons and phyloP is in LD ($\mathbb{R}^2 = 0.41$) with 184 rs1160871 $(chr7:28129126)^{10}$.

185 The MAPT H1/H2 haplotype, defined by a 900 kb inversion and tagged by numerous SNVs, has

186 been associated with several neurodegenerative diseases, including progress supranuclear palsy,

187 frontotemporal disorders, Parkinson's disease, and AD^{24,25,41}. We identified five deletions and two

188 duplications in moderate LD ($R^2 = 0.35-0.67$, **Table 2**) with a H1/H2 tagging SNV (rs199515,

189 chr17:46779275), which is associated with AD^{10} . These SVs further confirmed the complex genomic

190 structure in the region and highlight the difficulty in identifying the causal variants within the H1/H2

191 haplotype. Table 2 also describes seven high-quality insertions, excluding those in problematic

192 regions (**Methods**), that are in LD with AD GWAS signals.

It is made available under a CC-BY-NC-ND 4.0 International license

Gene	\mathbb{R}^2	P ^a	ВЕТА	SV	Original P	Pos	Chr	SNV
	0.6				1.30E-08 ^b	105618971	2	rs115186657
NCK2	5	0.1	0.0652	chr2:105731359-105736864:DEL*				
	0.9	3			2.10E-13 ^c	105749599	2	rs143080277
	9 0.9	0.1						
WDR12	4	6	0.0137	chr2:203034369-203039560:DEL	1.10E-08 ^c	202878716	2	s139643391
	0.9	0						
	2	0.7			2.70E-09 ^b	12229132	7	rs5011436
TMEM106B	0.9	4	0.0020	chr7:12242077-12242399:DEL	4.005 116	1000007	7	12227510
	0				4.90E-11 ^c	12229967	7	rs13237518
JAZF1	0.4	0.0	0.0119	chr7:28174681-28175045:DEL	9.80E-09 °	28129126	7	rs1160871
<i>JI</i> 1	1	4	0.0117		9.001 09	2012)120	,	31100071
PLEKHA1	0.2	0.5	-0.0047	chr10:122457302-122457747:DEL	2.60E-09 °	122413396	10	rs7908662
	4	1						
TPCN1	0.7 3	0.5 7	0.0055	chr12:113245316-113245625:DEL	1.80E-09 ^c	113281983	12	rs6489896
	0.2	0.4						
IGH	6	2	-0.0076	chr14:106774952-106775261:DEL	4.30E-10 ^c	106665591	rs10131280 14	
	0.6	0.0						
WNT3/MAP	7	6	-0.0146	chr17:46009357-46009595:DEL				
WNT3/MAP	0.6	0.0	7 46779275 9.30E-13 ^c chr17:46099028-46099351:DEL -0.0171	17	rs199515			
WINI 5/IVIAP	1	3	-0.01/1	CIII 1 / :40099028-40099551:DEL				

193 Table 2. High-confident SVs in linkage disequilibrium with AD GWAS signals

				chr17:46146541-46146855:DEL	-0.0162	0.0 4	0.6 2	WNT3/MAPT
				chr17:46205463-46208952:DUP	-0.0129	0.3 1	0.3 5	WNT3/MAPT
				chr17:46237501-46238225:DEL	-0.0061	0.4 8	0.5 4	WNT3/MAPT
				chr17:46277789-46282210:DEL	-0.0185	0.0 7	0.5 9	WNT3/MAPT
				chr17:46135409-46292152:DUP	-0.0037	0.5 4	0.4 2	WNT3/MAPT
rs10947943	6	41036354	1.10E-09 °	chr6:40959079-40959079:INS	-0.0106	0.1 9	0.2 3	UNC5CL
rs3740688	11	47358789	5.40E-13 ^d , 8.78E-9 ^b	chr11:47775210-47775210:INS	-0.0049	0.5 9	0.2 8	SPI1
rs6489896	12	113281983	1.80E-09 °	chr12:113286417-113286417:INS	0.0094	0.4 2	0.6 9	TPCN1
rs7146179	14	52832135	6.99E-11 ^b	chr14:52832930-52832930:INS	0.0043	0.6 5	0.8 0	FERMT2
rs28394864	17	49373413	4.90E-10 ^b	chr17:49320942-49320942:INS	-0.0204	0.0 5	0.4 1	ABI3
rs138190086	17	63460787	7.50E-09 ^d	chr17:63204093-63204093:INS	0.0036	0.8 0	0.2 3	ACE
rs2154482	21	26148613	7.66E-10 ^b	chr21:26136136-26136136:INS	0.0156	0.1 8	0.4 0	APP

194

195 ^aP values from association analysis by fastGWA⁴².

It is made available under a CC-BY-NC-ND 4.0 International license

medRxiv preprint doi: https://doi.org/10.1101/2023.09.13.23295505; this version posted September 13, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license

- ^bWightman *et al.*, 2021.
- ^cBellenguez *et al.*, 2022.
- ^dKungle *et al.*, 2019.
- 199 *SVs that have been experimentally validated.

It is made available under a CC-BY-NC-ND 4.0 International license .

200 SVs on AD risk/protective genes

201	We first focused on SVs that were reported to be associated with AD in previous studies ⁴³⁻⁴⁷ . Ten
202	rare SVs (Table S5) were replicated in our SV callset. A 417 Kb duplication (Fig. S6) covering the
203	APP is identified in one individual with early onset of AD at his age of 52. Subsequently, we noticed
204	two other carriers of duplication who were dropped from the initial analysis due to failed quality
205	control. One individual having the duplication was his sibling and developed AD at age of 49, and
206	the other individual is his sibling's offspring who developed AD at age of 53. This finding provides
207	compelling evidence that the duplication of APP is a rare cause of autosomal dominant early-onset
208	AD ^{15–17,19} . A 7.68 Mb inversion covering the entire 21q21.2 is identified in one individual with early
209	onset of AD at her age of 60 years old. The inversion was experimentally validated, and the
210	alignments showed clear breakpoints of the inversion (Fig. S7). In addition, the 5.6 Kb deletion,
211	covering exons 2-5 of HLA-DRA found in nine AD cases by Swaminathan et al.43, are present in
212	eight samples in our analysis, including five AD cases (three showed early onset of AD with age < 65)
213	and three unclear-AD-status individuals (two are diagnosed as progressive supranuclear palsy, and
214	the remaining one is with BRAAK stage 2). A few other SVs, encompassing GBE1, EPHA5, and
215	EVC, are replicated in our dataset.

SVs on AD risk/protective genes could interfere with protein function and lead to disease. Therefore, we identified 77 high-confident SVs (**Methods**), including 44 deletions, 15 duplications, and 18 insertions on AD risk/protective genes determined by the ADSP gene verification committee (see Table2 on https://adsp.niagads.org/gvc-top-hits-list/). Nine deletions and five duplications have

It is made available under a CC-BY-NC-ND 4.0 International license .

220	an allele count \geq 5 (AF ranging from 0.0002 to 0.4690), but none of them were significantly
221	associated with AD (Table S6), and none of these SVs were tagged known AD-associated SNVs.
222	The remaining 35 deletions and 10 duplications are ultra-rare (MAC $<$ 5), of which 34 (25 deletions
223	and 9 duplications) are singletons (Table 3). We performed an aggregated analysis of 45 ultra-rare
224	CNVs (35 deletions and 10 duplications), using SKAT-O test ⁴⁸ instead of calculating individual
225	p-values given the limited statistical power due to low allele count, and observed a significant
226	association with AD status ($P = 0.0050$), highlighting the contribution of ultra-rare CNVs to the
227	etiology of AD.
228	Notably, 14 of the 35 ultra-rare deletions and 8 of the 10 ultra-rare duplications are protein
229	altering variants. For instance, we identified in SORL1 a 192 Kb duplication spanning exons 1-5 and
230	an 8 Kb deletion affecting exon 6 (Fig. 4). Previous studies indicated that SORL1 deficiency can lead
231	to AD through defects in the endolysosome-autophagy network ^{49,50} , and nearly all individuals with
232	damaging SNVs in SORL1 developed AD^{51} . Eight out of nine individuals with ABCA7 exonic
233	deletions or duplications in our data (Fig. S8) developed AD, supporting previous studies that
234	observed loss-of-function ABCA7 variants among AD cases ⁵² . We also found protein-altering
235	ultra-rare deletions and duplications in APP, PLCG2, PILRA, CASP7, MS4A6A, RIN3, APOE, and
236	PSEN1 (Table 3). In particular, 17 of 21 individuals with ultra-rare deletions in PLCG2 were AD
237	cases (SKAT-O $P = 0.029$). We also identified 18 high-quality insertions located in AD genes (Table
238	S7). However, the aggregated effect of these insertions on AD risk was not significant (SKAT-O $P =$
239	0.21).

SV	Size	AC (Case) [AgeOnset,Sex,Eth]	AC (Control) [Age,Sex,Eth]	Gene	Туре	Protei n-altering ^a
chr19:1050368-1050973 ^b	605	4 [74, F, AA]	0	ABCA7	DEL	Yes
		[69, M, AA] [81, F, AA] [81, F, AA]				
chr16:81775821-81829769 ^b	53,948	4	0	PLCG2	DEL	Yes
		[75, M, E] [56, F, E]				
		[-, M, E] [-, M, E]				
chr19:1052156-1060559	8,403	3	1	ABCA7	DUP	Yes
		[72, F, AA] ^d [72, F, AA]	[70, F, L]			
chr16:81860089-81940500	80,411	3	0	PLCG2	DEL	Yes
		[89, F, E] [56, F, E]				
		[-, F, E]				
hr2:127094683-127094740	57	2	1	BIN1	DEL	No
D		[86, M, E] [87, F, E]	[84, F, E]			
chr7:100296733-100385675	88,942	2	0	PILRA	DEL	Yes
		[85, F, E] [56, F, E]				
chr16:81907252-81907401	149	2	0	PLCG2	DEL	No
		[67, F, E]				
chr14:92611452-92611515	63	[61, F, E] 2	0	RIN3	DEL	No
		[90, M, E]				
		[61, F, E]				

240 Table 3. Ultra-rare SVs on AD genes

chr19:1043504-1053484	9,980	1 [78, M, E]	0	ABCA7	DEL	Yes
chr19:1054326-1061615 ^b	7,289	1 [67, M, E]	0	ABCA7	DUP	Yes
chr15:58720431-58721649	1,218	1 [79, F, AA]	0	ADAM10	DEL	No
chr21:25815144-26232105 ^e	416,961	1 [52, M, E]	0	APP	DUP	Yes
chr21:25958556-25971275	12,719	1 [-, F, E]	0	APP	DEL	No
chr21:26163874-26163976	102	1 [70, M, E]	0	APP	DUP	No
chr2:127102503-127104954	2,451	1 [70, M, AA]	0	BIN1	DEL	No
chr10:113725274-11372628	1,014	1 [75, F, E]	0	CASP7	DEL	Yes
8						
chr11:60138757-60178011	39,254	1 [65, F, AA]	1 [82, F, E]	MS4A6A	DEL	Yes
chr11:60179765-60450406 ^b	270,641	1 [-, F, O]	0	MS4A6A	DUP	Yes
chr11:86050643-86054032	3,389	1 [70, F, AA]	0	PICALM	DEL	No
chr16:81734058-81749307 ^c	15,249	1 [-, F, E]	0	PLCG2	DEL	Yes
chr16:81749081-81749132	51	1 [75, M, AA]	0	PLCG2	DEL	No
chr16:81755550-81764402 ^c	8,852	1 [84, F, E]	0	PLCG2	DEL	Yes
chr16:81772599-81777744	5,145	1 [69, F, E]	0	PLCG2	DEL	Yes
chr16:81792449-81792587	138	1 [68, F, E]	0	PLCG2	DEL	No
chr16:81798030-81802305 ^b	4,275	1 [72, M, E]	1 [89, F, AA]	PLCG2	DEL	Yes
chr16:81822810-81822862 ^b	52	1 [83, M, E]	0	PLCG2	DEL	No
chr16:81868226-81868350	124	1 [66, F, AA]	1 [70, M, AA]	PLCG2	DEL	No
chr14:92369331-92644481	275,150	1 [85, M, AA]	0	RIN3	DUP	Yes
chr14:92531510-92573409	41,899	1 [-, F, E]	0	RIN3	DUP	Yes
chr11:121303351-12149566	192,318	1 [61, F, AA]	0	SORL1	DUP	Yes
9	·					
chr11:121490959-12149941	8,454	1 [70, F, E]	0	SORL1	DEL	Yes
3		-				
chr19:1051380-1051420	40	0	1 [81, M, AA]	ABCA7	DEL	No
chr15:58621731-58622007	276	0	1 [64, F, L]	ADAM10	DUP	No
chr19:44909364-44909819	455	0	1 [80, M, AA]	APOE	DUP	Yes
chr21:26013065-26013159	94	0	1 [69, F, AA]	APP	DEL	No

It is made available under a CC-BY-NC-ND 4.0 International license .

chr2:127064222-127064288	66	0	1 [89, F, AA]	BIN1	DEL	No
chr2:127092466-127092526	60	0	1 [68, M, L]	BIN1	DEL	No
chr2:127094016-127102983	8,967	0	1 [80, F, E]	BIN1	DEL	No
chr1:207604022-207605343	1,321	0	1 [-, F, L]	CR1	DEL	No
chr7:100377717-100378235	518	0	1 [64, M, AA]	PILRA	DEL	No
chr16:81746327-81746435 ^b	108	0	1 [85, F, E]	PLCG2	DEL	No
chr16:81885235-81893072	7,837	0	1 [73, F, AA]	PLCG2	DEL	Yes
chr14:73215181-73313643	98,462	0	1 [84, F, E]	PSEN1	DEL	Yes
chr14:92535796-92535871 ^b	75	0	1 [85, F, E]	RIN3	DEL	No
chr14:92605335-92607867 ^b	2,532	0	1 [77, F, E]	RIN3	DEL	No

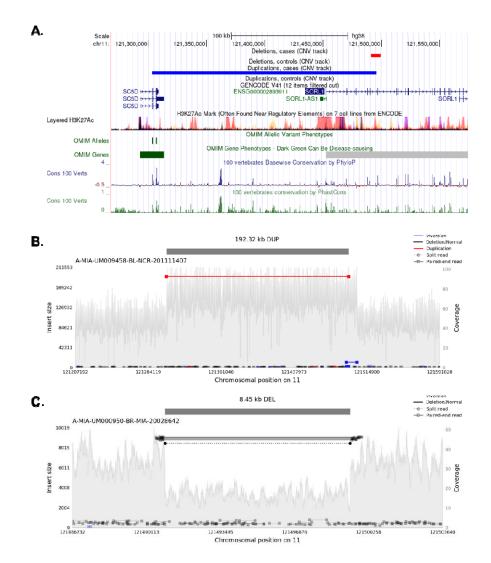
^aSV overlaps with gene exons.

^bSVs that are experimentally validated.

²⁴³ ^cSVs with read depth and split reads support but no PCR product for flanking primers.

^dRepresents homozygous even

²⁴⁵ Two additional family individuals had the duplication but failed quality control due to less confident genotypes. Nevertheless, alignment evidence strongly


supports the presence of duplication. Their onset ages are 49 and 53.

247 F, female; M, male; E, European, A, Asian; AA, African American; L, Latin American; O, other; "-" represents missing age. AD risk/protective genes are

248 selected by ADSP Gene Verification Committee (https://adsp.niagads.org/gvc-top-hits-list/).

It is made available under a CC-BY-NC-ND 4.0 International license

It is made available under a CC-BY-NC-ND 4.0 International license .

Fig. 4: Ultra-rare deletion and duplication on *SORL1*.

A. Deletion and duplication on *SORL1*. **B.** The 192 Kb duplication covers part of *SORL1* and *SC5D*. **C.** The 8.45 Kb deletion covers exon 6 of *SORL1*.

253 <u>SV burden in AD</u>

254 We performed burden tests of SVs, including CNVs (deletions and duplications), insertions, and

255 inversions separately and collectively, and found a moderate burden of CNVs in AD cases (OR =

- 1.05, P = 0.0321), but no significant burden of insertions and inversions was detected (**Table S8**).
- 257 The increased CNV burden in AD cases was driven by the presence of singletons (OR = 1.12, P =

It is made available under a CC-BY-NC-ND 4.0 International license .

258 0.0002) and homozygous CNVs (OR = 1.10, P = 0.0004). This is consistent with the burden of 259 ultra-rare CNVs in AD genes, in which 34 out of 45 ultra-rare CNVs are singletons. The result 260 suggests that singletons and homozygous CNVs, which were not considered in previous association 261 analyses, may be important contributors to the genetic basis of AD.

262 SVs associated with AD and AD endophenotypes

263 From our association analysis using 12,908 subjects (6,328 AD cases and 6,580 controls, 264 excluding subjects with unknown AD diagnosis and SV quality outliers, Methods), six common and 265 nine rare SVs were found associated with AD at a false discovery rate (FDR) < 0.2 (Table 4, Fig. 266 **5A**). Notably, a 12.7 Kb (chr10:110025269-110037941, AF = 0.000426) deletion in the intron of 267 ADD3 was exclusively found in 11 AD cases and not in any control. In gnomAD, this deletion has a 268 lower AF of 0.000277, which may be attributed to fewer AD cases in gnomAD. Moreover, there is a rare SNV (rs773892439) in complete LD ($R^2 = 1$) with this deletion. Since the SNV is extremely rare 269 (gnomAD AF of 0.00022, TOPMed⁵³ AF of 0.00033, and our AF of 0.00065), it was not included in 270 271 previous GWASs. Another rare deletion (chr12:26731939-26732033, AF = 0.00155) in *ITPR2* was 272 found in 33 AD cases and 7 controls. The deletion is in intron 2 of *ITPR2*, which may be a regulatory 273 region as indicated by the H3K4me1 and H3K27ac signals as well as transcription factor ChIP-seq 274 clusters in this region (Fig. S11A). *ITPR2* was found to be widely expressed across different brain 275 regions (Fig. S11B), with a higher expression in AD (Fig. S11C). SVs in LMNTD1, LHFPL6, 276 RNA5SP293, RABGAP1, ADD3, ITPR2, and CLIC4 were confirmed by PCR validation.

277 Under a nominal P < 0.05, there are 2,411 high-quality SVs not in the problematic regions

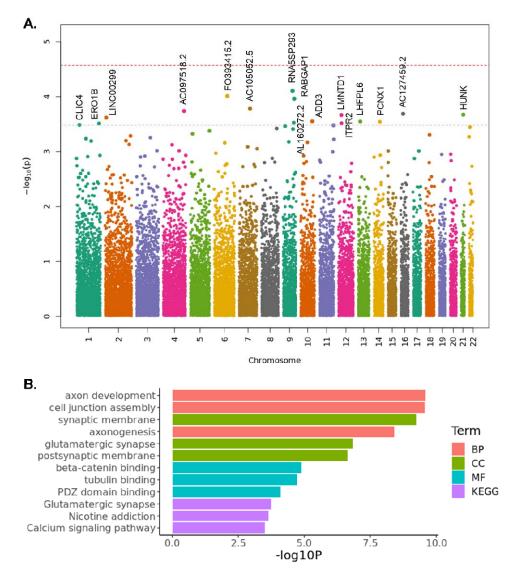
(Methods). Enrichment analysis of the 2,411 SVs revealed an over-representation of neuronal function-related terms, such as axon development and synaptic membrane (Fig. 5B). Among the 2,411 SVs, 37 are protein-altering variants (Table S9), including protein-altering variants in genes that have been found to be related to AD, e.g., *NTN3* and $CIB2^{54,55}$. Since a significant homozygous CNV burden is detected, we performed association using a recessive model, of which assumes that two copies of the alternative allele are required to alter the risk. As a result, a 1 Kb deletion (chr11:131726334-131727274) in the intron of *NTM* is the only SV

with FDR < 0.2 using the recessive model. Interestingly, the variants inside *NTM* have been associated with tau pathology in previous studies ^{56,57}.

287 In addition, we extended our association analysis to endophenotypes. Table 5 shows six 288 common and six rare SVs with an FDR < 0.2 for cognitive functions, CSF biomarkers, and 289 neuropathologic measurements. No significant genomic inflation was observed for all 290 endophenotypes (Fig. S12), indicating that confounding factors are well adjusted. The most significant signal is a rare deletion (chr4:188173309-188183202, AF = 0.0028, $P = 1.72 \times 10^{-08}$) 291 292 located in the intergenic region that is a transcription factor binding site. A rare SNV (rs1418703978) 293 which shows even lower AF (gnomAD AF of 0.00019, TOPMed AF of 0.00026, and our AF of 294 0.00047) is in complete LD with the deletion. A 100 Kb deletion (chr6:31391686-31488609) 295 encompassing the entire *MICA* gene is associated with amyloid presence ($P = 1.09 \times 10^{-07}$). Previous studies showed that the *MICA* deletion is accompanied by a *MICB* null allele (MICB0107N)⁵⁸, 296 297 indicating loss of function of both MICA and MICB. These genes are located in the MHC locus, which has been found associated with AD risk⁵⁹. 298

SV	Size	AF	BETA	SE	Р	FDR	Туре	SYMBOL
			Common S	Vs				
chr4:176948164-176948480	316	0.6387	0.02	0.01	1.83E-04	0.15	DEL	AC097518.2
chr16:22983114-22983114	-	0.0296	0.07	0.02	2.06E-04	0.16	INS	AC127459.2
chr21:32026205-32026205	-	0.2962	-0.03	0.01	2.13E-04	0.16	INS	HUNK
chr12:25590144-25591138ª	994	0.0424	-0.05	0.01	2.16E-04	0.16	DUP	LMNTD1
chr2:8476683-8476971	288	0.9347	-0.04	0.01	2.41E-04	0.18	DEL	LINC00299
chr13:39375608-39375802	194	0.0291	0.06	0.02	2.83E-04	0.19	DEL	LHFPL6 ^a
Rare SVs								
chr9:107896000-107900424 ^a	4,424	0.0037	0.18	0.05	7.81E-05	0.10	DEL	RNA5SP293
chr6:113757605-113757605	-	0.0083	-0.13	0.03	9.75E-05	0.11	INS	FO393415.2
chr9:122989084-122989182ª	98	0.0062	-0.15	0.04	1.09E-04	0.12	DUP	RABGAP1
chr7:102726253-102733877	7,624	0.0072	-0.14	0.04	1.65E-04	0.15	DEL	AC105052.5
chr10:110025269-110037941 ^a	12,672	0.0004	0.51	0.14	2.81E-04	0.19	DEL	ADD3
chr14:70979489-70979489	-	0.0182	-0.09	0.02	2.87E-04	0.19	INS	PCNX1
chr9:117738391-117742456	4,065	0.0002	-0.69	0.19	2.98E-04	0.19	DEL	AL160272.2
chr12:26731939-26732033ª	94	0.0016	0.27	0.07	3.05E-04	0.19	DEL	ITPR2
chr1:236250828-236252511	1,683	0.0005	0.49	0.14	3.07E-04	0.19	DEL	ERO1B
chr1:24852253-24857535 ^a	5,282	0.0096	0.11	0.03	3.26E-04	0.20	DEL	CLIC4
			Recessive m	odel				
chr11:131726334-131727274	940	0.0009^{b}	0.27	0.07	1.17E-04	0.12	DEL	NTM

299 Table 4. Association analysis of AD status (FDR < 0.2)


It is made available under a CC-BY-NC-ND 4.0 International license

300

- 301 ^aSVs that are experimentally validated.
- 302 ^bHomozygous allele frequency.
- 303 AF, allele frequency; FDR, false discovery rate; SE, standard error; DEL, deletion; DUP, duplication; INS, insertion.

It is made available under a CC-BY-NC-ND 4.0 International license .

304 305

306

308 **A.** Association of SVs with AD. Red line represents an FDR of 0.05. Gray line represents an 309 FDR of 0.2. **B.** Enrichment analysis for high-quality SVs (nominal P < 0.05) that are not in 310 problematic regions. BP, Biological Process; CC, Cellular Component; MF, Molecular Function; 311 KEGG, Kyoto Encyclopedia of Genes and Genomes.

312

Phenotype	SV	Size	AF	BETA	SE	Р	FDR	Туре	SYMBOL
				Common S	Vs				
EXF	chr11:22412330-22412446	116	0.1800	-0.10	0.02	2.93E-06	0.014	DEL	SLC17A6
MEM	chr8:1096443-1097561	1,118	0.0480	-0.24	0.05	7.43E-06	0.041	DEL	DLGAP2
LAN	chr17:46810995-46811289	294	0.0968	0.15	0.03	2.02E-05	0.121	DEL	WNT3
EXF	chr1:4228390-4228390	-	0.1090	-0.11	0.03	8.23E-05	0.136	INS	EEF1DP6
MEM	chr5:119121855-119122904	1,049	0.0416	-0.25	0.06	3.79E-05	0.140	DEL	DMXL1
MEM	chr5:34754523-34754523	-	0.0986	-0.14	0.03	4.99E-05	0.179	INS	RAI14
				Rare SVs					
REAG	chr4:188173309-188183202	9,893	0.0028	-2.23	0.40	1.72E-08	0.001	DEL	LINC02434
AMY	chr6:31391686-31488609	96,923	0.0017	-0.61	0.12	1.09E-07	0.010	DEL	MICA
EXF	chr9:85662873-85662873	-	0.0051	-0.58	0.12	3.57E-06	0.014	INS	AGTPBP1
EXF	chr18:48162022-48162075	53	0.0006	-1.44	0.36	6.96E-05	0.119	DUP	ZBTB7C
AMY	chr9:117738391-117742456	4,065	0.0011	-0.66	0.15	6.39E-06	0.181	DEL	AL160272.2
LAN	chr3:33035060-33035060	-	0.0027	-0.74	0.18	4.46E-05	0.195	INS	GLB1

313 Table 5. Association analysis of AD endophenotypes (FDR < 0.2)

314 AF, allele frequency; FDR, false discovery rate; SE, standard error; DEL, deletion; DUP, duplication; INS, insertion; REAG, NIA-Reagan

diagnosis of AD; AMY, amyloid presence (dichotomous); EXF, executive function score; MEM, memory score; LAN, language score.

It is made available under a CC-BY-NC-ND 4.0 International license

It is made available under a CC-BY-NC-ND 4.0 International license .

316 **Discussion**

317 The complexity of generating high-quality SVs on WGS for SV association analysis is 318 challenging, and a major concern is to ensure the analysis is not based on false positive SVs. To 319 achieve this, we developed a pipeline to filter SVs and employed stringent criteria during the burden 320 analysis to only include high-quality SVs. For each significant SV, we examined read coverages and 321 other alignment signals by Samplot and performed experimental validations if samples are available 322 in the lab (**Methods**). Despite our efforts, false positive/negative calls on individual samples can still 323 occur, which may undermine the result of the analysis. Therefore, we suggest a broader validation of 324 significant SVs using long reads as the cost and accuracy of long reads improve rapidly. 325 We reported SVs in LD with known AD risk loci (such as SNVs in NCK2, WDR12, and 326 TMEM106B) and on AD risk/protective genes (such as APP, SORL1, and ABCA7). Other than that, 327 researchers can use our SV calling set to explore SVs on a particular gene of interest. For example, there are SVs on genes that might be related to the risk of disease by interacting with well-known AD 328 329 genes (such as PSEN2 and APOE). A deletion (chr1:226827423-226834076, near PSEN2) spanning 330 the entire *lnc-PSEN2-7* and overlapping with a possible enhancer supported by H3K27ac signals (**Fig. S9**) was identified in an individual (Latin American ancestry, inferred by GRAF-pop³⁷), who 331 332 had onset of AD symptoms at age 71 years old. We also observed in one AD case an exonic deletion 333 in MPO (Fig. S10), a gene that has been reported to affect AD risk through interact with $APOE^{60}$. 334 Our association analysis yielded some interesting findings. One notable discovery is a 12 Kb 335 deletion in ADD3, which is a gene encoding a subunit of adducin protein called γ -adducin and was 336 reported associated with neural function. The α -adducin encoded by ADD1 can either dimerize with

It is made available under a CC-BY-NC-ND 4.0 International license .

337	β -adducin (ADD2) or γ -adducin (ADD3) to form the adducin protein ⁶¹ . Heterodimers of α -adducin
338	and β -adducin are mainly in red blood cells and neurons as the expression of adducin β were
339	tissue-specific and α -adducin and γ -adducin were present in most tissue types ⁶¹ . Adducin plays an
340	essential role in the membrane cytoskeleton of red blood cells ⁶² and is highly expressed in dendritic
341	spines ⁶³ and growth cones of neurons ⁶⁴ . Moreover, overexpression of γ -adducin promotes
342	neurite-like process in COS7 cells ⁶⁵ , suggesting important roles of adducin in brain function.
343	Variants in ADD3 were found to be associated with hypertension, cerebral palsy, renal disease,
344	vascular disease and cognitive dysfunction ^{66,67} . Along with tau and a few other CDK5 substrates,
345	γ -adducin is also hyperphosphorylated (possibly by CDK5) in APP/PS1 mice ⁶⁸ . Interestingly, ADD3
346	displayed a significantly lower expression in 6-month-old APP/PS1 mice while significantly higher
347	expression in 14-month-old APP/PS1 mice ⁶⁹ . In addition, γ -adducin is in involved in
348	trans-Golgi-network through re-organization of the actin network around the Golgi complex ⁶⁵ ,
349	therefore, may be able to regulate intracellular trafficking of APP and relevant secretases.
350	Our study provided a valuable resource for the analysis of SVs in AD. We identified SVs from
351	WGS data across a large cohort of AD participants with diverse ancestry. We reported SVs tagging
352	AD risk SNVs, providing new mechanism of actions for GWAS signals. Deleterious rare SVs on
353	well-known AD genes have been discovered. We found a higher burden of ultra-rare SVs on AD
354	genes, and overall, higher burden of homozygous and singleton CNVs in AD patients. Finally, our

355 association analysis revealed a few potential candidate SVs and genes that are worthy of further 356 study.

30

It is made available under a CC-BY-NC-ND 4.0 International license .

357 Methods

358 Study subjects

Alzheimer's Disease Sequencing Project (ADSP)³¹ is a collaborative project aiming at 359 360 identifying new variants, genes, and therapeutic targets in AD. In the R3 release of ADSP, 16,905 subjects were collected across 24 cohorts and whole genome sequencing was performed by Illumina 361 HiSeqX, HiSeq2000, HiSeq2500, and NovaSeq platforms. The ancestry of each individual was 362 inferred using GRAF-pop³⁷. The samples came from diverse ancestries with 10,466 Europeans, 363 3,619 African Americans, 2,677 Latin Americans, 59 East Asians, 84 of other ancestries. There are 364 365 6,646 AD cases, 6,938 controls and 3,321 subjects with unknown status in this study. Sample 366 characteristics were displayed in Table 1.

After removing duplicates and subjects without AD diagnosis, 13,371 samples were kept for analysis. Then, 463 outlier subjects, with too many (> median + 4*MAD) SV calls or too few (< median - 4*MAD) high-quality SV calls, were removed (**Fig. S13**). There were 12,908 samples (6,328 cases and 6,580 controls) remaining for association analysis (**Fig. S14**). Compared to the samples that were kept for further analysis, outliers are more likely to be of smaller insert size and lower coverage (**Fig. S15**).

373 <u>SV calling</u>

Fig. S16 illustrates the SV calling pipeline. For each sample, SVs were called by Manta²⁸ (v1.6.0) and Smoove²⁹ (v0.2.5) with default parameters. Calls from Manta and Smoove were merged by Svimmer³⁰ to generate a union of two call sets for a sample. Unresolved non-reference 'breakends'

(BNDs) and SVs > 10 Mb were filtered. Then, all individual sample VCF files were merged together by Svimmer as input to Graphtyper2 (v2.7.3)³⁰ for joint genotyping. SV calls after joint-genotyping are comparable across the samples, therefore, can be used directly in genome-wide association analysis³⁰. The pipeline is available on <u>https://github.com/whtop/SV-ADSP-Pipeline</u>.

381 SV selection by algorithmic models

Graphtyper2 annotates each SV call by algorithmic models, i.e., breakpoint, coverage, and aggregated models³⁰. Note that an SV call can be annotated by multiple models so there will be duplicated records in VCF if an SV call has more than one algorithmic model. Aggregated model has the highest recall than the other two models³⁰. Therefore, SVs were selected based on the order of aggregated, breakpoint, and then coverage models (**Table S1**).

387 <u>High-quality SVs</u>

388 A subset of SV calls was defined as high-quality calls. The criteria for high-quality SVs can be found in Graphtyper2 study³⁰: For deletion, QD (QUAL divided by non-reference sequence depth) > 389 390 12 & (ABHet (allele balance for heterozygous calls (read count of call2/(call1 + call2)) where the 391 called genotype is call1/call2, -1 if no heterozygous calls.) > $0.30 \mid ABHet < 0$) & (AC / 392 NUM_MERGED_SVS (number of SVs merged)) < 25 & PASS_AC (number of alternate alleles in 393 called genotyped that have "FT" field as "PASS") > 0 & PASS_ratio (ratio of genotype calls that 394 have "FT" field as "PASS") > 0.1; For duplication, QD > 5 & PASS_AC > 0 & (AC / NUM_MERGED_SVS) < 25; For insertion, PASS_AC > 0 & (AC / NUM_MERGED_SVS) < 25 395 396 & PASS ratio > 0.1 & (ABHet > 0.25 | ABHet < 0) & MaxAAS (maximum alternative allele

It is made available under a CC-BY-NC-ND 4.0 International license .

support per alternative allele) > 4; For inversions: PASS_AC > 0 & (AC / NUM_MERGED_SVS)
 $< 25 \& PASS_ratio > 0.1 \& (ABHet > 0.25 | ABHet < 0) \& MaxAAS > 4$. Then, if an SV still has

multiple records in VCF due to multiple algorithmic models, we selected based on the order of

aggregated, breakpoint, and then coverage models.

401 <u>Problematic regions</u>

402 There are regions in the human genome that tend to have anomalous, or high signal in WGS experiments⁷⁰. SVs that reside in those regions can be unreliable and should be reported. Specifically, 403 404 we compiled problematic regions in the genome from the following sources: (1) the ENCODE 405 blacklist: a comprehensive set of regions that could result in erroneous signal⁷¹; (2) the 1000 Genome 406 masks: regions of the genome that are more or less accessible to next generation sequencing methods 407 using short reads; (3) the set of assembly gaps defined by UCSC; (4) the set of segmental 408 duplications defined by UCUC; (5) the low-complexity regions, satellite sequences and simple 409 repeats defined by RepeatMasker (Tarailo-Graovac and Chen 2009).

410 <u>High-confident SVs</u>

For any SVs reported on AD risk/protective genes and from association, Samplot⁷³ was used to check their alignment supports of read depth and/or split reads if SV types are deletions, duplications, and inversions. For insertions, which cannot be inspected using Samplot, we kept insertions that are high-quality and not in the problematic regions.

415 <u>SV annotation</u>

It is made available under a CC-BY-NC-ND 4.0 International license .

416	SVs were annotated using VEP $(V \ 107)^{36}$ and annotSV $(V \ 3.1.1)^{35}$. SVs that were annotated (by
417	VEP) to be able to cause transcript ablation/amplification, stop gain, start/stop lost, frameshift,
418	inframe deletion/insertion, missense mutation, and affecting splice acceptor/donor were classified as
419	protein-altering variants. The impact of SVs is also evaluated by annotSV ranking score, which is an
420	adaptation of the work provided by the joint consensus recommendation of the American College of
421	Medical Genetics and Genomics (ACMG) and ClinGen ⁷⁴ .

422 SV validation

Structural variants from the 1000 Genomes Project phase III^{75} and gnomAD⁷⁶ were downloaded from dbVar database⁷⁷ with study accession ID estd219 and nstd166. On chromosomes 1-22, there are 66,505 and 292,307 SVs from the 1000 Genomes Project and gnomAD, respectively. For deletions/duplications/inversions, calls with at least 50% reciprocal overlapping were considered as replicated. For insertions, we searched for calls with breakpoints within 500bp. Then, we estimated sensitivity of Graphtyper2 by synthetic mutations (i.e., "spiking-in" SVs) generated from three samples by Malamon *et al.*³⁸.

For PCR validation, the sequence surrounding the variants was extracted and used to design PCR primers. For deletions under 1,100 bp, primers were designed outside of the breakpoints to amplify across the deletion sequence. For deletions where the reference allele was too large to be amplified by PCR, a double PCR approach was used. For the first PCR, one primer was designed within the putative deletion sequence while the other primer was placed external to the deletion breakpoint. PCR amplification using these primers would yield a product from the reference allele.

It is made available under a CC-BY-NC-ND 4.0 International license .

436 For the second PCR, both primers flanked the putative deletion. Only samples that contained the437 deletion, would yield a product for this second PCR.

438 For duplication variants, since most duplications occur in a head to tail orientation, PCR primers 439 were designed to amplify a product in this orientation. A forward direction primer was designed at 440 the 3' end of the duplicated sequence and a reverse primer was designed at the 5' end of the 441 duplicated sequence. These primers would amplify a product across the boundary at the duplication site. All PCR primer sequences were submitted to the Blast-like alignment tool (BLAT)⁷⁸ to check 442 443 for uniqueness of the sequence. When available, samples from three individuals reported as 444 heterozygous for the variant were used for sequence validation along with one control (or reference) 445 sample. When possible, samples from multiple families were used for validation.

446 Genomic DNA (~50ng) was amplified using a SimpliAmp Thermal Cycler (Applied Biosystems) 447 in a 20ul reaction volume with HotStarTaq Master Mix (Qiagen) in the presence of 2uM primers 448 (IDT). The PCR conditions used were: 95°C 15min followed by 30 cycles of 95°C 20sec, 55°C 449 30sec, 72°C 2min with a final extension of 72°C 7min. The amplified PCR products were prepared 450 for Sanger sequencing by adding ExoSAP-IT (USB) and incubating at 37°C for 45min followed by 451 80°C for 15min. The PCR products were then Sanger sequenced using the BigDye® Terminator v3.1 452 Cycle Sequencing kit (Part No. 4336917 Applied Biosystems). The sequencing reaction contained 453 BigDye® Terminator v3.1 Ready Reaction Mix, 5X Sequencing Buffer, 5M Betaine solution (Part 454 No. B0300 Sigma) and 0.64uM sequencing primer (IDT) in a total volume of 5ul. The sequencing 455 reaction was performed in a SimpliAmp Thermal Cycler (Applied Biosystems) using the following program: 96°C 1min followed by 25 cycles of 96°C 10sec, 50°C 5sec, 60°C 1min15sec. The 456

It is made available under a CC-BY-NC-ND 4.0 International license .

457 products were cleaned using XTerminator and SAM Solution (Applied Biosystems) with 30min of 458 shaking at 1800rpm followed by centrifugation at 1000 rpm for 2min. The sequencing products were 459 analyzed on a SeqStudio Genetic Analyzer (Applied Biosystems) and the sequencing traces were 460 analyzed using Sequencher 5.4 (Gene Code)

461 SVs on AD risk loci and AD genes

462 We first searched for SVs that are in linkage disequilibrium (LD) with AD associated loci from three GWASs⁸⁻¹⁰. There are 123 unique variants that reached genome-wide significance from three 463 464 studies. After excluding nine variants that were not found in the WGS data, we searched for SVs that are in LD ($\mathbb{R}^2 > 0.2$) with the rest of 114 variants. For SVs, P value from fastGWA⁴² adjusting for 465 466 PCs 1-5, age, sex, sequencing centers, sequencing platforms, and PCR status were also provided. 467 Then, we investigated SVs on known AD genes. A list of 20 expert curated AD risk/protective 468 causal genes were downloaded from: https://adsp.niagads.org/index.php/gvc-top-hits-list. These 469 genes were identified by a review of literature, pathway analysis, and by integration of genetic 470 studies with myeloid genomics. All deletions, duplications, and inversions with missing rate less than 471 0.5 that overlap with these genes were inspected. Association of ultra-rare SVs on 20 AD genes were

472 evaluated using SKAT-O test from R package SKAT⁴⁸.

473 Overall SV burden in AD

474 Overall SV burden between AD cases and controls was compared. SV burden was measured by 475 the difference in the number of high-quality SVs in cases and controls. Logistic regression model 476 adjusted for covariates (PCs 1-5, age, sex, sequencing center, sequencing platform, PCR status) were

It is made available under a CC-BY-NC-ND 4.0 International license .

used. One-sided empirical p values (assuming increased SV burden in cases) were calculated based
on 10,000 permutations. Particularly, we evaluated the burden of singletons and homozygous SVs in
AD compared to controls.

480 Association and functional analyses

481 In total, 136,092 SVs with a missing rate < 0.5 and minor allele count > 5 were evaluated using mixed linear model based tool (fastGWA) implemented in GCTA⁴². Age, sex, sample PCR status, 482 483 sequencing platforms, sequencing centers, and PCs 1-5 calculated from common SNVs were 484 included as covariates. The age of cases was determined by the age at disease onset. The age of 485 controls was determined by the age at the last exam. Sparse genetic relationship matrix was 486 generated using SNVs as well with a cutoff of 0.05. High-confident deletions, duplications, and 487 inversions were selected by Samplot and experimentally validated by PCR. For insertions, only 488 high-confident ones that are high-quality and not on the problematic regions were reported. 489 Enrichment analysis for nominal significant signals (2,411 high-quality SVs with P < 0.05) was 490 performed using clusterProfiler⁷⁹.

Other than binary AD diagnosis, we also assessed SV association with cognitive scores, fluid biomarkers, and neuropathological measurements that were harmonized by the ADSP Phenotype Harmonization Consortium⁸⁰. Cognitive scores include memory score (N = 6,413), executive function score (N = 5,762), language score (N = 6,130), and visuospatial score (N = 1,126)⁸⁰. Fluid biomarkers include CSF Amyloid beta (N = 1,110), tau (N = 1,086), and P-tau (N = 1,087). Neuropathological measurements include Thal amyloid phases (N = 543), CERAD amyloid scores

- 497 (N = 2,361), amyloid presence (dichotomous, N = 2,361), BRAAK tau phases (N = 2,357), ADNC
- 498 severity scores (N = 540), NIA-REAGAN criteria for AD (N = 1,060).

It is made available under a CC-BY-NC-ND 4.0 International license .

499 **Declarations**

500 Ethics approval and consent to participate

- 501 Consent for publication
- 502 Not applicable.
- 503 Availability of data and materials
- 504 https://github.com/whtop/SV-ADSP-Pipeline
- 505 https://dss.niagads.org/

506 Competing interests

- 507 The authors declare that they have no competing interests.
- 508 Funding

509	HW and PLC report grant support from RF1-AG074328 and P30-AG072979. AT, YQS, and JYT
510	report grant support from RF1-AG074328. YYL reports grant support from U54-AG052427 and
511	U24-AG041689. LSW reports grant support from U24-AG041689, U54-AG052427,
512	U01-AG032984, U01-AG058654, and P30AG072979. LAF reports grant support from
513	U54-AG052427, U01-AG058654, U01-AG062602, R01-AG048927, and P30-AG072978. WPL
514	reports grant support from RF1-AG074328, P30-AG072979, U54-AG052427, and U24-AG041689.

515 Acknowledgements

516 The ADGC cohorts

It is made available under a CC-BY-NC-ND 4.0 International license .

517	The ADGC cohorts include Adult Changes in Thought (ACT) (U01 AG006781, U19 AG066567),
518	the Alzheimer's Disease Research Centers (ADRC) (P30 AG062429, P30 AG066468, P30
519	AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 AG066507, P30 AG066444, P30
520	AG066518, P30 AG066512, P30 AG066462, P30 AG072979, P30 AG072972, P30 AG072976, P30
521	AG072975, P30 AG072978, P30 AG072977, P30 AG066519, P30 AG062677, P30 AG079280, P30
522	AG062422, P30 AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 AG066506, P30
523	AG066508, P30 AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 AG068024, P20
524	AG068053, P20 AG068077, P20 AG068082, P30 AG072958, P30 AG072959), the Chicago Health
525	and Aging Project (CHAP) (R01 AG11101, RC4 AG039085, K23 AG030944), Indiana Memory and
526	Aging Study (IMAS) (R01 AG019771), Indianapolis Ibadan (R01 AG009956, P30 AG010133), the
527	Memory and Aging Project (MAP) (R01 AG17917), Mayo Clinic (MAYO) (R01 AG032990, U01
528	AG046139, R01 NS080820, RF1 AG051504, P50 AG016574), Mayo Parkinson's Disease controls
529	(NS039764, NS071674, 5RC2HG005605), University of Miami (R01 AG027944, R01 AG028786,
530	R01 AG019085, IIRG09133827, A2011048), the Multi-Institutional Research in Alzheimer's Genetic
531	Epidemiology Study (MIRAGE) (R01 AG09029, R01 AG025259), the National Centralized
532	Repository for Alzheimer's Disease and Related Dementias (NCRAD) (U24 AG021886), the
533	National Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA- LOAD) (U24
534	AG056270), the Religious Orders Study (ROS) (P30 AG10161, R01 AG15819), the Texas
535	Alzheimer's Research and Care Consortium (TARCC) (funded by the Darrell K Royal Texas
536	Alzheimer's Initiative), Vanderbilt University/Case Western Reserve University (VAN/CWRU) (R01
537	AG019757, R01 AG021547, R01 AG027944, R01 AG028786, P01 NS026630, and Alzheimer's

40

It is made available under a CC-BY-NC-ND 4.0 International license .

538	Association), the Washington Heights-Inwood Columbia Aging Project (WHICAP) (RF1
539	AG054023), the University of Washington Families (VA Research Merit Grant, NIA: P50AG005136,
540	R01AG041797, NINDS: R01NS069719), the Columbia University Hispanic Estudio Familiar de
541	Influencia Genetica de Alzheimer (EFIGA) (RF1 AG015473), the University of Toronto (UT)
542	(funded by Wellcome Trust, Medical Research Council, Canadian Institutes of Health Research), and
543	Genetic Differences (GD) (R01 AG007584). The CHARGE cohorts are supported in part by
544	National Heart, Lung, and Blood Institute (NHLBI) infrastructure grant HL105756 (Psaty),
545	RC2HL102419 (Boerwinkle) and the neurology working group is supported by the National Institute
546	on Aging (NIA) R01 grant AG033193.

547 *The CHARGE cohorts*

The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke 548 549 Prevention Study (ASPS), ASPS-Family study, and the Prospective Dementia Registry-Austria 550 (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular 551 Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham Heart Study 552 (FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond (FWF) grant 553 number P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded by 554 the Austrian Science Fund (FWF) project 1904), the EU Joint Programme - Neurodegenerative 555 Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry of Science) and the 556 Medical University Graz and the Steiermärkische Krankenanstalten Gesellschaft. of 557 PRODEM-Austria is supported by the Austrian Research Promotion agency (FFG) (Project No. 558 827462) and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC research is

559	carried out as a collaborative study supported by NHLBI contracts (HHSN268201100005C,
560	HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C,
561	HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). Neurocognitive data
562	in ARIC is collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902,
563	2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI
564	examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by contracts
565	HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080,
566	N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and
567	U01HL130114 from the NHLBI with additional contribution from the National Institute of
568	Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629,
569	R01AG15928, and R01AG20098 from the NIA. FHS research is supported by NHLBI contracts
570	N01-HC-25195 and HHSN2682015000011. This study was also supported by additional grants from
571	the NIA (R01s AG054076, AG049607 and AG033040 and NINDS (R01 NS017950). The ERF study
572	as a part of EUROSPAN (European Special Populations Research Network) was supported by
573	European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received
574	funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant
575	agreement HEALTH-F4- 2007-201413 by the European Commission under the programme "Quality
576	of Life and Management of the Living Resources" of 5th Framework Programme (no.
577	QLG2-CT-2002- 01254). High-throughput analysis of the ERF data was supported by a joint grant
578	from the Netherlands Organization for Scientific Research and the Russian Foundation for Basic
579	Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center

It is made available under a CC-BY-NC-ND 4.0 International license .

580 and Erasmus University, Rotterdam, the Netherlands Organization for Health Research and 581 Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of 582 Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European 583 Commission (DG XII), and the municipality of Rotterdam. Genetic data sets are also supported by 584 the Netherlands Organization of Scientific Research NWO Investments (175.010.2005.011, 585 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the 586 Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the Netherlands Genomics 587 Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands Consortium 588 for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to their participants, faculty 589 and staff. The content of these manuscripts is solely the responsibility of the authors and does not 590 necessarily represent the official views of the National Institutes of Health or the U.S. Department of 591 Health and Human Services.

592 Authors' contribution

593 HW, YYL, JF, JSM, LSW, BNV, LAF, GDS, and WPL performed variant detection, quality 594 check, and genotype/phenotype acquisition. HW, AT, YQS, JYT, and WPL performed statistical 595 analyses. BAD, PLC, and GDS performed experimental validation. HW, BAD, PLC, AT, YQS, JF, 596 JYT, YYL, JSM, BNV, LAF, GDS, and WPL interpreted results. HW and WPL wrote the first draft 597 of the manuscript. All authors read, critically revised, and approved the manuscript.

It is made available under a CC-BY-NC-ND 4.0 International license .

598 References

- Jack Jr, C. R. *et al.* NIA-AA research framework: toward a biological definition of Alzheimer's disease. *Alzheimers Dement.* 14, 535–562 (2018).
- 601 2. Gaugler, J. *et al.* 2022 Alzheimer's disease facts and figures. *ALZHEIMERS Dement.* 18, 700–789 (2022).
- Gatz, M. *et al.* Role of genes and environments for explaining Alzheimer disease. *Arch. Gen. Psychiatry* 63, 168–174 (2006).
- 4. Mendez, M. F. Early-onset Alzheimer Disease and Its Variants. *Contin. Minneap. Minn* 25, 34–51 (2019).
- 5. Farrer, L. A. *et al.* Effects of age, sex, and ethnicity on the association between apolipoprotein E
 genotype and Alzheimer disease: a meta-analysis. *Jama* 278, 1349–1356 (1997).
- 609 6. Selkoe, D. J. & Podlisny, M. B. Deciphering the genetic basis of Alzheimer's disease. *Annu. Rev.*610 *Genomics Hum. Genet.* 3, 67–99 (2002).
- 611 7. Lambert, J.-C. *et al.* Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
 612 Alzheimer's disease. *Nat. Genet.* 45, 1452–1458 (2013).
- Kunkle, B. W. *et al.* Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk
 loci and implicates Aβ, tau, immunity and lipid processing. *Nat. Genet.* 51, 414–430 (2019).
- Wightman, D. P. *et al.* A genome-wide association study with 1,126,563 individuals identifies
 new risk loci for Alzheimer's disease. *Nat. Genet.* 53, 1276–1282 (2021).
- 617 10. Bellenguez, C. *et al.* New insights into the genetic etiology of Alzheimer's disease and related
 618 dementias. *Nat. Genet.* 54, 412–436 (2022).
- 619 11. Leonenko, G. *et al.* Genetic risk for alzheimer disease is distinct from genetic risk for amyloid
 620 deposition. *Ann. Neurol.* 86, 427–435 (2019).
- Ridge, P. G., Mukherjee, S., Crane, P. K., Kauwe, J. S. K. & Consortium, A. D. G. Alzheimer's disease: analyzing the missing heritability. *PLOS ONE* 8, e79771 (2013).
- 13. Lee, S. H. *et al.* Estimation and partitioning of polygenic variation captured by common SNPs
 for Alzheimer's disease, multiple sclerosis and endometriosis. *Hum. Mol. Genet.* 22, 832–841
 (2013).
- 14. Pang, A. W. *et al.* Towards a comprehensive structural variation map of an individual human
 genome. *Genome Biol.* 11, 1–14 (2010).
- 628 15. Rovelet-Lecrux, A. *et al.* APP locus duplication causes autosomal dominant early-onset
 629 Alzheimer disease with cerebral amyloid angiopathy. *Nat. Genet.* 38, 24–26 (2006).
- 630 16. Sleegers, K. *et al.* APP duplication is sufficient to cause early onset Alzheimer's dementia with
 631 cerebral amyloid angiopathy. *Brain* 129, 2977–2983 (2006).
- 632 17. Blom, E. S. *et al.* Low prevalence of APP duplications in Swedish and Finnish patients with
 633 early-onset Alzheimer's disease. *Eur. J. Hum. Genet.* 16, 171–175 (2008).
- Kasuga, K. *et al.* Identification of independent APP locus duplication in Japanese patients with
 early-onset Alzheimer disease. *J. Neurol. Neurosurg. Psychiatry* 80, 1050–1052 (2009).
- Hooli, B. V. *et al.* Role of common and rare APP DNA sequence variants in Alzheimer disease.
 Neurology 78, 1250–1257 (2012).
- 638 20. Crook, R. et al. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques

- 639 due to deletion of exon 9 of presenilin 1. *Nat. Med.* **4**, 452–455 (1998).
- Smith, M. J. *et al.* Variable phenotype of Alzheimer's disease with spastic paraparesis. *Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc.* 49, 125–129 (2001).
- 642 22. Brouwers, N. *et al.* Alzheimer risk associated with a copy number variation in the complement
 643 receptor 1 increasing C3b/C4b binding sites. *Mol. Psychiatry* 17, 223–233 (2012).
- 644 23. Kucukkilic, E. *et al.* Complement receptor 1 gene (CR1) intragenic duplication and risk of 645 Alzheimer's disease. *Hum. Genet.* **137**, 305–314 (2018).
- 646 24. Baker, M. *et al.* Association of an extended haplotype in the tau gene with progressive
 647 supranuclear palsy. *Hum. Mol. Genet.* 8, 711–715 (1999).
- 648 25. Allen, M. *et al.* Association of MAPT haplotypes with Alzheimer's disease risk and MAPT brain
 649 gene expression levels. *Alzheimers Res. Ther.* 6, 1–14 (2014).
- 26. Wang, H., Wang, L.-S., Schellenberg, G. & Lee, W.-P. The role of structural variations in
 Alzheimer's disease and other neurodegenerative diseases. *Front. Aging Neurosci.* (2023).
- 652 27. Byman, E. *et al.* Alpha-amylase 1A copy number variants and the association with memory
 653 performance and Alzheimer's dementia. *Alzheimers Res. Ther.* 12, 1–10 (2020).
- 28. Chen, X. *et al.* Manta: rapid detection of structural variants and indels for germline and cancer
 sequencing applications. *Bioinformatics* 32, 1220–1222 (2016).
- 29. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for
 structural variant discovery. *Genome Biol.* 15, 1–19 (2014).
- 658 30. Eggertsson, H. P. *et al.* GraphTyper2 enables population-scale genotyping of structural variation
 659 using pangenome graphs. *Nat. Commun.* 10, 1–8 (2019).
- 31. Beecham, G. W. *et al.* The Alzheimer's Disease Sequencing Project: study design and sample
 selection. *Neurol. Genet.* 3, (2017).
- 32. Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. *Annu Rev Genomics Hum Genet* 9, 403–433 (2008).
- 33. Gomez, F., Hirbo, J. & Tishkoff, S. A. Genetic variation and adaptation in Africa: implications
 for human evolution and disease. *Cold Spring Harb. Perspect. Biol.* 6, a008524 (2014).
- 667 34. Consortium, G. P., Auton, A. & Brooks, L. D. A global reference for human genetic variation.
 668 *Nature* 526, 68–74 (2015).
- 669 35. Geoffroy, V. *et al.* AnnotSV: an integrated tool for structural variations annotation.
 670 *Bioinformatics* 34, 3572–3574 (2018).
- 671 36. McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 1–14 (2016).
- 37. Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: a fast
 distance-based method to infer subject ancestry from multiple genotype datasets without
 principal components analysis. *G3 Bethesda Md* 9, 2447–2461 (2019).
- 38. Malamon, J. S. *et al.* A comparative study of structural variant calling strategies using the
 Alzheimer's Disease Sequencing Project's whole genome family data. *bioRxiv* 2022–05 (2022).
- 677 39. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. *Nature*678 489, 57 (2012).
- 40. Van Blitterswijk, M. *et al.* TMEM106B protects C9ORF72 expansion carriers against
 frontotemporal dementia. *Acta Neuropathol. (Berl.)* 127, 397–406 (2014).

- 41. Zabetian, C. P. *et al.* Association analysis of MAPT H1 haplotype and subhaplotypes in
 Parkinson's disease. *Ann. Neurol.* 62, 137–144 (2007).
- 42. Jiang, L. *et al.* A resource-efficient tool for mixed model association analysis of large-scale data. *Nat. Genet.* 51, 1749–1755 (2019).
- 43. Swaminathan, S. *et al.* Analysis of copy number variation in Alzheimer's disease: the
 NIALOAD/NCRAD Family Study. *Curr. Alzheimer Res.* 9, 801–814 (2012).
- 44. Hooli, B. V. *et al.* Rare autosomal copy number variations in early-onset familial Alzheimer's
 disease. *Mol. Psychiatry* 19, 676–681 (2014).
- 689 45. Rovelet-Lecrux, A. *et al.* A genome-wide study reveals rare CNVs exclusive to extreme
 690 phenotypes of Alzheimer disease. *Eur. J. Hum. Genet.* 20, 613–617 (2012).
- 46. Chapman, J. *et al.* A genome-wide study shows a limited contribution of rare copy number
 variants to Alzheimer's disease risk. *Hum. Mol. Genet.* 22, 816–824 (2013).
- 47. Lladó, A. *et al.* Large APP locus duplication in a sporadic case of cerebral haemorrhage.
 Neurogenetics 15, 145–149 (2014).
- 48. Wu, M. C. *et al.* Rare-variant association testing for sequencing data with the sequence kernel
 association test. *Am. J. Hum. Genet.* **89**, 82–93 (2011).
- 49. Dykxhoorn, D. M. *et al.* Characterization of an Alzheimer disease-associated deletion in SORL1.
 Alzheimers Dement. 17, e055472 (2021).
- 50. Hung, C. *et al.* SORL1 deficiency in human excitatory neurons causes APP-dependent defects in
 the endolysosome-autophagy network. *Cell Rep.* 35, 109259 (2021).
- 51. Holstege, H. *et al.* Characterization of pathogenic SORL1 genetic variants for association with
 Alzheimer's disease: a clinical interpretation strategy. *Eur. J. Hum. Genet.* 25, 973–981 (2017).
- 52. Steinberg, S. *et al.* Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. *Nat. Genet.* 47, 445–447 (2015).
- Taliun, D. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
 Nature 590, 290–299 (2021).
- 54. Sethna, S. *et al.* CIB2 regulates mTORC1 signaling and is essential for autophagy and visual
 function. *Nat. Commun.* 12, 3906 (2021).
- 55. Bai, B. *et al.* Proteomic landscape of Alzheimer's disease: novel insights into pathogenesis and
 biomarker discovery. *Mol. Neurodegener.* 16, 55 (2021).
- 56. White, C. C. *et al.* A genome-wide investigation of clinicopathologic endophenotypes uncovers a
 new susceptibility locus for tau pathology at Neurotrimin (NTM). *Alzheimers Dement.* 17, e051682 (2021).
- 57. Wang, H. *et al.* Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease. *Neurobiol. Aging* 93, 61–68 (2020).
- 58. Ota, M. *et al.* On the MICA deleted-MICB null, HLA-B* 4801 haplotype. *Tissue Antigens Brief Commun.* 56, 268–271 (2000).
- 59. Zalocusky, K. A. *et al.* Neuronal ApoE upregulates MHC-I expression to drive selective
 neurodegeneration in Alzheimer's disease. *Nat. Neurosci.* 24, 786–798 (2021).
- 60. Reynolds, W. F. *et al.* MPO and APOEε4 polymorphisms interact to increase risk for AD in
 Finnish males. *Neurology* 55, 1284–1290 (2000).
- 722 61. Li, X. & Bennett, V. Adducin: structure, function and regulation. Cell. Mol. Life Sci. CMLS 57,

- 723 884–895 (2000).
- 62. Mische, S. M., Mooseker, M. S. & Morrow, J. S. Erythrocyte adducin: a calmodulin-regulated
 actin-bundling protein that stimulates spectrin-actin binding. *J. Cell Biol.* 105, 2837–2845
 (1987).
- 63. Bennett, V., Gardner, K. & Steiner, J. P. Brain adducin: a protein kinase C substrate that may
 mediate site-directed assembly at the spectrin-actin junction. *J. Biol. Chem.* 263, 5860–5869
 (1988).
- 64. Kiang, K. M.-Y. & Leung, G. K.-K. A review on adducin from functional to pathological
 mechanisms: future direction in cancer. *BioMed Res. Int.* 2018, (2018).
- 65. Lou, H., Park, J. J., Phillips, A. & Loh, Y. P. γ-Adducin promotes process outgrowth and
 secretory protein exit from the Golgi apparatus. *J. Mol. Neurosci.* 49, 1–10 (2013).
- 66. Gonzalez-Fernandez, E. *et al.* The adducin saga: pleiotropic genomic targets for precision
 medicine in human hypertension—vascular, renal, and cognitive diseases. *Physiol. Genomics* 54,
 58–70 (2022).
- 67. Kruer, M. C. *et al.* Mutations in gamma adducin are associated with inherited cerebral palsy. *Ann. Neurol.* 74, 805–814 (2013).
- 68. Wu, H.-Y. *et al.* β-Amyloid induces pathology-related patterns of tau hyperphosphorylation at
 synaptic terminals. *J. Neuropathol. Exp. Neurol.* **77**, 814–826 (2018).
- 69. Liang, J.-W. *et al.* Application of weighted gene co-expression network analysis to explore the
 key genes in Alzheimer's disease. *J. Alzheimers Dis.* 65, 1353–1364 (2018).
- 743 70. Scherer, S. W. *et al.* Challenges and standards in integrating surveys of structural variation. *Nat.* 744 *Genet.* 39, S7–S15 (2007).
- 745 71. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of
 746 problematic regions of the genome. *Sci. Rep.* 9, 1–5 (2019).
- 747 72. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic
 748 sequences. *Curr. Protoc. Bioinforma*. Chapter 4, 4.10.1-4.10.14 (2009).
- 749 73. Belyeu, J. R. *et al.* Samplot: a platform for structural variant visual validation and automated
 750 filtering. *Genome Biol.* 22, 1–13 (2021).
- 74. Riggs, E. R. *et al.* Technical standards for the interpretation and reporting of constitutional
 copy-number variants: a joint consensus recommendation of the American College of Medical
 Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). (2020).
- 754 75. Sudmant, P. H. *et al.* An integrated map of structural variation in 2,504 human genomes. *Nature*755 526, 75–81 (2015).
- 756 76. Collins, R. L. *et al.* A structural variation reference for medical and population genetics. *Nature*757 581, 444–451 (2020).
- 758 77. Lappalainen, I. *et al.* DbVar and DGVa: public archives for genomic structural variation. *Nucleic* 759 *Acids Res.* 41, D936–D941 (2012).
- 760 78. Kent, W. J. BLAT—the BLAST-like alignment tool. *Genome Res.* 12, 656–664 (2002).
- 761 79. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological
 762 themes among gene clusters. *Omics J. Integr. Biol.* 16, 284–287 (2012).
- 80. Mukherjee, S. *et al.* Cognitive domain harmonization and cocalibration in studies of older adults.
 Neuropsychology (2022).