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ABSTRACT 

Objective: Artificial intelligence (AI) detects heart disease from images of electrocardiograms 

(ECGs), however traditional supervised learning is limited by the need for large amounts of 

labeled data. We report the development of Biometric Contrastive Learning (BCL), a self-

supervised pretraining approach for label-efficient deep learning on ECG images. 

Materials and Methods: Using pairs of ECGs from 78,288 individuals from Yale (2000-2015), 

we trained a convolutional neural network to identify temporally-separated ECG pairs that varied 

in layouts from the same patient. We fine-tuned BCL-pretrained models to detect atrial 

fibrillation (AF), gender, and LVEF<40%, using ECGs from 2015-2021. We externally tested 

the models in cohorts from Germany and the US. We compared BCL with random initialization 

and general-purpose self-supervised contrastive learning for images (simCLR). 

Results: While with 100% labeled training data, BCL performed similarly to other approaches 

for detecting AF/Gender/LVEF<40% with AUROC of 0.98/0.90/0.90 in the held-out test sets, it 

consistently outperformed other methods with smaller proportions of labeled data, reaching 

equivalent performance at 50% of data. With 0.1% data, BCL achieved AUROC of 

0.88/0.79/0.75, compared with 0.51/0.52/0.60 (random) and 0.61/0.53/0.49 (simCLR). In 

external validation, BCL outperformed other methods even at 100% labeled training data, with 

AUROC of 0.88/0.88 for Gender and LVEF<40% compared with 0.83/0.83 (random) and 

0.84/0.83 (simCLR). 

Discussion and Conclusion: A pretraining strategy that leverages biometric signatures of 

different ECGs from the same patient enhances the efficiency of developing AI models for ECG 

images. This represents a major advance in detecting disorders from ECG images with limited 

labeled data. 
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BACKGROUND AND SIGNIFICANCE 

Electrocardiography is a ubiquitous tool for the diagnosis of cardiovascular diseases. Deep 

learning has been successfully applied to automate both the detection of disorders that are 

commonly discernable by physicians from electrocardiograms (ECGs),1,2 as well as those that 

traditionally require more specialized imaging modalities such as echocardiography or cardiac 

magnetic resonance imaging scans3-5.  

While most existing artificial intelligence (AI) tools to automatically analyze ECGs rely 

on raw signal data, most end users do not have access to ECG signals. We have developed an 

approach that can interpretably diagnose conduction and rhythm disorders,6 as well as structural 

disorders7 from any layout of real-world 12-lead ECG images. Our image-based AI-ECG 

approach is applicable to various clinical settings, different hospitals, and data storage formats, 

representing an easily accessible and scalable approach to detect underdiagnosed cardiovascular 

disorders in at risk populations.   

Despite the advantages of an image-based approach, like any AI approach, regardless of 

the modality, algorithmic training and development require large, labeled datasets. However, 

many clinical disorders have low prevalence with few examples in any individual dataset to 

develop algorithms designed for those conditions. This low prevalence of clinical labels is a key 

challenge for the development and generalizability of supervised learning approaches for ECG 

image models. For this reason, we developed a self-supervised learning approach to learn 

representations of ECG images that can serve as initializations for downstream finetuning on 

small, labeled datasets. 

 Self-supervised learning is designed to reduce the reliance on labeled data to develop 

models. The approach leverages unlabeled data to pretrain models before downstream fine-tuning 
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on small, labeled datasets. It has been used in natural8 and medical image9,10 tasks, and has 

recently been applied to ECG signals.11-13  

 

OBJECTIVES 

While self-supervised or contrastive learning has been done on real-world images of objects, 12-

lead ECG images do not have an existing strategy to learn deeper features from unlabeled ECG 

images. Moreover, applications of self-supervised contrastive learning that have used raw ECG 

voltage data have not been designed to detect deep or hidden features of structural heart disease.  

We have developed a few-shot, deep learning model development strategy – biometric 

contrastive learning (BCL) – in which our models are first trained to detect homologies of ECG 

features belonging to the same person, allowing for enhanced learning and detection of structural 

and functional abnormalities of the heart from any ECG image. Therefore, by developing a model 

that is designed to learn that two distinct ECGs belong to the same person, we develop an 

approach that builds a model that already recognizes key hidden feature that make two ECGs of a 

single person similar. This early training process can then be fine-tuned on a small number of 

labeled examples of any disease of interest, and the model is able to adapt to detection of the new 

disorder. 
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MATERIALS AND METHODS 

The study was reviewed by the Yale Institutional Review Board, which approved the study 

protocol and waived the need for informed consent as the study represents secondary analysis of 

existing data. The data cannot be shared publicly. 

Data Sources for Model Development 

12-lead ECG signal waveform data from the Yale New Haven Hospital (YNHH) collected 

between 2000 and 2021 was used for the development and validation of BCL. These ECGs were 

recorded as standard 12-lead recordings sampled at a frequency of 500 Hz for 10 seconds. They 

were recorded on multiple different machines, and a majority were collected using Philips 

PageWriter machines and GE MAC machines. ECGs from 2000-2015 were used to develop the 

pretraining model. No clinical or other labels were used for these ECGs.  

ECGs collected between 2015 and 2020 were used to train supervised models on three 

clinical tasks. ECGs from separate patients collected in 2021 were used to evaluate the 

effectiveness of BCL and the other baseline methods.  

Data Preprocessing  

ECG images were generated in the same manner as previous studies.6,7 Briefly, ECGs with 10 

seconds of continuous recordings across all 12 leads were preprocessed with a one-second 

median filter, subtracted from the original waveform to remove baseline drift. ECG signals were 

transformed into ECG images using the Python library ecg-plot. All images were converted to 

greyscale, followed by down-sampling to 300x300 pixels regardless of their original resolution 

using Python Image Library (PIL v9.2.0).  
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We created datasets with different plotting schemes for each signal waveform recording 

to ensure models were adaptable to real-world images, which vary in formats and layouts of 

leads. Four formats of images were generated for use in both BCL model pretraining and 

classification fine-tuning tasks: 1) standard printed ECG format in the United States, with four 

2.5-second columns and a lead I rhythm strip, 2) a two-rhythm strip format, added lead II as an 

additional rhythm strip to the standard format, 3) an alternate format which consisted of two 

columns, each with 5 seconds of recording, and 4) a shuffled format, which had precordial leads 

in the first two columns and limb leads in the third and fourth. All images were rotated a random 

amount between -10 and 10 degrees before being input into the model to mimic variations seen 

in uploaded ECGs and to aid in prevention of overfitting. 

Model Training Overview 

BCL uses a convolutional neural network (CNN) backbone to build representations of ECGs 

specific to individuals. During pretraining, the model learned the elements of an ECG image that 

are consistent for a person. The model was rewarded for identifying ECG images from the same 

individual as similar and penalized for identifying ECG images from different individuals as 

similar.   

Positive and Negative Views 

To develop the BCL model, we used ECG images in the four formats described above. Any two 

ECGs from the same person, in any two formats of image, were treated as a positive pair. Any 

pair of images from different individuals was treated as a negative pair. 

Alternative Approaches 

In addition to BCL, we tested two traditional approaches for model pretraining. The first of these 

was random weight initialization. The second was the classic SimCLR8 contrastive pretraining 
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method that has been popular in image processing, such as those to identify objects in real-world 

photos. The latter approach, developed by Google, uses cropped and flipped parts of an image to 

identify the parts derived from the same image.  

BCL Model Pretraining  

We used the EfficientNet-B3 CNN architecture for our encoder, following the demonstrated 

effectiveness of the model on other ECG image classification tasks.6,7 This model architecture 

requires images to be sampled at 300 x 300 square pixels includes 384 layers and has over 10 

million trainable parameters (Figure S1). ECG images were converted to greyscale before being 

input into the model.  Of note, the method is not restricted to this CNN architecture.  

 Our goal during pretraining was to minimize the contrastive loss function, which 

depended on the cosine similarity of embeddings of positive pairs in each batch compared to 

embeddings of negative pairs in the same batch. We used batch sizes of 16, with each ECG in the 

batch having one positive pair and 14 negative pairs, and accumulated gradients over 16 batches 

before updating the model.  

Our encoder had an output dimension of 1,536. We used a 2-layer multilayer perceptron 

(MLP) in pretraining, which projected the 1,536-dimensional output of the encoder into a 128-

dimensional space. We used an Adam optimizer with a learning rate of 1x10-5 for pretraining and 

trained the model for 10 epochs. 

Dataset for BCL and SimCLR Pretraining 

We pretrained our model using ECGs acquired between 2000 and 2015 without labels from the 

Yale New Haven Health System. We excluded patients with ECGs after 2015 to ensure there 

was no data leakage across pretraining and model development. For each patient, the pair of 

ECGs with the smallest time difference between 5 and 1000 days apart was chosen, and the other 
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ECGs were not used. For each pair of ECGs, 6 unique pairs were created, corresponding to 

potential combinations where ECGs were in two different out of the 4 total image formats. 

During pretraining, we ensured that per batch there were no more than one pair of ECGs from 

any given patient.  

Downstream Classification Task Training 

We performed downstream fine tuning and evaluation of our pretrained encoder on three clinical 

tasks: Atrial fibrillation (AF), gender, and left ventricular systolic dysfunction (LVSD) 

classification. They were chosen as they have different biological bases, and each has large prior 

work demonstrating their detection using ECGs.  

AF is a rhythm disorder that is characterized by missing P waves and irregular heartbeats. 

AF is diagnosable by clinicians from ECGs upon manual inspection, and our previous work has 

demonstrated its diagnosis by AI algorithms for 12 lead signal and image data1,2,6. Cardiologist-

confirmed diagnosis statements accompanying all ECGs in the development cohort were 

searched for strings referencing atrial fibrillation and its abbreviations to identify ECGs for the 

task.  

In addition to AF, we chose two clinical labels on ECGs that cannot be inferred by even 

experts on ECGs. First, is the gender of the patient. Gender is a hidden label that is not 

discernable on ECGs, but previous work has suggested that it can be detected on ECGs using AI 

methods1,6. The second is LVSD, which is defined as LVEF < 40% is associated with over 8-fold 

increased risk of subsequent heart failure and 2-fold risk of premature death14. It is also a hidden 

label, that has traditionally been diagnosed using echocardiography. Recent work has shown that 

LVSD can be diagnosed using 12-lead ECGs3,7,15. ECGs in the development cohort within 15 
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days of a TTE were used for this task, and LVEF values from cardiologist’s read on the nearest 

TTE to each ECG were used.  

We used the pretrained encoders described above and two randomly initialized fully 

connected layers to predict the labels of interest. We trained our classification models on 

progressively larger samples of training data, as 0.1%, 0.5%, 1%, 5%, 20%, 50%, and 100% 

labeled fractions of training datasets to test the effectiveness of various initialization methods. 

We trained with a learning rate of 1 x 10-4 for 40 epochs. We used an Adam optimizer, gradient 

clipping, and a minibatch size of 64 throughout training, and we stopped training when 

validation loss did not improve in 3 consecutive epochs.  

External Validation 

We pursued external validation to assess the generalizability of these pretraining techniques to 

external data sources. In addition to the held-out test set, AF and gender models were validated 

in the Germany-Based dataset PTB-XL, whose data have previously been described16. The 

dataset has 21,837 recordings from 18,885 patients, which were collected between 1989 and 

1996. LVSD models were validated in a deidentified dataset of inpatient admissions at Lake 

Regional Hospital (LRH) in Osage Beach, Missouri, which has also been previously described7. 

Briefly, the dataset contains 100 ECGs from unique patients, with 43 from patients with 

LVEF<40% as measured by a TTE within 15 days of the ECG. 

Statistical Analysis 

Categorical variables were presented as frequency and percentages, and continuous variables as 

means and standard deviations or median and interquartile range, as appropriate. Model 

performance was evaluated in the held-out test set and external ECG image datasets. We used 

area under the receiver operator characteristic (AUROC) and the area under the precision-recall 
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curve (AUPRC) to measure model discrimination. Analytic packages used in model development 

and statistical analysis are reported in Table S1. All model development and statistical analyses 

were performed using Python 3.9.5. 

 

RESULTS 

Study Population  

ECGs from the Yale New Haven Health system were split into pretraining, development, and 

held-out test sets. Briefly, our pretraining dataset contained ECGs from 2000-2015, our 

development datasets for our AF, gender, and LVSD models used ECGs between 2015-2020, 

and our held-out test set used ECGs from January – June 2021. We constructed two development 

datasets, one that sampled all 382,830 ECGs that had a corresponding LVEF value from their 

nearest TTE within 15 days of recording to develop LVSD models. We then randomly sampled 

the same number, 382,830, from the total 1,869,582 ECGs recorded during this period to 

construct a development cohort for our AF and gender models. Similarly, we constructed equal 

sized temporally distinct held-out test sets from ECGs in 2021, each containing 8,708 ECGs, 

limited to one ECG per patient to ensure independence of observations in the assessment of 

performance metrics. Table 1 describes the patient characteristics in the pretraining, 

development, and test cohorts. ECGs in the development cohort for all 3 classification tasks were 

split into training and validation datasets at the patient level (90% 10%), stratified by whether a 

patient had the condition of interest.  

 

Performance in the Held-Out Test Sets 
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When trained on 100% of the data available, the three strategies (BCL, random, simCLR) were 

comparable for the 3 tasks of identifying gender, atrial fibrillation, and LVSD, on both AUROC 

and AUPRC, the performance metrics we used to evaluate models. However, across the three 

tasks, BCL demonstrated equivalent performance for both AUROC (Figure 2) and AUPRC 

(Figure 3) at 50% of the data available as it did with 100% of the data, even though the other 

models initialized with random weights and using a SimCLR approach suffered drop-offs in 

performance.  

As the quantity of data available progressively decreased, models trained using all three 

strategies saw lower performance with smaller size of the labeled training data, but BCL 

consistently outperformed other methods, with the difference in performance between BCL and 

other methods growing as labeled data became scarcer (Figures 2 and 3). On models trained 

with 1% of the available data, AUROC for models trained with BCL on the tasks of detecting 

LVSD, AF, and gender was 0.84, 0.96, and 0.85, respectively, while AUROC for randomly 

initialized models was 0.79, 0.93, and 0.76 respectively. AUROC for models trained with 

SimCLR was 0.74, 0.90, and 0.76 respectively. This corresponded to a mean gain in AUROC of 

0.07 (8.7%) between BCL and the other two methods across tested applications (Figure 4a).  

On models trained with 1% of the data available, AUPRC for models trained with BCL 

on the tasks of detecting LVSD, AF, and gender was 0.31, 0.66, and 0.85 respectively, while 

AUPRC for randomly initialized models was 0.23, 0.55, and 0.75 respectively, and AUPRC for 

models trained with SimCLR was 0.19, 0.26, and 0.76 respectively. This corresponded to a mean 

gain in AUPRC of 0.15 (32.8%) between BCL and the other two methods across tested 

applications (Figure 4b).  
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On models trained with the smallest fraction of data available, 0.1%, AUROC for models 

trained with BCL on the tasks of detecting LVSD, AF, and Gender was 0.75, 0.90, and 0.79 

respectively, and AUPRC was 0.19, 0.48, and 0.79. AUROC for randomly initialized models 

was 0.60, 0.51, and 0.52 respectively, and AUPRC was 0.09, 0.05, and 0.52. Finally, AUROC 

for models trained with SimCLR was 0.49, 0.61, and 0.53 respectively, and AUPRC was 0.07, 

0.07, and 0.53. This corresponded to a mean gain in AUROC of 0.27 (49.7%) and AUPRC of 

0.27 (119.8%) between BCL and the other two methods across tested applications (Figure 4).  

 

Performance in External Validation Datasets 

The patterns observed in the held-out test set at small fractions of training dataset available were 

also observed in the validation datasets. On models trained on 1% of the data available, AUROC 

for models trained with BCL on the tasks of detecting LVSD, AF, and gender in the two external 

validation sets was 0.81, 0.97, and 0.80 respectively. AUROC for randomly initialized models 

was 0.70, 0.87, and 0.71 respectively, and AUROC for models trained with SimCLR was 0.66, 

0.82, and 0.71 respectively (Figure 5). This corresponded to a mean gain in AUROC of 0.11 

(15.3%) and AUPRC of 0.23 (42.8%) across applications between BCL and the other methods 

(Figure 6). There were similar patterns in AUROC and AUPRC when using other fractions of 

training data less than the entire dataset. 

 On models trained with 100% of data available, BCL performed better in the external 

validation sets for the two hidden label tasks of LVSD and gender. AUROCs for models trained 

with BCL were 0.88 and 0.88 for LVSD and gender respectively, with random initializations 

were 0.83 and 0.83 respectively, and with SimCLR were 0.83 and 0.84 respectively (Figure 6). 

AUPRCs for models trained with BCL were 0.88 and 0.89 respectively, with random 
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initializations were 0.75 and 0.85 respectively, and with SimCLR were 0.80 and 0.86 

respectively (Figure S2). The initialization techniques demonstrated comparable performances 

for AF classification.  

 

DISCUSSION 

Our novel biometric pretraining framework enables label-efficient learning on ECG images. The 

method focuses on building models to identify shared features of ECGs drawn from the same 

person at different times and plotted in different layouts and augmentations. This allows us to use 

unlabeled data to achieve large gains in the model development process for applications with 

sparsely labeled datasets, such as rare clinical disorders. While the model is not explicitly trained 

for any clinical diagnosis identification task during the pretraining process, it learns deeper 

representations from ECGs across different layouts. Using this method, a format-independent 

model for ECG images can be trained with just a few positive and negative examples.  

Biometric Contrastive Learning (BCL) consistently outperforms two other commonly 

used initialization methods – random initialization and pretraining using SimCLR, the standard 

contrastive pretraining approach for image-based models. We compared the approaches on three 

tasks with differing biological bases – AF, gender, and LVSD. Evaluation across these 3 distinct 

tasks spanning clinical and hidden disorders demonstrated the broad relevance of this pretraining 

strategy for many discrete classification tasks. The fact that BCL generalized as the best method 

across all tasks indicates that it can be used across disease domains in the development of ECG 

models. BCL outperformed other methods by a larger margin as the quantity of data available 

decreased. Additionally, BCL performed better for hidden label tasks in our external validation 

datasets even when trained on 100% of the data. This suggests that the method is effective for 
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both rare disorders when only a few positive examples are available for model development and 

may learn patterns that generalize better to new data sources even when trained with larger 

databases. 

For random initializations, performances dropped across the three tasks as the amount of 

available training data became smaller, with drops in performance becoming larger as the 

scarcity of data increased. While BCL minimized this drop, SimCLR did not provide a 

performance boost for the three tasks studied, as has previously been reported in other medical 

image classification tasks9,17. SimCLR has effectively been applied for medical image tasks that 

are done by humans and are resilient to transformations like rotations, flips, and contortions of 

the image. ECG classification by humans relies on patterns in the plotted signals that are not as 

resilient to image contortions and may require a learned representation of patterns across several 

leads and time points in the image. It is possible that the representations of ECG images learned 

through the distortions in SimCLR are not relevant to the features of the image that contain 

information about both clinical labels diagnosable by physicians as well as hidden labels. On the 

other hand, it appears that the signatures stored in the BCL model, which learns which features 

of the image are unique to any given individual are indeed relevant to features useful for such 

classification tasks.  

 Our study has certain limitations that merit consideration. First, while the results suggest 

that BCL is most effective when training models for rare disorders, we do not compare 

pretraining strategies for a rare disorder, instead choosing to train models on fractions of labeled 

datasets with more common labels. This was essential to identify the threshold for training data. 

While our work indicates that BCL would be effective when used on rarer disorders, further 

investigation on other such disorders is necessary. Second, our models were built on a single 
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CNN architecture, without an explicit evaluation against alternative models and architectures, 

and whether the pretraining strategy is more suitable for some models vs others. While the 

methods presented here should be generalizable to any encoder, future studies could evaluate 

these other architectures. Finally, our models were developed in a single institution. However, 

we have a large, diverse populations, and the models explicitly validated at other institutions and 

data sources. The ECG datasets are similar across sites, and therefore, our findings would 

suggest that the pretraining procedures would generalize to other sites developing models for 

ECG images.  

 

CONCLUSION 

We developed a novel pretraining strategy that leverages the biometric signature of different 

ECGs from the same patient to significantly enhance data efficiency in developing AI-ECG 

models for ECG images, across several discrete tasks. This approach broadens the applications 

of image AI-ECG to rare disorders, for which training data is often limited, representing a 

significant advance in format-independent deep learning for the detection of heart disease 

directly from ECG images. 
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TABLES AND FIGURES  

Table 1. Baseline characteristics of study population. Data presented as median [IQR] for 
age and number (percent) for other variables. Abbreviations: ECGs, electrocardiograms; EF, 
ejection fraction; A-Fib, atrial fibrillation. 
 

  
Pretraining  
(2000-2015) 

Development  
(2015-2020) 

Test  
(2021) 

    AF & G EF AF & G EF 
Number of 
ECGs 

156,576 382,830 382,830 8,708 8,708 

Patients 78,288 207,432 104,665 8,708 8,708 

Sex      
Female 78,784 (50.3%) 189,265 (49.4%) 173,373 (45.3%) 4,362 (50.1%) 4,331 (49.7%) 

Male 74,146 (47.4%) 193,565 (50.6%) 209,415 (54.7%) 4,346 (49.9%) 4,363 (50.1%) 

Missing 3,646 (2.4%) 0 (0.0%) 42 (0.0%) 0 (0.0%) 14 (0.2%) 

Age (years) 60 [44 - 74] 64 [50 - 76] 68 [57 - 78] 57 (38 - 71) 65 [53 - 77] 

Race      
Hispanic 11,464 (7.3%) 32838 (8.6%) 31,963 (8.3%) 726 (8.3%) 795 (9.1%) 

White 75,914 (48.5%) 210947 (55.1%) 246,506 (64.4%) 3,878 (44.5%) 5,395 (62.0%) 

Black 19,918 (12.7%) 47472 (12.4%) 54,749 (14.3%) 634 (7.3%) 791 (9.1%) 

Other 2,950 (1.9%) 8788 (2.3%) 10,425 (2.7%) 269 (3.1%) 381 (4.4%) 

Missing 46,330 (29.6%) 82785 (21.6%) 39,187 (10.2%) 3201 (36.8%) 1,346 (15.5%) 
ECG  
Abnormalities     

AF -- 32,144 (8.4%) -- 432 (5.0%) -- 
EF < 40% -- __ 57,998 (15.1%) -- 548 (6.3%) 
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Figure 1. Overview of Biometric Contrastive Learning (BCL).  

 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.13.23295494doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.13.23295494
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. AUROC Curves in Held-Out Test Sets 
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Figure 3. AUPRC Curves in Held-Out Test Sets 
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Figure 4. AUROC and AUPRC Gains in Held-Out Test Set 
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Figure 5. AUROC Curves in External Validation Sets 
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Figure 6. AUROC and AUPRC Gains in External Validation Sets 
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