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2	
	

Abstract 17	

Tracking pathogen transmissibility during infectious disease outbreaks is essential for 18	

assessing the effectiveness of public health measures and planning future control strategies. A 19	

key measure of transmissibility is the time-dependent reproduction number, which has been 20	

estimated in real-time during outbreaks of a range of pathogens from disease incidence time 21	

series data. While commonly used approaches for estimating the time-dependent reproduction 22	

number can be reliable when disease incidence is recorded frequently, such incidence data are 23	

often aggregated temporally (for example, numbers of cases may be reported weekly rather 24	

than daily). As we show, commonly used methods for estimating transmissibility can be 25	

unreliable when the timescale of transmission is shorter than the timescale of data recording. 26	

To address this, here we develop a simulation-based approach involving Approximate 27	

Bayesian Computation for estimating the time-dependent reproduction number from 28	

temporally aggregated disease incidence time series data. We first use a simulated dataset 29	

representative of a situation in which daily disease incidence data are unavailable and only 30	

weekly summary values are reported, demonstrating that our method provides accurate 31	

estimates of the time-dependent reproduction number under those circumstances. We then 32	

apply our method to two previous outbreak datasets consisting of weekly influenza case 33	

numbers from 2019-20 and 2022-23 in Wales (in the United Kingdom). Our simple-to-use 34	

approach allows more accurate estimates of time-dependent reproduction numbers to be 35	

obtained during future infectious disease outbreaks. 36	

 37	

Keywords: Mathematical modelling, Infectious disease epidemiology, Reproduction number, 38	

Parameter inference, Serial interval, Approximate Bayesian Computation, EpiEstim, 39	

Influenza, Disease incidence  40	
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Introduction 41	

An important challenge for policy makers during infectious disease outbreaks is to devise 42	

public health measures that limit transmission without placing an undue burden on the 43	

population [1–3]. Central to the decision making process is an ability to monitor changes in 44	

pathogen transmissibility in real-time during outbreaks, to determine whether current 45	

interventions are sufficient or whether additional restrictions are required. 46	

A widely used measure of transmissibility is the time-dependent reproduction number (𝑅!) 47	

[4–10]. The value of 𝑅! represents the expected number of infections generated by someone 48	

infected at time 𝑡 over the course of their entire infectious period. This quantity changes 49	

during an outbreak in response to interventions, variations in host behaviour and depletion of 50	

susceptible individuals due to infection-induced immunity. If the value of 𝑅! is (and remains) 51	

below one, then the outbreak will decline. On the other hand, if the value of 𝑅! is (and 52	

remains) above one, then the outbreak will grow. 53	

Two distinct versions of 𝑅! exist. First, the “instantaneous” reproduction number [4,5,11–13] 54	

represents the expected number of infections generated by someone infected at time 𝑡 over 55	

their infectious period if transmission conditions do not change in future (i.e. assuming that 56	

the control interventions in place at time 𝑡, and any other factors that affect transmission, are 57	

not altered after time 𝑡). Second, the “case” reproduction number [12,14] is an analogous 58	

quantity but accounts for changes in transmissibility that occur after time 𝑡 (due to, for 59	

example, changes in public health policy). Methods exist for estimating each of these 60	

versions of 𝑅! [15]. However, here we focus on the instantaneous reproduction number as it 61	

is more amenable to analyses conducted in real-time during outbreaks when future changes in 62	

pathogen transmissibility are unlikely to be known. We therefore refer to the instantaneous 63	

reproduction number as 𝑅! in this article. 64	
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A commonly used approach for estimating 𝑅! is the method introduced by Cori et al. [4] 65	

(hereafter referred to as the Cori method), implemented in the R software package EpiEstim 66	

[16] and the online application EpiEstim App [17]. This approach is based on a renewal 67	

equation model of pathogen transmission (see Methods) and involves estimation of 𝑅! from 68	

disease incidence time series and an estimate of the serial interval distribution (the probability 69	

distribution characterising the interval between symptom onset times in infector-infectee 70	

transmission pairs), both on a daily timescale. The Cori method has been extended in a range 71	

of ways following its original development [7], including accounting for imported cases 72	

[5,11,18,19], uncertainty in the serial interval distribution [5], superspreading [20,21], 73	

multiple pathogen variants [22] and unobserved generations of transmission [23].  74	

However, a challenge that besets estimation of 𝑅! using the Cori method is temporal 75	

aggregation of disease incidence time series data [7,24]. For COVID-19, for example, many 76	

public health agencies switched from publishing daily numbers of reported cases to weekly 77	

summaries after the height of the pandemic [25]. Often, disease incidence is reported weekly 78	

even for pathogens including influenza [26] for which realised serial intervals and generation 79	

times are typically only a few days [27–29]. A common workaround when using the Cori 80	

method in these scenarios is to match the timescale of the serial interval distribution to the 81	

timescale of the incidence data; for example, by supplying a weekly serial interval 82	

distribution and applying the Cori method to weekly incidence data. This is problematic not 83	

only because it is hard to unpick within-week changes in pathogen transmissibility when data 84	

are reported weekly, but also because an assumption of the transmission model underlying the 85	

Cori method is that all cases arising at timestep 𝑡 are generated by infectors from earlier 86	

timesteps. In other words, if the Cori method is applied with a weekly timestep, as considered 87	

in this study, then it is assumed that an infector and infectee cannot both appear as cases in 88	

the disease incidence data in the same week. As the timescale of transmission (as 89	
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characterised by the serial interval or generation time) of many pathogens is less than one 90	

week, this assumption is often incorrect when considering weekly aggregated disease 91	

incidence time series data. 92	

In this research article, we address this issue by presenting a novel simulation-based method 93	

for estimating 𝑅! from temporally aggregated disease incidence time series data and the serial 94	

interval distribution. Our approach involves repeated simulation of a renewal equation 95	

transmission model for different values of 𝑅! with a timestep that is smaller than that of the 96	

disease incidence data. Using an iterative version of Approximate Bayesian Computation 97	

(ABC), we show how 𝑅! can be estimated in real-time during outbreaks by matching model 98	

simulations exactly to the temporally aggregated outbreak data. We apply our approach to 99	

simulated data, demonstrating its accuracy and comparing results from our method to those 100	

obtained using the common workaround of the Cori method applied to temporally aggregated 101	

data. We go on to apply our method to real-world outbreak data from the 2019-20 and 2022-102	

23 influenza seasons in Wales in the United Kingdom. 103	

Methods 104	

In our analyses, we consider two possible approaches for estimating 𝑅! from temporally 105	

aggregated disease incidence time series data: a workaround of the widely used Cori method 106	

(Approach 1 in Fig 1) and our novel simulation-based method (Approach 2 in Fig 1). Since 107	

the simulation-based approach uses a shorter timestep than that of data reporting, this method 108	

accounts for the possibility of multiple generations of transmission occurring between dates 109	

of data reporting. To provide a concrete setting in which to compare the two methods, we 110	

focus on a situation in which disease incidence data are aggregated into weekly timesteps. 111	

Below, we describe how the value of 𝑅! each week can be estimated from the weekly data, 112	

first using the Cori method (with a timestep of one week, since the incidence data are 113	
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aggregated into weekly values), and then using our simulation-based approach (using a 114	

timestep shorter than one week, again using the weekly incidence data). 115	

 116	

Figure 1. Schematic illustrating the approaches for estimating 𝑹𝒕 that we consider. Approach 1 (top) 117	

involves the application of the commonly used Cori method to weekly aggregated disease incidence time series. 118	
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Approach 2 (bottom) is the novel simulation-based approach, which involves matching simulations run with a 119	

smaller timestep to the weekly aggregated data to estimate 𝑅". The second approach relaxes the assumption that 120	

individuals appearing in the incidence data cannot have infected other individuals appearing in the same week. 121	

Relaxing this assumption is particularly important during outbreaks in which the timescale of transmission is 122	

shorter than the temporal aggregation of the data (e.g. if disease incidence time series data are aggregated 123	

weekly, but serial intervals or generation times can be shorter than one week). 124	

 125	

The Cori method 126	

Following previous descriptions of the Cori method [4,5,11], we assume that the expected 127	

number of cases, 𝐼!, in week 𝑡, is given by 128	

𝔼(𝐼!|{𝐼"}"#$!%$ , 𝑅! , 𝒘) = 𝑅!-𝑤&𝐼!%&

!%$

&#$

,				(1) 129	

in which 𝑤& is the probability that the (weekly discretised) serial interval takes the value 𝑠 130	

weeks. We use the notation 𝒘 to denote the sequence of values of 𝑤& (𝑠 = 1,2, … ).  131	

The goal of the Cori method is to estimate 𝑅!, assuming that it takes a constant value during 132	

the time period from week 𝑡 − 𝜏 to week 𝑡. In our analyses, we set 𝜏 = 0 to obtain an 133	

estimate of 𝑅! each week, but we first present the method for general (non-negative integer 134	

value) 𝜏 for consistency with previous presentations of this approach. If the number of cases 135	

in week 𝑡 is drawn from a Poisson distribution, then the probability of observing weekly 136	

incidence {𝐼"}"#!%'!  over the time window [𝑡 − 𝜏, 𝑡] (which consists of incidence data from 137	

𝜏 + 1 weeks) is 138	

ℙ({𝐼"}"#!%'! |{𝐼"}"#$!%'%$, 𝑅! , 𝒘) = :
;𝑅! ∑ 𝑤&𝐼"%&"%$

&#$ =(#exp	;−𝑅! ∑ 𝑤&𝐼"%&"%$
&#$ =

𝐼"!

!

"#!%'

. 139	
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Assuming that the prior for 𝑅! is a gamma distribution with shape parameter 𝛼 and rate 140	

parameter 𝛽, then, by applying Bayes’ Theorem, the posterior for 𝑅! is 141	

𝑝(𝑅!|{𝐼"}"#$! , 𝒘) = gammaI𝑅! , 𝛼 +- 𝐼!%"

'

"#)

, 𝛽 +- - 𝐼!%"%&𝑤&

!%"%$

&#$

'

"#)

J, 142	

in which we use the notation 𝑝(𝑅!|{𝐼"}"#$! , 𝒘) to represent the probability density function of 143	

𝑅! conditional on past incidence data and the weekly discretised serial interval distribution. 144	

The notation gamma(𝑥, 𝑎, 𝑏) represents the probability density of a gamma distribution at 145	

value 𝑥 with shape parameter 𝑎 and rate parameter 𝑏. In all of our analyses, as in previous 146	

studies [4,5,11], we set 𝛼 = 1 and 𝛽 = 0.2. The prior for 𝑅! therefore has mean and standard 147	

deviation equal to five. The large standard deviation is chosen so that the prior is relatively 148	

uninformative. The high mean ensures that the outbreak is not evaluated as being under 149	

control (𝑅! < 1) unless this is very likely to be the case, so that interventions are not relaxed 150	

erroneously. 151	

Throughout the manuscript, we consider estimating individual values of 𝑅! each week, based 152	

on the numbers of new cases observed in that week. In other words, as noted above, we 153	

assume that 𝜏 = 0, in which case the above expression simplifies to 154	

𝑝(𝑅!|{𝐼"}"#$! , 𝒘) = gammaI𝑅! , 𝛼 + 𝐼! , 𝛽 +-𝐼!%&𝑤&

!%$

&#$

J. 155	

The Cori method can therefore be used to obtain a posterior for 𝑅! for 𝑡 ≥ 2 weeks. 156	

Simulation-based inference of 𝑅! 157	

In the renewal equation model underlying the Cori method, the number of cases arising in 158	

week 𝑡 depends on the numbers of cases in previous weeks. Implicit in that approach is an 159	
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assumption that individuals appearing in the incidence data in any week cannot generate new 160	

cases in the same week. When disease incidence data are temporally aggregated, so that the 161	

timescale of transmission can be shorter than the timestep in the incidence data, this 162	

assumption may be incorrect. To relax this assumption, we consider a novel simulation-based 163	

approach for estimating 𝑅!. The goal of this method is again to estimate the value of 𝑅! for 164	

each week, 𝑡 ≥ 2, but using a renewal equation model with a timestep that is shorter than one 165	

week (e.g., a daily timestep). 166	

Modified renewal equation 167	

In this approach, we consider partitioning the cases in each week into 𝑃 timesteps, where 168	

each new timestep is 1/𝑃 weeks. If, for example, 𝑃 = 7, then we are using a daily timestep in 169	

the simulation-based method. We introduce the following notation: 170	

• 𝐼*(!%$)-.
(*)  represents the number of cases in the 𝑖th (partitioned) timestep within week 𝑡 171	

(𝑖 = 1,2, … , 𝑃). 172	

•  𝑤&
(*) represents the probability that the serial interval, discretised into timesteps of 173	

length 1/𝑃 weeks (see below and Supplementary Material), takes the value 𝑠 174	

timesteps. 175	

• 𝒘(𝑷) represents the sequence of values of 𝑤&
(*) (𝑠 = 1,2, … ). 176	

In forward simulations of the corresponding renewal equation model, we assume that the 177	

number of cases in the 𝑖th timestep of week 𝑡 is drawn from a Poisson distribution with mean 178	

𝔼 T𝐼*(!%$)-.
(*) 	|	U𝐼"

(*)V
"#$

*(!%$)-.%$
, 𝑅! , 𝒘(𝑷)W = 𝑅! - 𝑤&

(*)𝐼*(!%$)-.%&
(*) ,

*(!%$)-.%$

&#$

 179	

for 𝑖 = 1,2, … , 𝑃. This is analogous to simulating the renewal equation underlying the Cori 180	

method but with a shorter timestep of 1/𝑃 weeks (rather than with a timestep of length one 181	

week). 182	
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Inference of 𝑅! 183	

Inference of 𝑅! under the simulation-based method involves repeated simulation of the 184	

modified renewal equation model, using an iterative version of ABC. In short, the model is 185	

simulated repeatedly in each week 𝑡, with a different value of 𝑅! used in each simulation 186	

(these 𝑅! values are sampled independently from the prior, and incidence data for times 187	

before week 𝑡 are sampled from matching simulations from earlier weeks). This process is 188	

repeated until a fixed number of simulations (denoted 𝑀) have been run in which the 189	

simulated number of cases in week 𝑡 exactly matches the corresponding number of cases in 190	

the data, 𝐼!. The values of 𝑅! used to generate the matching simulations are then combined 191	

into a posterior estimate for 𝑅!. In all of our analyses using the simulation-based method, a 192	

value of 𝑀 = 1000 was used. 193	

This procedure is repeated iteratively, starting with 𝑡 = 2, then 𝑡 = 3, and so on. Since this 194	

approach only involves obtaining matching simulations for a single week at a time, estimates 195	

of 𝑅! can be obtained relatively quickly (compared to attempting to match an entire 196	

simulation run over multiple weeks to the real-world data, as in standard ABC rejection 197	

sampling [30]). For a more detailed description of the simulation-based inference method, 198	

including an explanation of how cases are distributed between timesteps within the first week 199	

in each simulation, see the Supplementary Material. A schematic explaining the steps 200	

involved in the inference procedure is shown in Fig S1.  201	

Outbreak datasets 202	

We consider three outbreak datasets in our analyses. We first test our approach on a simulated 203	

dataset. The use of simulated data not only enables us to compare estimates of 𝑅! obtained 204	

using the simulation-based approach against analogous estimates using the Cori method, but 205	
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11	
	

it also allows us to verify that the simulation-based approach for estimating 𝑅! generates 206	

accurate estimates in a setting in which we know true value of 𝑅! (i.e., the value used to 207	

generate the simulated dataset). We then go on to compare outputs from the simulation-based 208	

approach and the Cori method using weekly aggregated disease incidence time series for 209	

influenza from 2019-20 and 2022-23 in Wales. 210	

Simulated dataset (Fig 2) 211	

We generated simulated data using the modified renewal equation, using a very small 212	

timestep so that the discretised serial interval is a close approximation to the continuous serial 213	

interval. Specifically, a disease incidence time series was generated starting from one initial 214	

case (in the first timestep) using a timestep of 10 minutes (𝑃 = 24 × 7 × 6 = 1,008). To 215	

generate a classic epidemic curve, the simulation was run for 11 weeks with 𝑅! = 1.5 for 𝑡 ≤216	

6 weeks and 𝑅! = 0.75 for 𝑡 > 6 weeks.  217	

Influenza in Wales, 2019-20 (Figs 3,4) and 2022-23 (Figs 5,6) 218	

To demonstrate our approach on real-world data, we considered two disease incidence time 219	

series datasets provided by Public Health Wales describing estimated numbers of cases of 220	

influenza-like illness (ILI) in Wales each week. The original data comprised the clinical 221	

consultation rate per 100,000 individuals in sentinel practices in Wales each week [31]. The 222	

total number of weekly cases was then estimated by multiplying each value in the original 223	

data by 31.075 (i.e. scaling these values based on the population size of Wales, which is 224	

3,107,500 [32]). Since the dataset is for ILI, it likely contains some cases that were not 225	

influenza. Nonetheless, these data are sufficient to demonstrate and test the methods that we 226	

present in our study, and so we assume that the datasets are representative of numbers of 227	

influenza cases in Wales. Weekly data were provided from 28 October 2019 to 2 February 228	
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2020 (Fig 3A) and 31 October 2022 to 5 February 2023 (Fig 5A). These date ranges each 229	

span 14 weeks with high ILI burden. 230	

Serial interval 231	

Since we analyse influenza outbreak datasets in this study, we assume throughout that the 232	

(continuous) serial interval distribution is a gamma distribution with mean 0.37 weeks (2.6 233	

days) and standard deviation 0.19 weeks (1.3 days) [33]. While this estimate was derived 234	

from household data for pandemic influenza, our focus is on demonstrating the application of 235	

the simulation-based method rather than precise estimation of the serial interval, and we 236	

expect this estimate to be in line with the serial interval for seasonal influenza (i.e., a mean 237	

value of less than one week). Denoting the probability density function of the serial interval 238	

distribution by 𝑔(𝑥), then 𝑔(𝑥) = gamma(𝑥, 4, 10.8). 239	

We discretise this distribution into timesteps of length 1/𝑃 weeks to obtain 𝒘(𝑷). To do this, 240	

we adapt the method used by Cori et al. [4] in which the serial interval distribution is 241	

discretised into timesteps of length one. Specifically, we set 242	

𝑤"
(*) = b 𝑔(𝑢) T1 − 𝑃 d𝑢 −

𝑘
𝑃dW

("-$)/*

("%$)/*

d𝑢, for	𝑘 = 2,3,4, … 243	

as derived in the Supplementary Material. We then choose 𝑤$
(*) so that 𝒘(𝑷) is a valid 244	

probability distribution (i.e., the sum of the entries of 𝒘(𝑷) is one). The rationale for 245	

normalising 𝒘(𝑷) in this way is that same-timestep cases (i.e. infectors and infectees 246	

appearing in the same timestep) are not possible in the renewal equation model. Our approach 247	

involves assigning all probability density near zero in 𝑔(𝑥) to 𝑤$
(*), which is the shortest 248	

possible serial interval in the model.  249	
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Results 250	

Simulated dataset 251	

We first considered the simulated disease incidence time series dataset in which the incidence 252	

data are aggregated into weekly counts (Fig 2A). Since this dataset was generated using a 253	

serial interval for influenza, transmission occurred on a timescale less than one week. The 254	

discretised serial interval is shown in Fig 2B, both with a weekly timestep for use with the 255	

Cori method (𝑃 = 1; blue) and with a daily timestep for use with the simulation-based 256	

method (𝑃 = 7; red). Since the renewal equation model underlying both the Cori method and 257	

our simulation-based approach does not allow individuals appearing in the incidence data to 258	

generate new cases in the same timestep, only the simulation-based approach allows within-259	

week realised serial intervals. 260	

We applied both 𝑅! inference methods to the simulated dataset, finding in this scenario that 261	

the simulation-based approach generates more accurate estimates of 𝑅! than the Cori method 262	

(Fig 2C). The percentage error in the estimated value of 𝑅! each week using the simulation-263	

based approach with 𝑃 = 7 (compared to value of 𝑅! used to generate the dataset) is shown 264	

in Fig 2D.  265	

In addition to our main analysis shown in Fig 2, we also conducted other analyses using the 266	

simulated dataset. We demonstrated that when the simulation-based method is applied with 267	

𝑃 = 1, the output matches the results obtained when the Cori method is used to estimate 𝑅! 268	

(Fig S2A), as would be expected since the assumptions underlying the two methods are 269	

identical in this case. We also considered how 𝑅! estimates obtained using the simulation-270	

based method change when different values of 𝑃 are chosen (Fig S2B-D), finding that the 271	
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method can obtain accurate estimates for relatively small values of 𝑃 (using a value of 𝑃 = 3 272	

led to similar errors compared to using 𝑃 = 7). 273	

 274	

Figure 2. Estimation of 𝑹𝒕 from the simulated disease incidence time series dataset. A. The simulated 275	

outbreak dataset (blue bars), generated with 𝑅" = 1.5 for 𝑡 ≤ 6 weeks and 𝑅" = 0.75 for 𝑡 > 6 weeks (black 276	

line). The outbreak was simulated with 𝑃 = 1,008	starting from one initial case in the first timestep, and new 277	

cases were then aggregated into weekly case counts. B. The discretised serial interval, for 𝑃 = 1 (as used with 278	

the Cori method; blue) and 𝑃 = 7 (red). C. Estimates of 𝑅" using the Cori method (blue) and the novel 279	

simulation-based approach (with 𝑃 = 7; red). Blue and red lines are the mean estimates, and the shaded regions 280	

represent the 95% credible intervals. The value of 𝑅" underlying the simulation is shown in black. D. The 281	

percentage error in the mean estimate of 𝑅" each week (relative to the true value of 𝑅" used to generate the 282	

dataset) using the simulation-based method with 𝑃 = 7.	 283	
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Influenza in Wales, 2019-20 and 2022-23 284	

We then went on to consider the two Wales influenza outbreak datasets, again using both the 285	

Cori and simulation-based methods to estimate 𝑅!. First, we considered the weekly case 286	

counts from the 2019-20 influenza season (Fig 3A). As with the simulated dataset, the 287	

simulation-based approach led to different estimates of 𝑅! than the Cori method; 𝑅! estimates 288	

obtained using the simulation-based approach were typically lower than those from the Cori 289	

method during November and December 2019 (the simulation-based approach generally led 290	

to 𝑅! estimates between one and two, whereas the Cori method generated estimates above 291	

two in multiple weeks), but then higher than those from the Cori method for most of January 292	

2020 when 𝑅! was estimated to be less that one (Fig 3B). We computed the percentage error 293	

in the 𝑅! estimate each week using the simulation-based method with 𝑃 = 7 (Fig 3C). Since 294	

the true underlying value of 𝑅! was unknown, the percentage error was computed relative to 295	

applying the simulation-based method with a very large value of 𝑃 = 168 (this is 296	

representative of the best possible estimate of 𝑅! obtainable from the weekly incidence data; 297	

using a partitioning value of 𝑃 = 168 returns inferred values of 𝑅! estimated with a one-hour 298	

timestep). We also explored how 𝑅! estimates depend on the value of 𝑃 that is used (Fig 4). 299	

Estimates obtained using the Cori method and using the simulation-based method with 𝑃 = 1 300	

again matched closely (Fig 4A). We found that a value of 𝑃 = 7 is large enough for accurate 301	

inference of 𝑅! (Fig 4D). 302	

The analyses of the Wales influenza data from 2019-20 were then repeated for the data from 303	

2022-23, with similar results (Figs 5,6). Notably, the Cori method generally led to a higher 304	

estimate of 𝑅! than the simulation-based method when 𝑅! was estimated to be greater than 305	

one, and a lower estimate of 𝑅! than the simulation-based method when 𝑅! was estimated to 306	

be less than one (see Discussion). 307	
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 308	

 309	

Figure 3. Estimation of 𝑹𝒕 for influenza in Wales, 2019-2020. A. Weekly numbers of ILI cases in Wales from 310	

28 October 2019 to 2 February 2020, estimated from surveillance data collected in sentinel practices. B. 311	

Estimates of 𝑅" using the Cori method (blue) and the novel simulation-based approach (with 𝑃 = 7; red). Blue 312	

and red lines are the mean estimates, and the shaded regions represent the 95% credible intervals. C. The 313	

percentage error in the mean estimate of 𝑅" each week using the simulation-based method with 𝑃 = 7, 314	

compared to using a larger value of 𝑃 = 168 (which corresponds to estimating 𝑅" with a one-hour timestep). 315	
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 316	

Figure 4. Dependence of 𝑹𝒕 estimates using the simulation-based method on the value of 𝑷 used, for 317	

influenza in Wales, 2019-2020. A. Estimates of 𝑅" obtained when the Cori method (blue) and the novel 318	

simulation-based approach with 𝑃 = 1 (red) are applied to the 2019-20 influenza dataset (Fig 3A). B. Analogous 319	

to panel A, but with 𝑃 = 3 in the simulation-based approach. C. Analogous to panel A, but with 𝑃 = 5 in the 320	

simulation-based approach. D. The average weekly absolute error in mean 𝑅" estimates obtained using the 321	

simulation-based method with different values of 𝑃, compared to using a larger value of 𝑃 = 168 (which 322	

corresponds to estimating 𝑅" with a one-hour timestep). For a given value of 𝑃, this measure represents the 323	

absolute value of the error in the estimate of 𝑅" in week 𝑡 (compared to using 𝑃 = 168), averaged over all 324	

values of 𝑡. 325	
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 326	

Figure 5. Estimation of 𝑹𝒕 for influenza in Wales, 2022-2023. A. Weekly numbers of ILI cases in Wales from 327	

31 October 2022 to 5 February 2023, estimated from surveillance data collected in sentinel practices. B. 328	

Estimates of 𝑅" using the Cori method (blue) and the novel simulation-based approach (with 𝑃 = 7; red). Blue 329	

and red lines are the mean estimates, and the shaded regions represent the 95% credible intervals. C. The 330	

percentage error in the mean estimate of 𝑅" each week using the simulation-based method with 𝑃 = 7, 331	

compared to using a larger value of 𝑃 = 168 (which corresponds to estimating 𝑅" with a one-hour timestep). 332	
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	333	

Figure 6. Dependence of 𝑹𝒕 estimates using the simulation-based method on the value of 𝑷 used, for 334	

influenza in Wales, 2022-2023. A. Estimates of 𝑅" obtained when the Cori method (blue) and the novel 335	

simulation-based approach with 𝑃 = 1 (red) are applied to the 2022-23 influenza dataset (Fig 5A) B. Analogous 336	

to panel A, but with 𝑃 = 3 in the simulation-based approach. C. Analogous to panel A, but with 𝑃 = 5 in the 337	

simulation-based approach. D. The average weekly absolute error in mean 𝑅" estimates obtained using the 338	

simulation-based method with different values of 𝑃, compared to using a larger value of 𝑃 = 168 (which 339	

corresponds to estimating 𝑅" with a one-hour timestep). For a given value of 𝑃, this measure represents the 340	

absolute value of the error in the estimate of 𝑅" in week 𝑡 (compared to using 𝑃 = 168), averaged over all 341	

values of 𝑡.  342	
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Discussion 343	

During infectious disease outbreaks, evaluation of time-varying changes in pathogen 344	

transmission is essential to inform outbreak responses. Different metrics can be tracked, 345	

including incidence of new cases, hospitalisations and deaths, and outbreak growth rates 346	

[34,35]. A key metric that has been estimated in real-time during outbreaks of a range of 347	

pathogens is 𝑅!, in part because of its straightforward interpretation [7,9,15]. Not only is 348	

there a threshold value of 𝑅! = 1, below which an outbreak can be inferred as being under 349	

control, but the value of 𝑅! also provides information about the extent to which the level of 350	

transmission must change (relative to current transmission) for an outbreak to grow or 351	

decline. For example, if 𝑅! = 2, then more than half of transmissions must be prevented for 352	

the outbreak to decline. Similarly, if 𝑅! = 0.5, then up to twice as many transmissions may 353	

occur before the outbreak begins to grow. Precise estimation of 𝑅! is therefore crucial. 354	

Here, we have presented a novel simulation-based approach for estimating 𝑅! in scenarios in 355	

which disease incidence time series data are aggregated temporally (Fig 1). While 356	

epidemiological data may be collected at a fine temporal resolution, it is common for the data 357	

to then be aggregated (e.g., into weekly or monthly counts). Aggregated data may be easier to 358	

report and can be more accurate than data presented at a high temporal resolution when there 359	

is uncertainty in the precise times at which cases occurred. However, as we have shown, 360	

frequently used methods for inferring 𝑅!, such as the Cori method [4,5], may not generate 361	

accurate estimates when applied to temporally aggregated data if transmission occurs more 362	

rapidly than the temporal resolution of the aggregated data. This is because the renewal 363	

equation model underlying the Cori method involves assuming that an individual appearing 364	

in the disease incidence time series data at timestep 𝑡 cannot have infected other individuals 365	

appearing in the same timestep. Our proposed simulation-based approach addresses this, by 366	
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exactly matching simulations of a renewal equation model run with a shorter timestep (𝑃 367	

timesteps for each timestep in the aggregated data) to the temporally aggregated incidence 368	

data. The simulation-based approach not only provides accurate estimates of 𝑅! (Fig 2), but 369	

can also be applied easily to real-world datasets (Figs 3-6). While using a very large value of 370	

𝑃 allows the most accurate possible 𝑅! estimates to be obtained from the aggregated data, 371	

even relatively small values of 𝑃 are sufficient for 𝑅! to be inferred accurately (Figs 4,6). 372	

We found that, while the Cori method did not always provide an accurate estimate of 𝑅! due 373	

to the temporal aggregation of the disease incidence data, it was able to identify whether or 374	

not 𝑅! is below one (i.e., the outbreak is under control). While this is useful, as noted above 375	

precise estimation of 𝑅! is important as it provides information about the number of 376	

transmissions that must be prevented for an outbreak to be controlled (or the number of 377	

transmissions that can occur for an outbreak to remain under control). The difference in 𝑅! 378	

estimates between the two methods can be explained by the assumption of no same-timestep 379	

cases (i.e., infectors and infectees cannot appear in the disease incidence time series in the 380	

same timestep) in the renewal equation. When the Cori method is applied to weekly data, this 381	

then leads to overestimation of the serial interval, which is known in turn to lead to 382	

overestimation of 𝑅! if the true value of 𝑅! is greater than one and underestimation of 𝑅! if 383	

the true value of 𝑅! is less than one [36,37]. 384	

A closely related study by Nash et al. [24], undertaken at the same time as the analyses 385	

presented here, has also considered estimation of 𝑅! from temporally aggregated disease 386	

incidence time series data. In that approach, an expectation-maximisation (EM) algorithm is 387	

used to reconstruct daily incidence from any aggregation of disease incidence data using the 388	

serial interval (on a daily timescale). The original version of the Cori method is then applied 389	

to the estimated daily data. This EM approach has been integrated into the EpiEstim R 390	
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software package [16]. There are several differences between the approach by Nash et al. [24] 391	

and the simulation-based method described here. First, the two approaches are 392	

methodologically distinct, relying on entirely different underlying methods (EM or model 393	

simulation). Second, under the approach by Nash et al., only a single estimated daily disease 394	

incidence time series is obtained. In contrast, our method involves matching a range of 395	

simulations to the temporally aggregated data, thereby considering different possible 396	

disaggregated disease incidence time series that could have led to the weekly aggregated data. 397	

Third, our method can be run straightforwardly for a range of values of 𝑃, allowing the most 398	

accurate possible estimates of 𝑅! to be inferred from temporally aggregated incidence data 399	

(discretisation into a timestep of less than one day is straightforward). Fourth, our approach 400	

can be applied easily in scenarios in which the serial interval distribution is discrete rather 401	

than continuous (if, for example, the serial interval distribution is constructed directly from 402	

observations of dates on which infector-infectee pairs report symptoms). A rigorous 403	

comparison of estimated values of 𝑅! obtained using the simulation-based method and using 404	

the EM approach of Nash et al. [24] is a target for future exploration. However, an initial 405	

investigation involving applying the methods to the Wales influenza datasets considered here 406	

suggests that the two approaches can obtain consistent results (Fig S3). 407	

Our simulation-based method is conceptually straightforward, simply requiring repeated 408	

simulation of a renewal equation model. It is also computationally efficient to run, as 409	

simulations are only required to match the real-world data for one aggregated timestep at a 410	

time. This contrasts with using ABC rejection sampling to estimate all values of 𝑅! 411	

simultaneously, which would involve matching entire simulated time series to the entire real-412	

world dataset. The efficiency of our approach allowed us to require that the simulations used 413	

to infer 𝑅! match the real-world data exactly. Further computational efficiency could be 414	

achieved by removing this condition, and instead setting a threshold “distance” within which 415	
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a simulation is determined to match the real-world data, as is common when using ABC 416	

[30,38]. However, this necessitates that a distance metric is chosen, and resulting estimates of 417	

𝑅! may be less accurate. 418	

As in any modelling study, our framework in its current form involves assumptions. We 419	

followed previous publications in which the Cori method has been used [4,5] and assumed 420	

that the time series datasets from which we estimated 𝑅! represent numbers of new 421	

symptomatic cases in each timestep. In the disease incidence time series data, it is then 422	

assumed that each infectee appears after their infector following a time period that reflects a 423	

random draw from the serial interval distribution, which is assumed to always take strictly 424	

positive values. However, in reality, realised serial intervals can be negative (if an infectee 425	

develops symptoms before their infector; this is possible, for example, for transmission of 426	

SARS-CoV-2 [39–42]). Rather than using disease incidence time series, it is possible to apply 427	

both the Cori method and the simulation-based method to data describing incidence of 428	

infections, replacing the serial interval distribution as an input with the distribution of the 429	

generation time (the interval between infection times in infector-infectee pairs). This can be 430	

beneficial as realised generation times are always positive. However, since times of infection 431	

are often unknown, infection incidence data are typically not observed directly. Consequently, 432	

further inference would then be required to estimate incidence of infections, as well as to 433	

estimate the generation time distribution [8,43–45]. 434	

In our analyses, we assumed that all cases in the disease incidence time series (after the first 435	

timestep) arose because of transmission within the population under consideration, and that 436	

all cases were recorded. In reality, some infected individuals may become infected outside the 437	

local population [5,11,46,47] and under-reporting of cases is likely for many pathogens [48–438	

51]. Extension of our method to account for these features of real-world outbreaks is a target 439	
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for future research. Similarly, our method assumes that a Poisson distributed number of cases 440	

occur in each timestep of the modified renewal equation model. Considering different 441	

possible probability distributions, including accounting for the possibility of superspreading 442	

events on some days [20,21,52], is another possible area for future work.  443	

Further testing of the performance of the simulation-based approach in different scenarios 444	

would also be worthwhile. For example, in settings in which disease incidence time series are 445	

subject to a “day-of-the-week effect” [53] (e.g., if cases occurring at the weekend are 446	

typically reported with a longer reporting delay than those arising during the week), 𝑅! 447	

inference using the simulation-based method applied to weekly aggregated incidence data 448	

may generate more robust estimates than attempting to infer 𝑅! from less accurate daily 449	

incidence data. Our method can also be adapted for scenarios in which the disease incidence 450	

time series data are aggregated into timesteps that are not all of equal length. For example, 451	

when incidence data are derived from World Health Organization reports that are published 452	

irregularly in time, the timestep changes during the outbreak [54], and those irregular 453	

timesteps can be used directly in our simulation-based method.  454	

In summary, we have presented a novel method for estimating 𝑅! from temporally aggregated 455	

disease incidence time series. Going forwards, the ideal scenario is for disease incidence time 456	

series to be recorded accurately at a fine temporal resolution (e.g., daily). If that occurs, then 457	

existing methods for estimating 𝑅! are generally expected to perform well. However, if 458	

disease incidence time series continue to be aggregated temporally for pathogens for which 459	

transmission occurs on a short timescale, then methods allowing accurate 𝑅! inference from 460	

temporally aggregated data are of paramount importance.  461	
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