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Abstract. For monitoring disease progression in glau-
coma, perimetric measurements as global indices such as
the mean deviation and standard pattern deviation for
the visual field perimetry do not maintain a consistent
diagnostic sensitivity over the entire data range. Here an
analytical approach that assumes an underlying Gaussian
mixture model describing the normal visual field offers an
alternative solution to this situation.

Glaucoma is a multi-factorial eye disease that involves
the degeneration of the optic nerve which leads to blind-
ness. For this disorder, the visual function deteriorates
mainly due to the death of the retinal ganglion cells and
of the axons surrounding the optic nerve. It is known
that particular measurements such as the mean devia-
tion (MD) and standard pattern deviation (PSD) for the
visual field (VF) perimetry do not maintain a consistent
monotonic diagnostic sensitivity over the entire VF range
(e.g. -33 to 0 [dB]) when monitoring the disease progres-
sion in glaucoma (1)(2)(3). Specifically, the MD is less
sensitive for detecting disease related changes in the VF
observed at the earlier stages (e.g. pre-perimetric, -2 to
0 [dB]), with the PSD similarly becoming less sensitive
as an indicator for VF changes seen in the later stages of
the disease progression (e.g. MD less than -15 dB).

There are many technical and statistical issues why this
happens, leading to the standard paradigms for how
the MD and PSD are used as statistical classifiers for
glaucoma (4). Data analyses to reformulate the VF
location sensitivity values as readout parameters like the
pattern deviation (PD) and general height (GH) into
separate VF spatial components may directly address
some of these issues (5). For these reasons, the MD
and PSD are considered as VF summary indices not
intended generally for diagnosis but simply for disease

staging (6).

As displayed in Figure 1, the scatterplot from the Univer-
sity of Washington VF supplemental dataset on GITHUB
shows this common relationship for the PSD vs MD
(MTD) from a large dataset (7, 8). Here, as the visual
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Fig. 1. The plot displaying the pattern standard (PSD) vs mean (MD) deviation
(n=28,943) from the U.W. glaucoma perimetry dataset. The VF subsets are
indicated by the symbols:

e -25<MD<-15,12<PSD[dB] o -25<MD<-15,12>PSD[dB] + MD<-25[dB]

MD>-15[dB]

field damage progresses, as indicated with the MD de-
creasing, a reduction in diagnostic sensitivity is observed
with the PSD value eventually declining after initially
increasing with disease progression (3).

Given the evidence that the functional information
derived from VF perimetry corresponds to the structural
abnormalities between matching spatial regions, recom-
posing the global indices MD, PSD as local, spatial
indices may provide more relevant readouts for staging
the disease for glaucoma (9, 10).

For instance, suppose one defines the spatial regions of
an individual VF with the Garway-Heath (GH) sectors
(11, 12). Then by calculating the mean (M D;..) and
pattern standard deviation (PSD,..) for each of the GH
sectors, the VF summary statistics (M Dioc, PSDioc) for
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each VF is composed of separate components with its
corresponding individual M Ds.. and PSD,.. for each
VF. Subsequently the components may be combined,
for example, or summed as a total summary statistic,
M Do and PSDj,c, respectively.

For example, new summary indices are, for the lo-
cal mean deviation:

MDjpe= MDg=y+MDggs+MD g+ MD g+MD s+ MD % g

and for the local pattern standard deviation:

PSDyoc= \/PSDsy+PSDggu+PSD m+PSD j+PSD wu+PSD o

Given the original statistical formula for the MD for a
single VF is defined as (13):

Mean deviation (MD) [dB]
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the statistical formula for calculating the new M D, is
now
MD;,. = MD

since the calculation is mathematically linear with the
"mean of the sums" being equivalent to the "sum of the
means" for each individual VF.

However, the statistical derivation of the PSDj,c
shows the mathematical equation is non-linear and
depends on the values of the local M D,e. (13). There-
fore the sum of the TD components relative to a new
calculation of the M D;.. would yield a different final
summation value for PSDj,c.

SECTOR Pattern standard deviation (PSDj,.) [dB]
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Therefore
PSDy,. # PSD

and plotting the PSD;,. value vs the MD (or M D)
does not diminish as the MD becomes increasingly more
negative (see Figure 2). Statistically, this may be under-
stood by examining the distributions of the location sensi-
tivities from a normal perimetry database on the individ-
ual GH sectors (see Figure 3). The overlapping Gaussian
normal sub-distribution for each GH sector have varying
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Fig. 2. The plot displaying the pattern standard (P.SD;oc) vs mean(M D)
deviation (n=28,943) from the U.W. glaucoma perimetry dataset. The VF sub-

sets are indicated by the symbols:
e -25<MD<-15,12<PSD[dB] o -25<MD<-15,12>PSD[dB] . MD<-25[dB]

MD>-15[dB]

Probability density

Fig. 3. The standard deviation and normal mean thresholds,
resp. with values from the literature (17) (left,middle). A graph
of a Gaussian mixture model based on the normal means and
standard deviations by GH sector. (right)

statistical parameters, N(u, o?). Therefore a VF statisti-
cal model may be represented here as a Gaussian mixture
model with the varying M D;.. for each GH sector (14—
16). This would computationally account for an increase
in detecting local changes for the individual PSD;.. as
one would expect from calculating the VF location sen-
sitivities from the local sector rather than global VF
means.

The revised statistical formulas for the MD;.. and
PSD,.. for each Garway-Heath sector are shown pictori-
ally in Table 1 with the individual standard deviations
for the VF locations obtained from the literature (17).
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Table 1. The sectors (Garway-Heath) with the standard deviation for normal variability each VF location (24-2) (left) with the corresponding calculations for the

MDg.. and PSD;.. (middle, right), resp.(17)

As seen in Figure 2, it appears the PSDj,. retains the
progression sensitivity throughout the entire perimetric
range (18). This is most apparent comparing the two
plots at the early (0 > MD > —6[dB]) and advanced
(MD < —25[dB]) range. The information gained from
remapping the M Dj,. with the sum of the local pattern
standard deviations PSD;,. from sectors (P.SDs..) needs
further investigation as now the criteria for staging dis-
ease subgroups from the PSD;,. has changed. Finally
though visual inspection suggests these regional derived
summary indices may offer additional information for the
structure function of the progression for glaucoma (12),
the traditional global summary statistics still maintain
their importance for the overall baseline functional as-
sessment (19, 20).
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