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Abstract11

Mumps virus is a highly transmissible pathogen that is effectively controlled in countries with high

vaccination coverage. Nevertheless, outbreaks have occurred worldwide over the past decades in

vaccinated populations. Here we analyse serological data from outbreaks of mumps virus genotype

G among college students in the Netherlands over the period 2009-2012. To identify infections

in the presence of preexisting antibodies we compared mumps specific serum IgG concentrations

in two consecutive samples (n = 746), whereby the first sample was taken when students started

their study prior to the outbreaks, and the second sample was taken 2-5 years later. We fit a

binary mixture model to the data. The two mixing distributions represent uninfected and infected

classes. Throughout we assume that the infection probability increases with the ratio of antibody

concentrations of the second to first sample. The estimated infection attack rate is higher than

reported earlier (0.095 versus 0.042). The analyses yield probabilistic classifications of participants,

which are mostly quite precise owing to the high intraclass correlation in uninfected participants

(0.85, 95%CrI: 0.82 − 0.87). The estimated probability of infection increases with decreasing

antibody concentration in the pre-outbreak sample, such that the probability of infection is 0.12

(95%CrI: 0.10 − 0.13) for the lowest quartile of the pre-outbreak samples and 0.056 (95%CrI:

0.044− 0.068) for the highest quartile. We discuss the implications of these insights for the design

of booster vaccination strategies.
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Highlights12

• We use paired pre- and post-outbreak serological data to estimate mumps infection rates13

in college students.14

• We use a two-component mixture model to provide individual estimates of infection for15

each participant.16

• The estimated population infection attack rate is higher than reported earlier (9.5% vs 4.2%).17

• The estimated individual probability of infection increases with decreasing pre-outbreak an-18

tibody19

concentrations, from 12% in the lowest to 5.6% in the highest quartile.20

Introduction21

Mass vaccination campaigns have been highly successful in reducing transmission and associated22

morbidity of infectious diseases of childhood. Case in point is the Measles-Mumps-Rubella vaccine,23

which in the Netherlands is administered at 14 months and 9 years and has a coverage of 90%−95%.24

It is known, however, that the antibody response to the mumps component in the vaccine wanes25

over time, and that IgG antibodies induced by the vaccine have relatively low avidity [1, 2, 3, 4].26

Perhaps owing to this, mumps outbreaks have occurred worldwide over the past decades, mainly27

in vaccinated adolescents and young adults. These outbreaks often occurred in close contact28

settings (schools, households, parties), and were mostly caused by genotypes that are different29

from the vaccine genotype [5, 6, 7, 8, 9, 10, 11, 12, 13]. For instance, the current vaccine used30

in the Netherlands contains the Jeryl-Lynn strain (genotype A), and is genetically distant from31

the recent outbreak strains (genotypes D and G) [14, 15]. This vaccine is also widely used in the32

United States and other European countries.33

Many but not all infections with mumps virus are asymptomatic or are associated with mild symp-34

toms only, especially in vaccinated individuals [16]. This makes it difficult to assess the true extent35

of virus circulation in an outbreak. In principle, reliable infection attack rates can be obtained36

from measuring mumps-specific IgG antibody concentrations, because these generally increase after37

mumps virus infection [17]. However, a challenge is that paired pre- and post-outbreak samples are38

often not available, and that there are no generally agreed antibody concentrations that define re-39

cent infection in a single sample. Two studies have shown that pre-outbreak mumps neutralisation40
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antibody concentrations in patients with mumps were generally lower than in persons who were41

not infected with mumps virus during the outbreak [2, 18, 19]. However, it proved not possible42

to define reliable cutoffs separating infected from uninfected persons, and separating patients with43

clinical symptoms from person with asymptomatic or mild infection [2]. Hence, it is not straight-44

forward to deduce who has been infected either clinically or sub-clinically, especially when only a45

single serum sample is available, and it is not clear how the probability of infection depends on46

pre-existing antibody concentrations.47

In an earlier study, we measured mumps-specific IgG antibody concentrations in paired pre- and48

post-outbreak samples from university students in the Netherlands, using a fluorescent bead-based49

multiplex immunoassay [20, 21, 18]. In these studies, we calculated the proportions of symptomatic50

and asymptomatic infections and determined infection attack rates and risk factors for mumps51

virus infection using predefined criteria for infection. Specifically, participants would be classified52

as infected if there was a fourfold increase of antibody concentrations from first to second sample53

or high antibody concentration in the second sample. Further, to identify a correlate of protection,54

mumps-specific IgG concentrations in pre-outbreak samples were compared between infected and55

non-infected persons [22, 21, 23]. However, as antibody concentrations decay over time, especially56

in the first months after an infection [4, 24, 18, 19], and as the second sample in our study may57

have been taken several years after infection, we need analyses with less rigid criteria for infection.58

Therefore, we will in this study use methods that do not rely on predefined criteria for infection,59

but that derive informed probabilities of infection directly from the available serological data.60

Specifically, to provide a probabilistic classification of participants we employ a two-component61

binary mixture model in which the component distributions represent infected and uninfected62

persons [25, 26, 27]. Usually, the mixing parameter in such analyses represents the prevalence or63

probability that a person is infected. Instead of using a fixed population-level mixing parameter, we64

here link the pre- and post-outbreak samples by making the biologically plausible assumption that65

the probability of infection increases monotonically with the ratio of post- to pre-outbreak antibody66

concentration. This enables estimation of the infection probability and associated uncertainty for67

each participant in a manner that is optimally informed by the data.68

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.12.23295419doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295419
http://creativecommons.org/licenses/by-nc/4.0/


Methods69

Study population and sample collection70

All pre-outbreak sera in this retrospective study are taken from first-year medical students. Re-71

cruitment from this population was carried out from 2007-2010, and resulted in a study population72

of 746 students with both a pre- and post-outbreak sample. The study has been approved by a73

medical ethical committee (NL38042.041.11), and has been described in detail earlier [18]. Briefly,74

a self-sampled dried blot spot sample, a questionnaire concerning vaccination history, risk factors,75

and mumps symptoms has been obtained from each student. The serological criteria for mumps76

virus infection in the previous study were a fourfold increase in IgG concentration combined with77

at least an post-outbreak antibody concentration of 300 RU/ml [18]. A small subset of 16 par-78

ticipants show a strong (more than fourfold) decrease in the antibody concentration from pre- to79

post-outbreak sample. These could represent recent infections, as pre-outbreak samples had been80

taken from 2007-2010, while the outbreak lasted from 2009-2012. We therefore perform analyses81

of the full data in the body of the text, but also indicate how the results are affected if those 1682

participants are left out.83

Mumps-specific IgG multiplex immunoassay84

Mumps virus–specific serum immunoglobulin G (hereafter called IgG) antibody concentrations85

have been determined by a fluorescent bead–based multiplex immunoassay as described before,86

using purified Jeryl-Lynn mumps vaccine strain as antigen [20, 28]. For analysis, all antibody87

concentrations are log2-transformed, and in the following the log-transformed concentrations will88

be referred to as (antibody) titers.89

Mixture model for paired data90

Participants are assumed to be uninfected in the first sample, and either infected or uninfected91

in the second sample. Here, we assume that these two classes are characterised by probability92

distributions for the antibody titers, and are characterised by density functions funinf and f inf.93

Based on preliminary analyses, we assume that the titer distributions of the two classes are normally94

distributed with parameters θuninf = {µuninf, σuninf} and θinf = {µinf, σinf}. For our data, the95

pre-outbreak samples provide information on the uninfected component probability distribution,96

and the post-outbreak samples inform both the uninfected and infected component probability97

distributions. In mixture models for cross-sectional data the probability of infection is usually given98
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by the prevalence weighted density of the infected component divided by the sum of the weighted99

infected and uninfected components (e.g., [27, 29, 30]). Here we take an alternative approach100

that makes use of the fact that data are paired, and in which we postulate that the probability101

that a post-outbreak sample belongs to the infected component (the mixing parameter) increases102

monotonically with the ratio of the post- versus pre-outbreak titers. Specifically, we propose a103

two-parameter logistic infection function such that the mixing parameter for the i-th participant104

(i = 1, . . . , 746), qinfi , is given by105

qinfi =
1

1 + e−k(Y post
i −Y pre

i −x0)
. (1)

In equation (1), Y pre
i and Y post

i denote the antibody titers in the pre- and post-outbreak samples, k

and x0 represent the steepness and 50% infection probability of the logistic function. Throughout,

we use a transformation of the logistic function in terms of the probability that a sample belongs

to the infected component at no increase in antibody concentration (d0) and fourfold increase in

the antibody concentration (d2), as this yields parameters that can be interpreted more easily

in biological terms. This, in turn, facilitates making informed choices for the parameter prior

distributions. A straightforward calculation shows that

k =
1

2

(
log

(
d−1
0 − 1

)
− log

(
d−1
2 − 1

))
x0 = −2

log
(
d−1
0 − 1

)
log

(
d−1
2 − 1

)
− log

(
d−1
2 − 1

) .

Biological reasoning implies that one would expect d0 ≈ 1 and d2 ≈ 1 [20, 21]. Notice further that106

qinfi only depends on the difference of the two measurements but not on the individual values of107

Y pre
i and Y post

i . Also notice that a difference of 1 between antibody titers represents a twofold108

increase, a difference of 2 a fourfold increase, etcetera.109

To estimate parameters and take correlations between pre- and post-outbreak samples into account,110

we estimate the unknown latent antibody titers of uninfected persons. Here we assume that the111

latent titers, yuninfi , are drawn from a normal hyper distribution representing the unobserved true112

titers of uninfected persons. Specifically we take113

yuninfi ∼ N
(
µuninf
pop , σuninf

pop

)
, (2)

where µuninf
pop and σuninf

pop are the population mean and variance of the distribution of latent antibody114

concentrations in uninfected persons. Each measurement of uninfected persons provides a possibly115
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imperfect representation of the latent antibody concentration, such that, for instance, for pre-116

outbreak samples Y pre
i (i = 1, . . . , 746) we have117

Y pre
i ∼ N

(
yuninfi , σuninf

noise

)
, (3)

where σuninf
noise represents the measurement noise. On the other hand, post-outbreak samples can be118

either uninfected or infected, and therefore these samples are distributed according to the mixture119

distribution120

Y post
i ∼

(
1− qinfi

)
N

(
yuninfi , σuninf

noise

)
+ qinfi N

(
µinf, σinf

)
. (4)

Together, equations (1) - (4) specify the model. Notice that the pre-outbreak samples inform the121

uninfected component distribution, and that the post-outbreak samples inform both the uninfected122

and infected component distributions.123

With the above model at hand we can calculate for each participant the probability of infection, pinfi ,124

as the prevalence weighted density of the infected component divided by the sum of the weighted125

infected and uninfected components, i.e.126

pinfi =
qinfi f inf

i

qinfi f inf
i +

(
1− qinfi

)
funinf
i

. (5)

where we have suppressed the dependence of pinfi and qinfi on the antibody differences Y post
i −Y pre

i ,127

and the dependence of funinf
i and f inf

i on post-outbreak antibody concentrations Y post
i . Hence, the128

probability of infection depends on both the mixing parameter and the mixing distributions.129

Finally, to quantify correlations of antibody concentrations in pre- and post-outbreak samples of

uninfected persons, we calculate the intraclass correlation rICC as

rICC =
(σuninf

pop )2

(σuninf
pop )2 + (σuninf

noise )
2
.

The intraclass correlation will be low if measurement noise is high and samples in uninfected130

persons are not strongly correlated, and it will be high if the reverse is true. Of course, whether131

post-outbreak samples are actually infected is not known, but will be estimated.132

Prior distributions and inference133

Parameters are estimated in a Bayesian framework using Hamiltonian Monte Carlo, implemented134

in Stan [31]. The main parameters to be estimated are the mean and standard deviation of the135

hyper distribution of antibody titers in uninfected persons, µuninf
pop and σuninf

pop , the random noise136
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σuninf
noise , the mean and standard deviation of antibody titers in infected persons, µinf and σinf, and137

the parameters defining the probability of infection when there is no increase in antibody titer138

from pre- to post-outbreak samples, and when there is a fourfold increase, d0 and d2.139

Prior distributions for the means and standard deviations of the uninfected component distribution140

are based on pre-outbreak samples as these are by definition classified as uninfected. Specifically,141

we take µuninf
pop ∼ N (µ, 0.1) for the mean of the uninfected hyperdistribution and where µ = 7.3142

denotes the mean of the pre-outbreak antibody titers. Likewise, we take σuninf
pop ∼ N (σ, 0.25) for143

the standard deviation of the uninfected hyperdistribution, where σ = 1.3 represents the standard144

deviation of the pre-outbreak data. Further, we take d0 ∼ B (1, 29) and d2 ∼ B (29, 1), such that the145

one-sided 95% prior ranges of these parameters are approximately [0, 0.1) and [0.9−1], respectively.146

Other parameters (σuninf
noise , µ

inf, and σinf) are not equipped with explicit prior distributions, implying147

that all values on their domains are a priori equally likely.148

All analyses are performed using R (version 4.3.1) and Stan using the RStan interface (version149

2.21.8) [32]. We run 10 MCMC chains in parallel and base the analyses on 10,000 thinned samples150

from 10 well-mixed chains. Data, scripts, and figures are available in the online repository at151

https://github.com/rivm-syso/mumps_serology.152

Results153

Rule-based classification154

The data have been described and analysed earlier [22, 21, 23, 18], and we here put the earlier155

findings into a perspective relevant to our analyses. Figure 1 shows the antibody titer measurements156

and distributions of the pre- and post-outbreak samples. There is substantial variation in the pre-157

and post-outbreak data, with mumps-specific IgG antibody titer measurements generally ranging158

from 4−14 (16−16, 384 RU/mL). Hence, antibody concentrations can vary more than 1, 000-fold.159

The figure also shows that there is a strong correlation between the paired pre- and post-outbreak160

samples, such that for the majority of participants the post-outbreak titer is roughly equal to the161

pre-outbreak titer. In fact, for most paired samples titer differences are within a twofold change in162

concentration. Only a small fraction of samples has a more than fourfold difference between pre-163

and post-outbreak samples, and most of these participants show a more than fourfold increase.164

In fact, 33/746 = 0.044 show a fourfold or more antibody increase. Of these, 31 also have a165

post-outbreak antibody concentration of 300 RU/mL, so that the rule-based cumulative infection166

attack rate would be 31/746 = 0.042. On the other hand, only a small fraction of participants167
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Figure 1: Overview of the data. Shown are the paired antibody titers (i.e. log2-transformed antibody concentrations)
for each of the 746 participants in the post- versus pre-outbreak survey. Titers range from 3 to 15, so that mumps-
specific IgG antibody concentrations range from 23 = 8 RU/mL to 215 = 32, 768 RU/mL [18]. The solid line
represents the identity function with equal antibody concentrations in the pre- and post-outbreak samples. Dashed
lines represent a twofold increase and decrease of the antibody concentration, and dotted lines represent a fourfold
increase and decrease. The dashed-dotted line represents the minimum titer in the post-outbreak survey for positive
classification (8.2, corresponding to 28.2 = 300 RU/mL). Participants that were previously classified as infected are
depicted in red [18]. Distributions on the top and right represent marginal titer distributions in the pre- and post-
outbreak surveys, respectively.

(16/746 = 0.021) show a more than fourfold antibody decrease. Interestingly, the number of168

participants with a modest titer increase between two- and fourfold is substantially larger than the169

number with a similar modest decrease (56 versus 31). This suggests that some of the participants170

with modest titer increase may actually have been infected.171

In an earlier analyses a slightly different and more lenient classification rule for serological infection172

has been used [21]. Here, the authors opted for either a fourfold increase of antibody concentrations,173

or at least a post-outbreak titer of 10.6 (antibody concentration 1500 RU/mL). In this case, the174

number of infections and infection attack rates are 37 and 37/746 = 0.050, respectively.175

Parameter estimation176

Next, we fit our mixture model (equations (1)-(4)) to the data. Parameter estimates and derived177

quantities are presented in Table 1, and the data and model fit are presented in Figure 2. Table 1178
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Figure 2: Overview of the data and fitted mixture distribution. Shown are the data (histograms) with fitted
distributions weighted by estimated prevalence (lines). Shaded areas represent 95% credible envelopes. Top panel:
pre-outbreak data with fitted distribution of uninfected participants. Bottom panel: post-outbreak data with fitted
infected mixing distribution (red line) and overall mixture distribution (black line). Participants that are likely
uninfected (posterior probability of infection ≤ 10%) are represented in blue, and those that are likely infected
(posterior probability of infection ≥ 90%) are represented in red. Samples with intermediate posterior probabilities
of infection are colored in purple.

shows that the posterior mean of antibody concentrations in infected persons (9.89) is six times179

higher than the posterior mean in uninfected persons (7.28), hence 29.89−7.28 = 6.1. However, the180

estimated antibody distributions are quite broad, especially for samples form uninfected persons.181

Overall, Figure 2 illustrates that there is a good correspondence between the model fit and data182

both for the pre- and post-outbreak surveys. Interestingly, even though there is considerable183

overlap between the mixing distributions of uninfected and infected persons, for most participants184

there is little doubt whether they had been infected or not. This is due to the high estimated185

intraclass correlation (0.85), and random variation in antibody concentrations of uninfected persons186

is estimated to be at most twofold (2σ̂uninf
noise = 1.02). This, in turn, implies that already a twofold187

increase in antibody concentration provides evidence that the persons may have been infected.188
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In fact, the estimated probability of infection is essentially 0 if the post-outbreak titer equals189

the pre-outbreak titer (0.00034, 95%CrI: 0.000014 − 0.0025), is close to 1 in case of a fourfold190

antibody increase (0.994, 95%CrI: 0.963 − 1.0), and is almost 20% in case of a twofold increase191

(0.19, 95%CrI: 0.064− 0.38). The overall estimated cumulative incidence of infection is estimated192

at 0.095 (95%CrI: 0.082− 0.11) (Table 1).193

To gauge the robustness of the above results with respect to the included participants, we rerun194

all analyses without the 16 participants with strongly decreased antibody concentrations. Overall,195

the results remain very similar, owing to the fact that these 16 only represent a small fraction of196

the total study population (≈ 2%) while these participants are with high certainty classified as197

uninfected. Biggest difference is that the random variation from the latent antibody concentration198

in uninfected persons is estimated to be even smaller (0.37 versus 0.51), leading to a further199

increase in the intraclass correlation from 0.85 to 0.91. This in turn, leads to even higher precision200

with which individual probabilities of infection are estimated, and overall estimated cumulative201

incidence of infection is slightly increased (0.11, 95%CrI: 0.098− 0.13).202

Figure 3 shows 100 samples from the posterior distribution of the logistic infection function (equa-203

tion (1)) together with estimated individual infections probabilities (equation (5)) as a function204

of the titer difference between pre- and post-outbreak samples. Most participants either have a205

post-outbreak titer that is close to the pre-outbreak titer, or have a post-outbreak titer that is sub-206

stantially higher than the pre-outbreak titer. For these participants there is little doubt whether207

they have been infected or not. For instance, a titer difference of 0.5 translates to an increase208

of 41% of the antibody concentration (20.5 = 1.4), and in this case it is highly unlikely that the209

increase has been caused by infection. Conversely, a difference of 1.6 translates to a threefold210

increase of the antibody concentration, and in this case it is approximately threefold more likely211

that the participant has been infected rather than that it has not been infected. Between these212

two extremes is the main uncertainty with respect to the infection status. Overall, there is a good213

correspondence between the infection function and individual estimated probabilities of infection,214

and this indicates that the model fits the data well.215

Probability of infection as function of pre-outbreak antibody titer216

Next, we turn attention to the relation between pre-outbreak antibody titers and subsequent217

probability of infection. Figure 4 shows for all 746 participants the estimated infection probability218

with associated uncertainty as function of the pre-outbreak titer. In general, there is limited219
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Parameter Description Estimate 95%CrI

µuninf
pop

Mean of antibody concentrations
in uninfected participants

7.28 (7.20− 7.36)

σuninf
pop

Standard deviation of antibody
concentrations in uninfected participants

1.19 (1.13− 1.26)

σuninf
noise

Random variation of antibody
concentrations (e.g., measurement noise)

0.51 (0.48− 0.54)

µinf Mean of antibody concentrations
in infected participants

9.89 (9.42− 10.4)

σinf Standard deviation of antibody
concentrations in infected participants

1.91 (1.63− 2.27)

d0
Probability of infection
at no antibody increase

0.00034 (0.000014− 0.0025)

d1
Probability of infection
at twofold antibody increase

0.19 (0.064− 0.38)

d2
Probability of infection
at fourfold antibody increase

0.994 (0.963− 1.0)

rICC
Intraclass correlation
in uninfected participants

0.85 (0.82− 0.87)

pinf
Overall probability of infection
(cumulative incidence)

0.095 (0.082− 0.11)

Table 1: Parameter estimates and selected generated quantities. Estimates and generated quantities are represented
by posterior medians and 95% posterior credible intervals. See text for explanation and details.

uncertainty for most participants, especially when the estimated probability of infection is close220

to 0 or close to 1. Only for a small subset of 31 participants with estimated posterior median221

probability of infection ≥ 10% and < 90% is there substantial uncertainty.222

To generalise these results for groups of persons and estimate the probability of infection as function223

of the pre-outbreak antibody titer we have stratified the study population by pre-outbreak antibody224

titers and calculated the probabilities of infection in these groups. Specifically, we have grouped225

pre-outbreak titers in four equal sized groups, with titer ranges [2, 6.48), [6.48, 7.35), [7.35, 8.18),226

and [8.18, 15), corresponding to antibody concentrations of 4 − 89 RU/mL, 89 − 163 RU/mL,227

163−290 RU/mL, and 290−32, 768 RU/mL. As it appears, the estimated probabilities of infection228

generally decrease with increasing pre-outbreak antibody titer. Specifically, the estimated infection229

probability is 0.12 (95%CrI: 0.10− 0.13) for the lowest two quartiles, and 0.056 (95%CrI: 0.044−230

0.068) for the highest quartile. Hence, while there does not appear to be a fixed antibody titer231
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Figure 3: Estimated infection probabilities as function of differences in antibody concentrations. Shown are 100
samples from the posterior distribution of the logistic function determining the probability that a sample belongs to
the infected component, as function of the difference in the antibody titers (grey lines). Also shown are the estimated
(posterior median) infection probabilities for each of the 746 participants (dots), and uncertainty in the infection
probabilities (95%CrI, whiskers). Notice that a difference of 1 between post- and pre-outbreak samples corresponds
to a twofold increase, that a value of 2 corresponds to a fourfold increase, etcetera.

that provides protection against infection, the probability of infection is more than double in the232

groups with low pre-outbreak antibody titers as compared to the group with highest antibody233

titers. The estimated overall probability of infection is 0.95 (95%CrI: 0.082− 0.11) (1). Thus, our234

results confirm earlier results that the probability of infection increases with decreasing antibody235

titers [18], but yield substantially higher infection attack rates than reported earlier.236

Discussion237

The past two decades have witnessed a distinct increase in the number of outbreaks of mumps238

in highly vaccinated populations, mostly by non-vaccine genotypes, with an over-representation of239

adolescents and young adults, and predominantly in close-contact settings (households, schools and240

universities, parties) [33]. This has prompted suggestions that a booster vaccination in adolescence241

could be beneficial ([18, 33] and references therein). Indeed, limited experience with such booster242

doses has largely been positive [34, 33, 24, 18]. Our analyses have provided additional support for243

the potential benefit of an extra vaccination in this age group to improve immunity to mumps.244

Here, we have shown that the infection attack rate can be high in Dutch university university245
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Figure 4: Estimated infection probabilities as function of the pre-outbreak antibody titer. Shown are the estimated
infection probabilities for all participants (dots: posterior medians; lines: 95% credible interval). Colors represent
three infection probability classes (cf. Figure 2). Also shown are estimated infection probabilities (median and 95%
credible intervals), stratified by quartile of pre-outbreak antibody concentration.

(9.5%), and that in addition the infection attack rate is more than twice as high in students246

with low pre-existing mumps-specific IgG antibody concentrations than in students with high pre-247

existing antibodies (12% vs 5.6%). This suggests that the hazard of infection can be at least twice248

as high in adolescents and young adults with low antibody concentrations than in those with high249

antibody concentrations. However, no fixed pre-outbreak antibody concentration could be reliably250

determined that fully correlates with protection against infection. This indicates that not only IgG251

antibodies but also other compartments of the immune system, such as cellular immunity, play252

a role in protection against mumps [35, 36]. Nevertheless, young adults with low mumps-specific253

IgG antibody concentrations are at higher risk for infection and may therefore benefit most from254

a third dose of the MMR vaccine. Interestingly in this context, our previous study showed that255

individuals with lowest pre-vaccination IgG concentrations also showed the strongest increase in256

IgG concentrations after vaccination [24].257

Our analyses build on and extend earlier analyses for the same outbreak [21, 18]. An advantage of258

the current analyses is that they are fully self-contained, and that all parameters, distributions, and259

infection rates are directly estimated from the data. This is a considerable advantage and makes260

the analyses quite robust, as there is no fixed predefined level of antibody concentrations that is261
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indicative of infection or protection against infection [37, 38]. Moreover, antibody concentrations262

in the population depend in a complex manner on time since last vaccination, potential previous263

infection(s), and outbreak genotype(s). Therefore, it is unlikely that proper sets of validation264

samples with confirmed uninfected and infected persons can be obtained. This is true not only265

for our population of university students but probably holds more generally. Thus, ad hoc choices266

have previously been made for the infection criterion (a fourfold antibody increase with additional267

requirements depending on the study). Comparing our results with the earlier analyses of Gouma268

et al. [21] and Kaaijk et al. [18] we find a similar pattern that infection attack rates increase269

with decreasing prior antibody concentrations. Our analyses also indicate, however, that infection270

attack rates may have been substantially higher (9.5%) than reported earlier (4% − 6%). This is271

due to the fact that many participants with modest increases of antibody titers (two- to threefold)272

may actually have been infected. In all, our results paint a more dynamic picture of the antibody273

dynamics induced by infection and waning than hitherto considered.274

Previous analyses for bivariate serological cross-sectional studies [26, 39, 40] have modelled the275

serological response with bivariate mixture distributions. Here, by virtue of the fact that we have276

paired data at our disposal we have been able to couple pre- and post-outbreak data using an277

infection function (equation (1)). This has enabled precise estimation of infection probabilities for278

the majority of participants even though the distributions of uninfected and infected persons show279

considerable overlap. In fact, we would not have been able to obtain precise estimates of infection280

probabilities if the data had been treated as two separate cross-sectional surveys (J. Gomme,281

unpublished report). In principle, our model and estimates can also be used for prediction of282

infection probabilities of paired samples in future studies that have been analysed with the test283

employed here.284

In our analyses we have included 16 participants with a strong (at least fourfold) antibody decrease.285

These person may have had experienced a recent mumps infection, and may therefore not be286

representative for antibody concentrations in populations with no recent exposure. To study how287

the results are affected by this choice, we have performed a sensitivity analysis in which these288

samples are excluded. Fortunately, the results are largely unaffected by inclusion of exclusion of289

those participants. This due to the fact that these 16 persons represent only a small minority290

of the study population (2%), and the fact that the estimated probability of infection for those291

participants is essentially 0.292

Two main limitations deserve scrutiny. First, we have throughout focused on probabilistic classifi-293
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cation of participants and estimation of the serological infection attack rate. It would be desirable,294

but not possible with the limited information available in our study, if the analyses could be ex-295

tended to include not only serological data but also information on the severity of infection. It296

would be particularly interesting to study how the severity of infection depends on both the pre-297

and post-outbreak antibody concentrations. Second, our analyses apply to the specific situation of298

medical students in the Netherlands. This is a very specific population and setting. For instance,299

in the Netherlands the vast majority of students have been vaccinated, and contact intensities300

in this group are probably substantially higher than in other strata of the population of similar301

age. It remains therefore an open question to which extent the results still apply in other settings.302

In particular, one could envisage that our estimated infection attack rates in medical students303

represent an upper bound for this age group in general.304

Finally, analyses for paired data such as presented here may have wider applicability, and are305

not restricted to serological surveys for infectious diseases. Indeed, our methods of analysis apply306

whenever a latent response is usually stable but highly individual-specific. In such instances, it307

may be of interest to be able to decide when there are substantial deviations from this stable308

individual-specific response. Such situations occur often in hospital settings when patients are309

regularly screened for the onset of disease. Our study has shown one way how such data can be310

analysed elegantly with mixture model-based methods.311
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