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Abstract

Background

Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants

in these regions are largely excluded from clinical genetic testing due to difficulty in

interpreting pathogenicity. The extent to which these regions may harbour diagnoses for

individuals with rare disease is currently unknown.

Methods

We present a framework for the identification and annotation of potentially deleterious

proximal promoter and UTR variants in known dominant disease genes. We use this

framework to annotate de novo variants (DNVs) in 8,040 undiagnosed individuals in the

Genomics England 100,000 genomes project, which were subject to strict region-based

filtering, clinical review, and validation studies where possible. In addition, we performed

region and variant annotation-based burden testing in 7,862 unrelated probands against

matched unaffected controls.
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Results

We prioritised eleven DNVs and identified an additional variant overlapping one of the

eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the

individual’s phenotype and six had not previously been identified. Through burden testing,

we did not observe a significant enrichment of potentially deleterious promoter and/or UTR

variants in individuals with rare disease collectively across any of our region or variant

annotations.

Conclusions

Overall, we demonstrate the value of screening promoters and UTRs to uncover additional

diagnoses for previously undiagnosed individuals with rare disease and provide a framework

for doing so without dramatically increasing interpretation burden.
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Background

Current approaches to identify a genetic diagnosis for individuals with rare disease are

heavily focussed on protein-coding regions of the genome. Even where genome sequencing

data are available, analysis methods often exclude variants that are not in, or immediately

adjacent to protein-coding exons. This is in large part due to the difficulty in interpreting

variants outside of these regions, but also due to the increased burden of variant review in a

clinical context. Studies that have investigated a wider genomic context have successfully

identified variants in non-coding regions that cause penetrant Mendelian disease(1–3). The

majority of these studies have, however, focussed on small numbers of individuals, specific

phenotypes, and/or limited genetic regions. Consequently, we still do not know what
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proportion of currently genetically undiagnosed individuals with rare disease carry

disease-causing variants in non-coding regions.

In this work, we focus on promoters and untranslated regions (UTRs) given that these

regions can be confidently linked to known disease genes, and variants within them can

significantly disrupt normal gene regulation and have previously been implicated in rare

disease(4,5). In short, they provide the best opportunity to expand clinical screening into

non-coding regions.

UTRs are regulatory sequences encoded immediately up- and down-stream of the coding

sequence (CDS) of protein-coding genes. These regions have important roles in regulating

RNA stability, RNA localisation, and the rate of CDS translation(6,7). Variants in UTRs that

disrupt these regulatory processes have been shown to cause rare disease through a variety

of mechanisms(8). For example, 5’UTR variants that disrupt translation by creating upstream

start codons (uAUGs) or perturbing upstream open reading frames (uORFs) cause a range

of phenotypes including in genes causing severe developmental disorders (e.g. NF1(9) and

MEF2C(2), whilst variants directly upstream of the CDS in the GATA4 gene, that alter the

‘Kozak’ consensus (i.e., the AUG start codon and surrounding motif) have been linked to

atrial septal defect(10). Variants resulting in aberrant splicing of the PAX6 5’UTR are a

frequent cause of aniridia(11). 3’UTR variants that disrupt polyadenylation signals or RNA

Binding protein (RBP) binding sites in the α and β-globin genes have been found in

individuals with α and β-thalassemia(12). A comprehensive search for 5’UTR variants in

retinal disease patients uncovered variants that cause disease through a variety of

mechanisms(13).

Proximal promoters comprise an open region of chromatin spanning both up- and

down-stream of the transcription start site (TSS) to which transcription factors and

polymerase bind to initiate transcription. Variants within promoter regions that disrupt
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transcription by altering transcription factor binding, or by changing methylation patterns

have been identified as being causal of a number of diseases, including TERT promoter

variants in idiopathic pulmonary fibrosis(14) and CAMK1D promoter variants in type 2

diabetes(15). Whilst there are many documented mechanisms through which UTR and

promoter variants cause rare phenotypes, our knowledge is likely far from complete. It is

also unclear to what extent increasing our understanding of, and regularly including these

regions in clinical testing pipelines, will uncover novel diagnoses for currently undiagnosed

individuals with rare disorders.

Here, we used the Genomics England 100,000 Genomes Project (GEL) dataset to

systematically identify and annotate variants in promoters, UTRs, and UTR introns in 8,040

undiagnosed trios. We developed a reproducible annotation approach with high specificity

that can be used in clinical settings without dramatically increasing the number of candidate

variants for manual review. After employing strict region-based filters we identified ten likely

diagnostic variants, nine de novo and one additional overlapping variant. Comparing

individuals with rare disorders to matched controls we did not identify a significant burden of

rare potentially disruptive variants collectively across any region type or variant annotation,

although this may be due to limited statistical power. Our results highlight how promoter and

UTR regions can be effectively searched for new diagnoses in rare disease patients and we

outline a framework for identification and annotation of such variants in large-scale cohorts.

Methods

Identifying known disease genes using PanelApp

PanelApp gene panels were obtained from panelapp.genomicsengland.co.uk using lynx

v2.8.9(16), on 12/09/2022. These were filtered to include only the 6,504 genes where the
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strength of association for one or more gene panel was “green”, corresponding to those with

a confident link to the phenotype.

We further filtered to only include genes known to cause a disorder with a dominant mode of

inheritance (MOI), inclusive of any genes associated with both dominant and recessive

phenotypes. Finally, we selected only genes with transcripts in the MANE v1.0 dataset (17).

In total we included 1,536 genes/1,567 transcripts.

Annotating non-coding regions of interest

Transcripts were defined using MANE v1.0, inclusive of 19,062 MANE ‘select’ and 58 ‘plus

clinical’ transcripts(17). UTR exon and intron coordinates were taken directly from the MANE

.gff file.

Proximal promoter regions were defined using candidate cis regulatory elements (cCREs)

obtained from ENCODE(18). Accurate promoter definition is hampered by their tissue

specificity. In tissues where a promoter is inactive, it is often marked by a minimal

nucleosome free region, but this region may be expanded when the promoter is active. To

account for this, as well as promoters that are not annotated at all in the ENCODE dataset,

we calculated the average size of all ‘promoter-like’ cCREs that overlap with TSS of MANE

transcripts. We calculated the 25th and 75th percentiles of the distribution of distances these

cCREs extend up- (25%=181bp; 75%=266bp) and down-stream (25%=67bp; 75%=139bp)

of the TSS (Supplementary Figure 1). The 25th percentiles (-181bp to +67bp from TSS)

were used to define a ‘minimal’ promoter region.

For transcripts with a cCRE that overlaps the TSS:
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● If the cCRE extends ≥ 181bp upstream and ≥ 67bp downstream of the TSS (i.e. at

least the minimal 25th percentile definition) the exact region defined by the cCRE is

used (Supplementary Figure 1d; n=7,368).

● If the cCRE falls short in either (or both) direction(s), it is extended to reach the 25th

percentile distance in that/those direction(s) (Supplementary Figure 1e; extended

upstream n=2,953; extended downstream n=2,918, extended in both directions

n=464).

For transcripts with no TSS overlapping cCRE (n=5,417), the 75th percentiles are used to

define a promoter region that stretches 266bp up- and 139bp down-stream of the TSS.

To ensure identified variants don’t have a protein-coding impact(19) we used bedtools(19) to

exclude any positions that intersect with a CDS position in any MANE transcript. In total, we

defined 20,417,669 near-coding bases across the 1,567 green PanelApp genes, for an

average of 13,030 bases per transcript (min=264, max=791,387), and between 17 and

18,786 per region (Supplementary Table 1). The final set of near-coding regions defined

across all green PanelApp genes is in Supplementary Table 2.

Identifying and filtering de novo variants

We used a dataset of previously identified and filtered de novo variants (DNVs) within

GEL(20), accessed using the RLabKey API(21). We filtered individuals to remove any with

subsequently withdrawn consent, and to only include those with a ‘participant type’ of

‘proband’, where neither parent was classified as ‘affected’ or had any associated Human

Phenotype Ontology (HPO) terms, and for whom variant calls were on the GRCh38

reference genome. This resulted in an initial set of 9,665 trio probands.
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Variants were filtered to only those that passed the most stringent set of GEL filters(22). We

removed variants with allele frequency (AF) ≥ 0.00005 and allele count (AC) >=5 in the GEL

defined set of 55,603 unrelated individuals or with AF ≥ 0.0005 in any of the major

population groups in gnomAD v3.1.1.(23). We restricted our analyses to DNVs within our

defined near-coding regions of PanelApp genes with high confidence phenotypic

associations (flagged as ‘green’ genes) for the individual’s phenotype. Finally, we excluded

participants with an identified coding diagnosis (see below). This resulted in a set of 1,278

DNVs, in 1,094 probands.

Identifying individuals with existing diagnoses

A list of all participants for whom a confirmed diagnosis was recorded was obtained from the

Genomics England ‘exit questionnaire’ table, identified with those for whom the family case

was flagged as “solved”. The associated variants were cross referenced with MANE v1.0

coding regions and our promoter, UTR, and UTR intronic regions, with variants mapped onto

GRCh38 by the ‘LiftOver’(24) tool, where required.

Region level variant annotations

Variants for both the de novo and burden testing arms of our analysis underwent initial

annotation using Ensembl’s variant effect predictor (VEP) v99.1(25) with UTRannotator,

SpliceAI v1.3, and CADD v.1.6 plugins(26), as well as custom annotations for PhyloP 100

way vertebrate conservation scores(27), and ClinVar (28) clinical significance annotations

(accessed 2022/08/12).

5’UTR variants annotated by UTRannotator(29) were filtered to identify those with the

highest likelihood of disrupting translation. To this end, we extracted all variants annotated

as:
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● uAUG gain resulting in creation of an overlapping open reading frame (oORF) with a

strong or moderate Kozak consensus sequence;

● uSTOP loss, with no alternate stop prior to the CDS start (i.e. also resulting in an

oORF) and a strong or moderate Kozak consensus sequence;

● uAUG loss, with strong Kozak consensus sequence;

● uFrameshift resulting in an oORF with a strong or moderate Kozak consensus

sequence.

For SpliceAI scores, we took the highest delta value across all predictions, with a cutoff of

0.2 for the de novo analysis and 0.5 for the burden testing.

Variants across all regions with a ClinVar annotation indicating a benign or protective effect

(benign, likely benign, benign/likely benign, protective) were excluded.

Cut-offs for CADD PHRED(26) (25.3) and PhyloP(27) (7.367) scores were taken as the

supporting evidence thresholds from Pejaver et al(30). For variants with multiple recorded

scores, the maximum was taken. We note that these scores were calibrated for missense

variants, but no alternative exists for non-coding region variants due to the paucity of

variants available to benchmark against. Due to this, CADD PHRED and PhyloP scores

were not used to annotate variants in deep intronic regions (>20bp from the end of the

exon), to reduce noise.

Internal ribosome entry site (IRES) data were obtained from IRESbase(31) on 23/08/2022,

microRNA (miRNA) binding sites were obtained from the literature(32–35), and downstream

open reading frame (dORF) coordinates were obtained from Chothani et al(36). For each,

locations were cross referenced with our variant positions, and any intersecting variant

flagged.
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Given the large proportion of variants that fall into miRNA and IRES sites, we excluded any

variants that also had a CADD ≤ 22.7 or PhyloP ≤ 1.879. These scores were suggested by

Pejaver et al as supporting evidence for a benign classification(30).

Kozak consensus sequence variants in the -3 position were identified with reference to

MANE v1.0 CDS start positions (i.e. the R of the gccRccAUGG motif). Any variant that

changed a reference A or G to a C or T was annotated as potentially Kozak disrupting(37).

RNA binding protein predictions were generated using the methods detailed in Findlay et

al(38) for all possible variants within motifs that are proximal to ENCODE eCLIP sites, that

are also high affinity sites as predicted by RBPamp(39). These were intersected with our

variants and filtered to retain only those with a reference affinity of ≥ 0.1 and with an impact

of ‘loss of binding’ predicted by the RBP binding affinity model (defined as alternative allele

affinity / reference allele affinity < ⅓).

Using MANE v1.0 mRNA sequences, we identified the locations of all 3’UTR AAUAAA and

AUUAAA polyA signal motifs. We filtered intersecting variants to those that did not result in

the creation of an alternative known motif (AAUAAA, AUUAAA, AGUAAA, UAUAAA,

CAUAAA, GAUAAA, AAUAUA, AAUACA, AAUAGA, AAAAAG, ACUAAA, or AAAAAA)(40).

Transcription factor binding site (TFBS) locations were obtained from ENCODE(41) and

converted using bigBedToBed(24) on the command line, resulting in 4,465,728 TFBS

footprints. Any variant not within a footprint identified by ENCODE as falling within the ‘core’

region of a DNase I hypersensitive (DHS) peak was excluded. Remaining variants were

annotated using FABIAN(42), limiting to only transcription factor flexible models as these

have been shown to outperform positional weight matrices(43). The resultant data was

transformed to produce one score per transcription factor, per variant:

Score = (ΣA1:AN)/N
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Where A is each model’s predicted change in binding affinity and ‘N’ is the total number of

these predictions provided for that transcription factor. Scores ≥ 0.04 were recorded as

predicted gain and those ≤ -0.04 as predicted loss. For each variant we then calculated the

mean gain/loss/total scores and retained any variant with a loss score ≤ -0.4.

Clinical Review of candidate variants

For each participant carrying a candidate diagnostic de novo variant, we compared the

similarity between the HPO terms assigned at recruitment with the phenotype expected for a

heterozygous loss of function variant in the gene. Variants were interpreted under the

assumption that they caused loss-of-function (LoF) and were of high penetrance. Expected

phenotypes for each gene were sought from OMIM and the published literature. Where we

identified a plausible phenotype match, we raised a clinical collaboration request with

Genomics England to confirm or refute our findings by collaboration with the recruiting

clinician.

Defining case and control sets for burden testing

From GEL version 15, we selected participants meeting all of the following criteria:

1. Variants called on genome build ‘GRCh38 and with delivery version ‘V4’

2. Consent not subsequently withdrawn

3. Karyotype one of ‘XX’, ‘XY’, ‘NA’, ‘Other’ and karyotypic and phenotypic sex not in

conflict

Cases were defined as:

1. Individuals with a participant type of ‘proband’

2. With at least one ‘green’ PanelApp gene in a virtual gene panel assigned to them

3. Without an existing coding diagnosis (see above).
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Controls were taken as the unaffected parents of participants with rare disease. Defined as:

1. Participant type is ‘Mother’ or ‘Father’

2. Affected status is ‘Unaffected’

3. No recorded HPO terms

The genetically-inferred ancestry of each participant, as calculated by GEL, was obtained

from LabKey. Participants with a single origin ancestry match of 99% or greater were

retained and defined as that ancestry(44). Through this approach, we defined a total of

19,220 cases and 20,683 controls.

Filtering aggregated variants

Variants within MANEv1.0 transcripts, for all potential case and control participants that

passed all internal QC filters were extracted from the aggregated variant VCF files in

GEL(45).

In line with recommendations from Pedersen et al(46) we filtered variants to those with

genotype quality (GQ) ≥  20, read depth (DP) ≥ 10, missingness  ≤ 5% heterozygous allele

balance (AB) 0.2 ≤ AB ≤ 0.8, and homozygous AB ≤ 0.02. If a variant call failed one or more

of these filters in 25% or more cases that call was excluded. We further filtered to only those

with GEL internal and gnomAD (v3.1.1; in any population) AF ≤ 0.0001. We retained a total

of 18,498,584 variants, a mean variant count per individual of 463.59 (461.74 in cases and

465.74 in controls).

Participant Matching
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To exclude any individuals with very high numbers of called variants (suggestive of

systematic error), we calculated a population-specific Z-score per participant as follows:

z = (x-μ)/σ

Where ‘x’ is the variant count in that participant, across all MANE transcripts, from the start

of the promoter to the transcript end, ‘μ ‘is the population mean, and ‘σ’ is the population

standard deviation, where the population is all individuals defined of the same genetic

ancestry (see above). Participants with a Z-score of ± 2 were dropped (N=1,560, 728

probands, 832 controls) resulting in a set of 18,492 probands and 19,851 control

participants.

Within each cohort, we removed individuals with KING score(47) ≥ 0.0442 within the

Genomics England relatedness data(44), indicative of being a 3rd degree relative, by

randomly selecting one participant for removal in an iterative process until no further

relatedness in individuals was detected.

We then matched each proband 1:1 with a single control participant by sex and

genetically-inferred ancestry, ensuring that the matched proband and control did not share a

family ID. The resultant matched cohort consisted of 18,304 probands, paired with 11,641

unique controls. To avoid potential biases when matching participants caused by low

population numbers, we limited to genetically-inferred ancestries where the number of both

case and control participants was > 200. This resulted in a cohort of 17,641 case probands,

and 11,227 control participants with either European or South Asian genetically-inferred

ancestry (Supplementary Table 3). To limit bias due to the presence of large gene panels,

this cohort was then limited to probands who had 100 or fewer green dominant genes

assigned (Supplementary Figure 2), resulting in a final cohort of 7,862 probands and 6,371

matched controls.
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Burden testing

Aggregated variants filtered as above were further restricted to those with AF ≤ 0.00005 for

both internal and gnomAD major population frequencies and to exclude any with an allele

count (AC) across the entirety of AggV2 of >= 5. These 1,079,616 variants were annotated

and filtered with reference to the annotations described above, with the addition of a more

stringent SpliceAI threshold of 0.5 (Supplementary Figure 3).

A simple burden test was performed across all defined near-coding region and variant

annotations comparing individuals that had one or more annotated variants meeting our

criteria in any near coding region to those that did not, using a Fisher’s exact test performed

in R (Supplementary Table 3). The test was repeated for each region annotation separately,

using Bonferroni correction for multiple testing.

To estimate the number of participants required to see a significant enrichment across all

region and variant annotations, we iteratively increased the number of case and control

participants by 1, while maintaining the proportion of observed cases and controls with

candidate variants. Fisher’s tests were performed for each iteration, until the resulting

P-value was ≤0.0031, a Bonferroni adjusted threshold accounting for 16 tests.

RNA sequencing

Blood was collected from a subset of 100,000 Genomes Project probands in PaxGene tubes

to preserve RNA at the time of recruitment. RNA was extracted, depleted of globin and

ribosomal RNAs, and subjected to sequencing by Illumina using 100bp paired-end reads,

with a mean of 102M mapped reads per individual. Alignment was performed using

Illumina's DRAGEN pipeline. IGV(48) was used to inspect sequencing reads and generate

Sashimi plots to show splicing junctions supported by 5 or more reads in areas of interest.
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FRASER2(49) and OUTRIDER(50) were used to detect abnormal splicing events and

expression differences with 499 samples used as controls.

DNA methylation analyses

DNA methylation array testing was performed on a diagnostic basis as described

previously(51,52).

Availability of data and materials

The datasets supporting the conclusions of this article are available in the near-coding

annotation github repository

(https://github.com/Computational-Rare-Disease-Genomics-WHG/Near_coding_annotation).

Unless otherwise stated, all analyses were performed using R Statistical software version

4.0.2(53), with the packages ‘dplyr’(54), ‘tidyr’(55), ‘stringr’(56), ’Rlabkey’(21), ’UpSetR’(57),

and ‘ggplot2’(58).

Results

Strict region-specific filtering prioritises likely deleterious de novo promoter and UTR

variants

We identified 767,063 rare (AF ≤ 0.005%) high-confidence DNVs in 10,665 trio probands in

GEL (71.9 per proband), 685,438 of these variants were in participants whose parents were

classed as unaffected and had no HPO terms (9,665 probands). Of the remaining probands,

8,040 did not have an existing confirmed diagnosis attributed to a coding variant (576,030

variants, 71.6 per proband). We filtered to include only DNVs in UTR exons and introns (both

defined using MANEv1.0 transcripts), and promoter regions (defined by ENCODE candidate
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cis regulatory elements; see Methods). Henceforth, we collectively refer to these regions as

‘near-coding’. We limited our analysis to variants which fell in or near known monogenic

disorder genes (3,316 variants) and filtered these to genes which could be plausibly

associated with the participant’s phenotype. Accordingly, we filtered for DNVs of genes

flagged as ‘green’ in one or more PanelApp(59) gene panel(s) assigned to the individual,

and which were associated with disorders with a dominant mode of inheritance. Of note, 309

probands did not have any assigned green dominant genes. In total, we proceeded with

1,311 candidate DNVs in 1,118 probands.

To identify likely disease-causing DNVs we used a region-specific annotation and filtering

approach. We prioritised 5’UTR variants that create uAUGs or disrupt uORFs using

UTRannotator(29), that overlap IRES defined by IRESbase(31), or that lead to disruption of

the Kozak consensus sequence(37). 3’UTR variants were prioritised if they disrupt a

polyadenylation site or signal sequence, disrupt a miRNA binding site, disrupt an RBP motif,

or if they disrupt the start/stop of a dORF with evidence of translation from ribosome profiling

(from Chothani et al(36)). Given the large numbers of variants annotated as within IRES or

miRNA binding sites, these variants were further filtered to remove any with CADD (<22.7)

or PhyloP (<1.879) scores in support of being benign(30). Across all UTR exons, and in 5’

and 3’ UTR introns, variants with SpliceAI masked delta scores ≥ 0.2 were prioritised.

Promoter variants were prioritised if they are predicted to disrupt a transcription factor

binding site using FABIAN(42). Finally, across all region annotations, variants with a CADD

score ≥ 25.3 and/or a PhyloP score ≥ 7.367 were flagged (thresholds taken from Pejaver et

al(30)). After filtering to only include variants with one or more of these variant annotations,

we retained eleven candidate DNVs (0.8% of the initial 1,311 DNVs) each found in a different

individual (Figure 1; Table 1).
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Figure 1: Prioritised de novo variants split by region and variant annotations. DNVs were

identified from the Genomics England de novo dataset in the following regions: Promoter (mustard),

UTR exons (raspberry), UTR/Promoter overlapping region (mustard and raspberry stripes), and UTR

introns (teal). The gene names corresponding to identified DNVs are written above the corresponding

bar. Those in black represent likely diagnoses (nine probands), with those in grey not being a good

phenotypic match (two probands). Novel potential diagnoses are marked by an asterisk. Vertical bars

in the top panel denote the number of variants identified with specific region and variant annotations

that are represented by the bar colour (region annotations), and in the upset plot below (variant

annotations). The total number of DNVs with each variant annotation is shown by the horizontal bars

to the left of the upset.
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Table 1: Details of prioritised de novo variants. Including the variant annotation which led to it being prioritised, the HPO terms associated with the patient,

and whether or not this represents a likely diagnosis. Due to GEL policies, all HPO terms have been re-coded to parent terms with at least one level of

abstraction (in some cases up to two) in order to protect the anonymity of participants. Inheritance: autosomal dominant (AD), autosomal recessive (AR), not

specified (NS).

Variant

(GRCh38)

Gene (transcript) Known disease(s) linked to gene Region

annotation

Variant

annotation

details

Anonymised HPO terms Possible

diagnosis

Chr1:2440

51270

C>T

ZBTB18

(ENST00000358704)

Intellectual Developmental Disorder,

(AD; OMIM:612337)

Promoter PhyloP = 7.426 Abnormality of higher mental function

HP:0011446

Abnormality of speech or vocalisation

HP:0002167

Motor delay HP:0001270

Yes

Chr1:4295

8758 C>T

SLC2A1

(ENST00000426263)

Epilepsy, Idiopathic generalized,

susceptibility to, 12, (AD;

OMIM:614847),

GLUT1 deficiency syndrome 1

(AD&AR; OMIM:606777) and 2

5’UTR UTRannotator:

uAUG gained.

Out of frame

oORF

(c.-107G>A)

Abnormal nervous system physiology

HP:0012638

Abnormal homeostasis HP:0012337

Phenotypic abnormality HP:0000118

Ataxia HP:0001251

Yes
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GLUT1 deficiency syndrome 1, (AD

OMIM:612126),

Stomatin-deficient chryohydrocytosis

with neurologic defects, (AD;

OMIM:608885),

Dystonia 9, (AD; OMIM: 601042)

Gait disturbance HP:0001288

Neurodevelopmental delay

HP:0012758

Chr2:1895

80685

A>C

SLC40A1

(ENST00000261024)

Hemochromatosis, Type 4, (AD;

OMIM:606069)

5’UTR PhyloP = 8.189

(c.-225T>G)

Azotemia HP:0002157

Abnormal hepatic glycogen storage

HP:0500030

Reduced consciousness/confusion

HP:0004372

Stroke HP:0001297

Language impairment HP:0002463

Hypertonia HP:0001276

Phenotypic abnormality HP:0000118

No

Chr3:9397

978 G>A

SETD5

(ENST00000402198)

Intellectual developmental disorder,

Autosomal Dominant, (AD;

OMIM:615761)

5’UTR

Splice

SpliceAI = 0.97

Donor loss

(c.-177+1G>A)

Decreased body weight HP:0004325

Abnormal facial shape HP:0001999

Growth delay HP:0001510

Yes
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Aplasia/Hypoplasia of the mandible

HP:0009118

Intellectual disability HP:0001249

Abnormal rib cage morphology

HP:0001547

Abnormal esophagus physiology

HP:0025270

Macrocephaly HP:0000256

Abdominal symptom HP:0011458

Asymmetric growth HP:0100555

Chr5:3695

3601 T>A

NIBPL

(ENST00000282516)

Cornelia De Lange syndrome, (AD;

OMIM:122470)

5’UTR

Splice

SpliceAI = 0.24

Acceptor gain

(c.-79-17T>A)

Growth delay HP:0001510

Abnormal upper lip morphology

HP:0000177

Abnormal digit morphology

HP:0001167

Neurodevelopmental abnormality

HP:0012759

Decreased head circumference

Yes
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HP:0040195

Chr5:8882

3814 G>A

MEF2C

(ENST00000504921)

Neurodevelopmental disorder with

hypotonia, stereotypic hand

movements, and impaired language,

(AD; OMIM:613443)

5’UTR UTRannotator:

uAUG gained.

In frame oORF

(c.-26C>T)

Abnormality of mouth size

HP:0011337

Atypical behaviour HP:0000708

Neurodevelopmental abnormality

HP:0012759

Motor delay HP:0001270

Reduced visual acuity HP:0007663

Decreased body weight HP:0004325

Neurodevelopmental delay

HP:0012758

Aplasia/Hypoplasia of the corpus

callosum HP:0007370

Abnormal nervous system physiology

HP:0012638

Abnormal response to social norms

HP:5200123

Abnormal eyelid morphology

Yes
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HP:0000492

Chr11:318

06844

C>T

PAX6

(ENST00000640368)

Aniridia 1, (AD), OMIM:106210.

Foveal Hypoplasia 1, (AD;

OMIM:136520),

Anterior segment dysgenesis 5, (AD),

(AD; OMIM:604229),

Keratitis, Hereditary, (AD;

OMIM:148190),

Coloboma, ocular, autosomal

dominant, (AD; OMIM:120200),

Coloboma of optic nerve, (AD;

OMIM:120430),

Optic nerve hypoplasia, bilateral, (AD;

OMIM:165550),

5’UTR

Splice

SpliceAI = 0.56

Donor loss

(c.-52+5G>A)

Phenotypic abnormality HP:0000118

Aplasia/Hypoplasia of the iris

Yes

Chr11:318

06926

CT>C

PAX6

(ENST00000640368)

Aniridia 1, (AD), OMIM:106210.

Foveal Hypoplasia 1, (AD;

OMIM:136520),

Anterior segment dysgenesis 5, (AD),

5’UTR

Splice

SpliceAI = 0.65

Acceptor loss

(c.-128-2del)

Aplasia/Hypoplasia of the iris Yes
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(AD; OMIM:604229),

Keratitis, Hereditary, (AD;

OMIM:148190),

Coloboma, ocular, autosomal

dominant, (AD; OMIM:120200),

Coloboma of optic nerve, (AD;

OMIM:120430),

Optic nerve hypoplasia, bilateral, (AD;

OMIM:165550),

Chr11:119

341418

C>A

MFRP

(ENST00000619721)

Micropthalmia, isolated 5, (AR;

OMIM:611040)

Nanopthalmos 2, (NS; OMIM:

609549)

3’UTR SpliceAI = 0.56

Donor gain

(c.*130G>T)

Noncompaction cardiomyopathy

Muscular ventricular septal defect

HP:0011623

Abnormal cardiac septum morphology

HP:0001671

Neurodevelopmental abnormality

HP:0012759

Abnormal myocardium morphology

HP:0001637

No
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Chr17:838

2317 T>C

RPL26

(ENST00000648839)

Diamond-Blackfan anemia 11, (AD;

OMIM:614900)

5’UTR

Splice

CADD_Phred =

35, SpliceAI =

0.97 Acceptor

loss

(c.-5-2A>G)

Periauricular skin pits HP:0100277

Radioulnar synostosis HP:0002974

Aplasia/Hypoplasia of the thumb

HP:0009601

Abnormal zygomatic bone

morphology HP:0010668

Thickened cortex of bones

HP:0100039

Phenotypic abnormality HP:0000118

Abnormality of the musculoskeletal

system HP:0033127

Slanting of the palpebral fissure

HP:0200006

Atrial septal defect HP:0001631

Yes

Chr20:589

09654

A>G

GNAS

(ENST00000371075)

Pseudohypoparathyroidism, Type IA,

(AD; OMIM:103580) and 1B (AD;

OMIM:603233),

Pituitary adenoma 3, multiple types,

CDS/3’

Intron

SpliceAI = 0.67

Acceptor gain

(c.*625-30A>G)

Abnormality of the curvature of the

cornea HP:0100691

Neurodevelopmental delay

HP:0012758

Yes
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(NS; OMIM:617686),

Pseudopseudohypoparathyroidism,

(AD; OMIM:612463),

Osseous heteroplasia, progressive,

(AD; OMIM:166350),

Pseudohypoparathyroidism, Type IC,

(AD; OMIM:612462),

Mccune-Albright syndrome, (AD;

OMIM:174800)

Hypothyroidism HP:0000821

Abnormality of body height

HP:0000002

Phenotypic abnormality HP:0000118

Abnormality of refraction HP:0000539

Increased body weight HP:0004324
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Promoter and UTR DNVs provide a diagnosis for undiagnosed individuals with rare

disease

Of the eleven remaining candidate variants, nine (82%) were assessed to be a good match

for the individual’s phenotype after detailed clinical review (see methods). Three of these

had been flagged as diagnostic variants in GEL (in the ‘exit questionnaire’ table) prior to

starting this work: two 5’UTR splicing variants in PAX6 in two individuals with aniridia

(OMIM:617141) and one 5’UTR splicing variant in RPL26 in an individual with a previously

undiagnosed monogenic disorder. A further variant, a 5’UTR variant that creates an

upstream start codon in MEF2C, we previously identified as occurring de novo in three

unrelated individuals with severe developmental disorders(2). Our approach successfully

prioritised all rare DNVs within our candidate regions that had previously been identified as

likely diagnostic in GEL. Together, these data demonstrate that our pipeline effectively

identifies known diagnostic variants.

Four of the remaining five variants represent likely new diagnoses: (1) a 5’UTR

uAUG-creating variant in SLC2A1 in a patient with GLUT1 deficiency syndrome

(OMIM:606777) that was not flagged by GEL as diagnostic, but that has been published

previously(3) (Figure 2A). This uAUG is created into a strong start codon context and

functional studies support its translation(3). Translation from this uAUG will prevent

translation of the downstream CDS, leading to loss-of-function (Figure 2A). After returning

this diagnosis to the recruiting clinical team it was classified as Likely Pathogenic and the

individual is now on treatment; (2) A NIPBL splice disrupting (SpliceAI=0.24) variant 17 bp

upstream of the final 5’UTR acceptor site in a participant with a phenotype closely related to

Cornelia de Lange syndrome (OMIM:122470, Figure 2B). This variant introduces an AG

dinucleotide which is predicted to result in a premature acceptor, however, the positioning of

this within the ‘AG exclusion zone’ may also cause skipping of the exon containing the CDS

start codon or other splice defects(60) (Figure 2B). The exact impact of this variant will need
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to be confirmed through RNA studies, but RNA was not available for the patient; (3) A

promoter variant that is located in a highly evolutionarily conserved position (PhyloP=7.426)

13 bp upstream of the TSS of ZBTB18 in a participant with Intellectual disability; (4) A 5’UTR

splice-site variant in SETD5 in an individual originally suspected to have Silver Russell

Syndrome (OMIM:180860). This variant is predicted to result in loss of the splice donor

(SpliceAI=0.97) of the first 5’UTR exon at the canonical +1 position. DNA methylation

signature analysis in this patient revealed an episignature consistent with SETD5-related

neurodevelopmental disorder (Figure 2C) and no other candidate variants were identified

after screening the protein-coding regions of SETD5.

We also prioritised a cryptic splice variant in GNAS (SpliceAI=0.67) in a participant with

hypothyroidism. Whilst we originally annotated this variant as within a 3’UTR intron for the

MANE Plus Clinical transcript, the intron is between two CDS exons of the MANE Select

transcript. Blood RNA-sequencing from the patient showed evidence of abnormal splicing of

the MANE Select transcript, including intron retention (FRASER2 adjusted P=1.67x10-23),

and significantly reduced expression (OUTRIDER adjusted P=0.0019; fold-change=0.66;

Figure 2D), however the exact mechanism through which this variant could lead to disease

is unclear.

For all candidate variants, we checked whether they were found in any other individuals

across the full GEL cohort (i.e. not limiting to full trios or DNVs). Whilst we did not observe

recurrence of any of the exact variants identified, we did identify a second participant with a

different SETD5 variant at the same genomic position (chr3:9397974 CAAGGT>C, hg38).

On closer investigation, this variant is consistent with a germline de novo, but it fell just

below the required coverage in one parent so it was excluded from the conservative high

confidence de novo callset. DNA methylation signature analysis also confirmed SETD5 as

the diagnosis in this individual (Figure 2C). In total, we identified a likely disease-causing

‘near-coding’ DNV in ten of 8,040 individuals (0.0012%; nine initially prioritised variants and
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one additional SETD5 variant) who did not previously have a coding diagnosis. We classified

all six newly identified variants as Likely Pathogenic following the ACMG/AMP guidelines

(Supplementary Table 4)(8,61).

Figure 2: Candidate diagnostic de novo variants. A. Gene diagram showing the creation of an out

of frame overlapping ORF (oORF; in red) in the SLC2A1 gene in the proband. B. Illustration of the AG

exclusion zone in the NIPBL gene. The T>A variant at the -17 position is marked in red, the most

strongly predicted branch point (Branchpointer(62) 0.48), directly upstream of the AG exclusion zone

is shown in blue. C. Multidimensional scaling plot showing differential methylation in SETD5. The

position of both variants found in this gene are shown as red dotted lines. D. Sashimi plot showing

aberrant splicing in the MANE Plus clinical transcript ENST00000371085. The proband shows some

retention of the intron containing the variant (which is marked by a red dotted line) and increased

skipping of the following exon compared to the controls (6.06X% vs 0.65X% and 1X%).

Burden testing does not detect a significant enrichment of variants with any collective

region or variant annotation
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Given we were able to identify disease-causing near-coding variants using our region-based

filtering pipeline, we sought to further use this approach to quantify the enrichment of

potentially damaging promoter and UTR variants. However, given the small number of trios

within GEL with an unaffected child, and the fact that mutational models to directly assess

enrichment of de novo variants (by comparing observed to expected numbers) have not

been well calibrated for non-coding regions, specifically struggling with the 5’ end of

genes(63), we instead used the full aggregated set of inherited and de novo variants for our

analysis. We matched each of 19,220 rare disease probands without a recorded

protein-coding diagnosis, with replacement, to an unrelated unaffected individual from within

the rare disease arm (unaffected parents) of GEL as a control on sex and

genetically-inferred ancestry (see methods). The control individual was assigned the same

dominant, green panelApp genes as had been assigned to the rare disease proband by

GEL, allowing us to control for gene and region level differences in mutability (Figure 3).

Given the disparity in panel size, with many probands having over 500 assigned green

dominant genes (Supplementary Figure 2), to reduce noise we filtered probands to include

only those to whom 100 or fewer green dominant PanelApp genes had been assigned (28%

of all probands).
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Figure 3: Burden testing results. Counts of variants and odd ratios (log10) testing for an enrichment

of variants in cases compared to matched control participants (Fisher’s test), collectively by A. region

annotation, and B. variant annotation. Annotation groups with fewer than 10 participants are omitted.

Error bars represent 95% confidence intervals. Variants in 5’UTRs (P=0.032) and variants with

SpliceAI ≥0.5 (P=0.008) are enriched in cases over matched controls, but neither is significant after

correcting for multiple testing (Bonferroni threshold adjusting for 16 tests =0.0031). Full results are in

Supplementary Table 5.
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After participant matching, we analysed a final set of 7,862 probands and 6,371 matched

controls (1,295 matched controls were partnered with more than one proband). For all

individuals, we extracted variants from GEL’s aggregated variant dataset (AggV2) and

filtered these using the same region-specific criteria applied to the de novo variants. Given

that we used a high sensitivity SpliceAI threshold to prioritise DNVs with a high prior of

pathogenicity, this was raised to a stricter cutoff of 0.5 for this analysis (Supplementary

Figure 3). As we are not powered to analyse individual genes or gene-regions, we performed

burden testing collectively across all prioritised variants with the same regional (e.g., 5’UTR)

or variant-level (e.g. SpliceAI) annotations, across all participants and their assigned green

genes. Whilst we observed a greater number of probands with prioritised variants compared

with matched controls for the majority of regional and variant-level annotations we identified

a greater number of probands with prioritised variants compared with matched controls, no

specific annotation was significantly enriched for variants in cases after correcting for

multiple testing (Figure 3; Supplementary Table 5). We also did not observe a significant

enrichment when combining across all regions and variant annotations (Fisher’s P=0.109,

OR=1.09, 95% CI=[0.981,1.210]).

Assuming a constant ratio between case and control variants, and hence ORs, we would

need an estimated 11,610 cases and controls for significance at P<0.05 in the combined test

across all region and variant annotations, and 26,066 for significance at a study-wide

P-value threshold of <0.0031, correcting for 16 tests (Supplementary Figure 4).

Discussion

Here, we have described a framework for the identification and annotation of potentially

disease-causing UTR and promoter variants in individuals with rare disease. We show the
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utility of the approach through identification of ten likely diagnoses in the GEL rare disease

cohort. These comprised: three new confirmed diagnoses (SLC2A1 and 2x SETD5) and

three new likely diagnoses (GNAS, NIPBL, ZBTB18) alongside four previously confirmed

diagnostic variants (2x PAX6, RPL26, and MEF2C). This illustrates the importance of

expanding diagnostic screening into near coding regions of known disease genes.

In our analysis, we concentrated on variants within or directly adjacent to UTR exons and

proximal promoter sequences for three key reasons: (1) the functional link between these

regions and the impacted gene is relatively clear; (2) the importance of these regions in gene

regulation means that variants within them can have a large impact, even causing complete

loss-of-function; and (3) known functional elements within these regions enable us to predict

some variant effects. Many of these criteria do not apply to more distal non-coding elements,

such as enhancers, which also suffer from redundancy, meaning small variants in any one

enhancer may often be unlikely to have a large impact on gene expression and hence

disease(64), although there are exceptions(65). Recent work has, however, shown that

variants impacting tissue-specific silencer elements may be a frequent cause of some

disorders, indicating that these specific elements may have lower levels of

redundancy(66,67). More research is needed to clarify the contribution of other non-coding

elements to rare monogenic disorders.

A key barrier to routine identification of non-coding variants in clinical settings is the potential

dramatic increase in interpretation burden. Here, we employed strict filters based on known

regulatory mechanisms, aiming for high specificity. Consequently, a very large proportion of

the shortlisted variants (~82%) were flagged as good diagnostic candidates following clinical

review. This illustrates the validity of our method as a highly specific route to finding new

diagnoses without dramatically increasing the number of variants that need to be manually

reviewed. Here, we focus on de novo variants given their high prior probability of being

pathogenic. Currently, de novo inheritance pattern, clinical fit, and functional validation are
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essential to identifying and classifying non-coding variants as (likely) pathogenic. Hence it is

much harder to identify disease-causing non-coding variants in more heterogeneous

conditions and/or disorders where de novo variants are not a frequent disease mechanism.

However, the same annotation approach can be applied to inherited variants(68).

Despite our strict filtering approach, the relatively modest number of new diagnoses given

the size of the GEL cohort suggests that the proportion of currently undiagnosed individuals

that will likely be diagnosed through regular assessment of proximal promoter and UTR

regions will also be modest. This is in-line with the conclusions of our recent work looking for

non-coding variants in recessive disease genes(68). Nevertheless, our diagnostic yield is

likely an underestimate. First, we limited our analyses to only genes within a diagnostic

panel applied to each individual and, within this we focussed on genes with a clear dominant

disease mechanism. Gene agnostic approaches may have greater sensitivity for new

diagnoses and allow the identification of candidate novel disease genes. Our study was also

limited to MANE transcripts and may miss important variants impacting alternate transcripts.

Our strict filtering approach was necessitated by our limited understanding of the ‘regulatory

genetic code’, and the paucity of tools to accurately determine non-coding variant

deleteriousness and also likely excluded some important variants. Finally, we only removed

individuals flagged as ‘solved’ in the GEL ‘exit questionnaire’ as having an existing

diagnosis. Many more individuals may have subsequently had likely diagnostic variants

returned that were not reflected in the exit questionnaire at the time of analysis, due to

ongoing analyses of the cohort.

Amongst our novel diagnoses was a 5’UTR uAUG-creating variant in SLC2A1, variants in

which cause GLUT1 deficiency syndrome, which is treatable through diet. Hence, our

diagnosis changed the clinical management of this patient. The exact same variant was

found in a patient with a similar phenotype in 2017(3), the same year the patient was

recruited to GEL, but, whilst the variant was deposited in the more specialist Leiden Open
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Variation Database(69) (I.D: SLC2A1_000036) it did not appear in the more widely used

ClinVar database until 2022 (ID:1491299). This highlights the necessity of data sharing

through variant databases and the use of these datasets for re-analysis to reduce the

lengthy diagnostic odysseys so often faced by individuals with rare disease.

Whilst we expected the excess burden of near-coding variants in cases to be relatively low,

our approach was imperfect. In particular, analysing all variants identified in each individual

(i.e., inherited as well as de novo) across large gene panels likely added a lot of noise. A

better approach to assess this enrichment would be using only de novo variants, however,

the number of trios within GEL where the child is unaffected is very small, and we and others

have struggled to correctly optimise mutational models for application at the 5’ end of

genes(63). Multiple additional factors also likely contribute to our observed lack of signal.

Firstly, we used unaffected parents of rare disease probands as a control and these

individuals may be more likely to carry damaging variants (for example variants with reduced

penetrance, or variants that modify coding variant penetrance). Secondly, the sizes of gene

panels varied substantially between participants, with some containing vast numbers of

genes (Supplementary Figure 2). These larger panels likely contribute an overrepresentation

of variants that are unlikely to be causal.

Conclusions

Our understanding of the mechanisms that underlie variation in the non-coding genome is

far from complete. Despite this, routine interrogation of these regions with existing

knowledge and tools can return valuable genetic diagnoses to patients. Identifying more

disease-causing variants in non-coding regions and understanding how they lead to disease

will, in turn, increase our understanding of regulatory biology, and enable us to create better

tools to identify and annotate these variants. Here, focussing specifically on proximal

promoters, UTRs, and UTR introns, we developed a flexible approach for variant annotation
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and filtering which can be extended and adapted to incorporate new functional variant

classes as our understanding of non-coding genome biology increases. Our framework

provides a foundation for the systematic analysis of variants in these regions, which can be

readily applied to cohorts, and in clinical settings, globally.
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