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of prematurity 
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Summary 

Preterm birth associates with atypical brain development and neurocognitive impairment. The gut 

microbiome is implicated in neurobehavioural outcomes of typically developing infants and children, 

but its relationship with neurodevelopment in preterm infants is unknown. We characterised the 

faecal microbiome in a cohort of 147 neonates enriched for very preterm birth (<32 weeks’ gestation) 

using 16S-based and shotgun metagenomic sequencing. Delivery mode had the strongest 

association with preterm microbiome shortly after birth; low birth gestational age, infant sex and 

antibiotics significantly associated with microbiome composition at NICU discharge. Thereafter, we 

integrated these data with term-equivalent structural and diffusion brain MRI. Bacterial community 

composition associated with MRI features of encephalopathy of prematurity. Particularly, 

abundances of Escherichia coli and Klebsiella spp. correlated with microstructural parameters in 

deep and cortical grey matter. Metagenome functional capacity analyses suggested that these 

bacteria may interact with brain microstructural development via tryptophan and propionate 

metabolism. This study indicates that gut microbiome associates with brain development following 

preterm birth. 

Keywords: preterm, neonate, brain MRI, encephalopathy of prematurity, gut microbiome, gut-brain 

modules  
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INTRODUCTION 
Globally, preterm birth, defined as birth before 37 weeks of gestation, affects around 10% of 

pregnancies1. People born preterm are at an increased risk for atypical brain development, termed 

encephalopathy of prematurity (EoP)2, which can lead to cerebral palsy, neurodevelopmental and 

cognitive impairments, autism, and psychiatric disorders3. There are no treatments for EoP, partly 

because the mechanisms linking preterm birth with altered cerebral development are incompletely 

understood. 

The second and third trimesters of pregnancy are crucial periods in brain development. During this 

time, preterm birth and its co-exposures and -morbidities impose a risk of injury and dysmaturation 

to the developing brain, leading to disturbances in regional brain growth, diffuse white matter 

disease, abnormal cortical and deep grey matter (dGM) development, and structural 

dysconnectivity4. These features of EoP are apparent on structural and diffusion magnetic 

resonance imaging (MRI) in the neonatal period4 and, because they are associated with subsequent 

neurocognitive development5–8, they serve as intermediate phenotypes to investigate the upstream 

determinants of brain development. 

Fundamental neurodevelopmental processes occurring in early life coincide with the acquisition and 

progression of the gut microbiota. Evidence from preclinical and human observational studies 

implicates the gut microbiome in modulating neural functions via the microbiota-gut-brain axis9,10. 

Specifically, the rapid parallel development of the brain and the gut microbiota in early life has led to 

the hypothesis of ‘nested sensitive periods’ whereby brain development interacts with gut microbiota 

development to shape cognition and behaviour11,12. The hypothesis has gained traction from a 

growing body of literature reporting associations between gut microbiota features and cognitive, 

language, motor, and socio-emotional development in childhood13. 

Preterm infants may be particularly vulnerable to disruptions in the microbiota-gut-brain axis due to 

altered microbiota development, which can arise from the early exposure of the immature 

gastrointestinal tract to microbial colonisation14,15. Although the general pattern of microbiota 

development in the first months of life appears similar in term and preterm infants16–18, the preterm 

infant gut has lower bacterial diversity and abundances of essential microbes like Bifidobacterium, 

and higher levels of opportunistic pathogens such as Klebsiella, Enterobacter, Enterococcus and 

Staphylococcus14. This may be a result of routine exposure to potent modifiers of the pioneering 

microbiota, including maternal and neonatal antibiotic treatments19, and variable nutritional 

exposures20,21 during the first months of life in a neonatal intensive care unit (NICU) setting. 

However, there are discrepancies between studies about the effect size and direction of these 

modifiers in preterm neonates22, which leaves considerable uncertainty about the importance of 

specific clinical variables for shaping microbiota development following preterm birth. 

Although the preterm population has a high burden of neurocognitive impairment and alterations in 

the gut microbiota, only a few recent studies have investigated gut microbiota in direct relation to 

preterm infant neurodevelopment23–27 or overt parenchymal brain injuries28. Though most of these 

studies have been small and directions of effects vary, there is some consensus that abundances 

of Bifidobacteriaceae, Enterococcaceae, Enterobacteriaceae (Escherichia/Shigella, Enterobacter, 

Klebsiella), Clostridium, and Veillonella may correlate with outcomes. However, to our knowledge, 

no studies have investigated the preterm microbiota in association with EoP. This question is 

important because EoP is the prevailing form of brain dysmaturation after preterm birth and the gut 

microbiota is intrinsically modifiable by mode of feeding and enteral supplements, which offer 

potential new avenues for perinatal neuroprotection. 
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We investigated the microbiota-gut-brain axis by integrating data from microbiota profiling and 

multimodal brain MRI. We aimed to characterise neonatal gut microbiota profiles in a richly-

phenotyped cohort of term and preterm neonates at birth and at NICU discharge; to determine the 

most influential clinical drivers of the preterm microbiota during NICU care; and to link gut microbiota 

diversity and community composition with MRI features of EoP. 

RESULTS 

SAMPLE CHARACTERISTICS 

The gut microbiome was sampled at two timepoints (TP1: meconium, and TP2: a faecal sample prior 

to discharge from NICU) in very preterm infants born < 32 completed weeks of gestation, and at TP1  

in term-born controls, who were recruited to the Theirworld Edinburgh Birth Cohort (TEBC)29. Clinical 

and demographic characteristics of the study group are shown in Table 1 and Table S1; see Figure 

S1 for flowchart. 

Table 1. Baseline characteristics of the study group. 

Variable* level Full-term Preterm 
p-value$  

(term vs 
preterm) 

Preterm with 
matching MRI 

Sample size  12 135  79 

GA at birth, weeks (median [range])  40.00 
[37.71, 42.00] 

29.14 
[22.14, 32.86] 

<0.001 
29.86 

[22.14, 32.86] 

Timepoint 1: number of samples  12 58   

Timepoint 1: postnatal age, days 
(median [range]) 

 1 [1, 3] 6 [1, 13] <0.001 / 

Timepoint 1: GA, weeks (median 
[range]) 

 40.14 
[37.86, 42.00] 

29.14 
[24.43, 33.57] 

<0.001 / 

Timepoint 2: number of samples  / 103  79 

Timepoint 2: postnatal age, days 
(median [range]) 

 / 46 [9, 151]  45 [9, 151] 

Timepoint 2: GA, weeks (median 
[range]) 

 / 
36.14 

[29.43, 46.14] 
 35.85 

[32.43, 46.14] 

Female infants (%)  9 (75.0) 64 (47.4) 0.078 36 (45.6) 

Birthweight, g (mean (SD))  3530 
[2740, 4420] 

1190 
[370, 2510] 

<0.001 
1282 

[370, 2510] 

Birthweight z-score (median [range])  0.843 
[-0.818, 2.331] 

0.212 
[-3.023, 2.141] 

0.011 
0.153 

[-2.520, 2.141] 

GA at MRI, weeks (mean (SD))  / /  40.56 (1.8) 

Weeks between faecal sample 
collection and MRI (mean (SD)) 

 / /  3.81 (2.65) 

Vaginal delivery (%)  11 (91.7) 41 (30.4) <0.001 21 (26.6) 

Labour antibiotics (%)  1 (8.3) 89 (65.9) <0.001 48 (60.8) 

Bronchopulmonary dysplasia (%)  / 41 (30.4)  24 (30.4) 

Necrotising enterocolitis (%)  / 7 (5.2)  3 (3.8) 

Sepsis (%)  / 41 (30.4)  19 (24.1) 

Antibiotics <72h of life (%)  / 106 (78.5)  62 (78.5) 

Antibiotics >72h of life (%)  / 77 (57.0)  38 (48.1) 

Proportion of days receiving antibiotics 
during NICU stay (median [range]) 

 / 
0.094 

[0.000, 0.843] 
 0.091 

[0.000, 0.708] 

GA at discharge (median [range])  / 
37.57 

[30.57, 48.43] 
 37.43 

[34.43, 48.43] 

Breastmilk exposure 
<75% inpatient 
days 

/ 73 (54.1)  43 (54.4) 
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 ≥75% inpatient 
days 

/ 62 (45.9)  36 (45.6) 

*Categorical variables are shown in absolute numbers with percentages (%); continuous, normally distributed 

variables as means with standard deviations (SD); continuous, non-normally distributed variables as medians with 

ranges. $Two-sample t-tests were used to compare the means of normally distributed continuous variables between 

term and preterm infants; Wilcoxon rank-sum tests were applied to compare medians of non-normally distributed 

continuous variables; Fischer’s exact test was used to test for significant differences in categorical variables. GA = 

gestational age; NICU = neonatal intensive care unit. Additional characteristics are provided in Table S1. See Table 

S7 for participant metadata with regards to TP2 sampling and MRI ages, and Figure S1 for flowchart. 

OVERVIEW OF MICROBIOTA PROFILES 

We first characterised neonatal intestinal microbiome profiles using 16S ribosomal RNA (rRNA) 

gene sequencing in 12 term and 58 preterm infants at TP1 and in 103 preterm infants at TP2. 

Shotgun metagenomic sequencing data was available for 23 preterm infants at TP1 and 97 preterm 

infants at TP2. Throughout the paper, 16S-based data is described at amplicon sequence variant 

(ASV)-level, while shotgun taxonomic data is described at species-level. 

The majority of TP1 samples were dominated by an ASV from the genus Staphylococcus, but some 

had high relative abundances of ASVs belonging to genera Streptococcus, Escherichia/Shigella, 

Enterococcus, or Klebsiella (Figure 1A). The most abundant species (shotgun data) in the subset of 

TP1 samples were Escherichia coli, Enterococcus faecalis, Staphylococcus epidermidis and S. 

haemolyticus, and Raoultella planticola (Figure S2A). At TP2, most samples had high relative 

abundances of ASVs belonging to Bifidobacterium, Enterobacteriaceae or Escherichia/Shigella, 

whilst some had high relative abundances of a Klebsiella ASV (Figure 1A). Shotgun sequencing 

showed similar profiles, but allowed better species-level resolution, with high abundances of 

Bifidobacterium spp. (B. breve, B. longum, B. dentium), E. coli, E. faecalis, or Klebsiella spp. (K. 

pneumoniae, K. oxytoca; Figure S2A).  

Collectively, we observed a marked shift in the preterm gut microbiota community composition 

between birth and term-equivalent age (TEA) when analysed at ASV- or species-level (permutational 

analysis of variance [PERMANOVA] R2 = 14.59%, p = 9.99 × 10-4 [Figure 1B]; R2 = 3.31%, p = 0.002 

[Figure S2C], respectively). Differences in the microbiota between the two timepoints in preterm 

infants were also reflected in increasing alpha diversity (Figure 1C; linear mixed effects model; 

F2,112.86 = 47.244, q = 2.48 × 10-15 for Shannon index [pairwise comparison: q = 4.00 × 10-14]; F2,151.99 

= 22.876, q = 2.06 × 10-9 for observed ASVs [pairwise comparison: q = 6.88 × 10-9]). Microbiome 

functional capacity captured by gut-metabolic modules (GMM; Figure S2B), similarly to taxonomic 

composition, also differed between the two timepoints in preterm infants (PERMANOVA R2 = 4.17%, 

p = 9.99 × 10-4; Figure S2D). 

Comparison of preterm infants with a small sample of term-born controls at TP1 revealed weak 

evidence for a small difference in bacterial community composition at ASV-level (R2 = 2.75%, p = 

0.082; Figure 1B). This primarily manifested in lower bacterial richness (observed ASVs, q = 7.75 × 

10-5; Figure 1C) and higher relative abundances of ASVs belonging to Escherichia/Shigella (q = 

0.189) and Streptococcus (q = 0.223) genera in the preterm group, while term infants had higher 

abundance of a Corynebacterium ASV (q = 0.131; Figure 1D). 
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Figure 1. Overview of microbiota profiles in neonates based on 16S rRNA gene sequencing.  
(A) Relative abundances of the 20 most abundant amplicon sequence variants (ASVs) identified across the dataset 
are visualised per sample, with all other ASVs grouped together as residuals. Samples are ordered based on 
hierarchical clustering of the Bray-Curtis dissimilarity matrix using average linkage (see dendrogram).  
(B) Non-metric multidimensional scaling (NMDS) plot based on Bray-Curtis dissimilarity between samples; data 
points and ellipses are coloured by sample type. The ellipses denote the standard deviation of data points belonging 
to each sample type, with the centre points of the ellipses calculated using the mean of the coordinates per group.  
(C) Microbiota alpha diversity measured by Shannon index (left) and observed ASVs (right). *** indicates q < 0.001 
in pairwise comparisons using emmeans following linear mixed effects model comparing alpha diversity indices 
between the groups and timepoints.  
(D) Differentially abundant ASVs in association with preterm status at timepoint 1. Bar plots depict MaAsLin2-analysis 
results. ASVs present with at least 1% of abundance in at least 5% of samples were analysed (10 ASVs) and 
significant results are shown (BH corrected p  < 0.25 as default). Lengths of the bars correspond with the MaAsLin2-
model coefficient, which relates to the strength of the association. Error bars indicate the standard error (SE) of the 
model coefficient. MaAsLin2 models were adjusted for postnatal age at sampling. 
Sample sizes: term timepoint 1 = 12, preterm timepoint 1 = 58, preterm timepoint 2 = 103. See Figure S2 for overview 
of microbiome profiles in preterm neonates arising from shotgun sequencing. 

COVARIATES SHAPING PRETERM INFANT GUT MICROBIOME 

We then sought to identify perinatal covariates associated with microbiota communities in our 

preterm cohort, focussing on variables known from literature to associate with microbiota 

composition in infancy (gestational age [GA] at birth17,18, age at sampling18,30,31, birthweight20, 

delivery mode32–34, antibiotics35–37, breastmilk exposure20,30,38), and common preterm neonatal co-

morbidities (sepsis37,39, necrotising enterocolitis [NEC]40, bronchopulmonary dysplasia [BPD]41,42). 

Although sex is not often investigated in association with early life gut microbiota development and 

previous studies report mixed findings to the extent that sex associates with infant microbiota30,43,44, 

we included this variable because boys and girls differ in susceptibility to mortality and major 

morbidities following preterm birth45. 

In univariable models, ASV-level bacterial community composition at TP1 significantly associated 

with mode of delivery, birthweight z-score, and postnatal age at sample collection (Figure 2A left 

panel). Using shotgun sequencing, the different perinatal factors had relatively stronger correlations 

with species-level community composition, though most did not remain significant after adjustment 

for multiple comparisons (Figure 2A middle panel). 

At TP2, we observed the strongest associations for ASV-level bacterial community composition with 

the degree of prematurity, followed by postnatal age and GA at sample collection, antibiotic 

exposure, and sex (Figure 2A left panel). Using shotgun sequencing, none of the tested covariates 

were statistically significantly associated with community composition, though ranking of the effect 

sizes was similar (Figure 2A middle panel). 

Using 16S-based ASV-level data (Tables S2-3), Microbiome Multivariate Association with Linear 

Models (MaAsLin246) revealed that delivery mode (Figure 2B top panel) associated, among others, 

with the abundances of Escherichia/Shigella (q = 0.172) and Staphylococcus (q = 0.023). Birthweight 

z-score negatively correlated with the abundance of Staphylococcus (q = 0.217), but not when 

adjusting for delivery mode (Figure 2B bottom panel). At TP2 (Figure 2C), the faecal samples of 

extremely compared to very preterm infants had higher relative abundances of different Veillonella 

ASVs (q range 0.008 – 0.078) and Klebsiella (q = 0.160), and lower levels of Staphylococcus (q = 

0.037; Figure 2C left panel). Male and female infants differed in the relative abundances of 

Veillonella (q = 0.216), Bifidobacterium (q = 0.171), and Streptococcus (q = 0.011), and antibiotic-

exposed infants had higher relative abundance of Klebsiella (q = 0.110). The main results of the full 

mutually adjusted model (Figure 2C right panel) paralleled those of the baseline model. Species-

level analyses from shotgun sequencing showed similar top hits to those observed with ASVs from 

16S (Tables S4-5), including the higher abundance of Veillonella parvula in extremely preterm 

infants and lower levels of Streptococcus vestibularis in females at TP2.  
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Bacterial alpha diversity minimally correlated with the perinatal covariates (Table S6): no significant 

correlations were found at TP1, whilst at TP2, bacterial richness correlated positively with age at 

sampling (postnatal and GA), and birthweight z-score, and bacterial richness was higher in extremely 

compared to very preterm infants, and in infants diagnosed with NEC.  

Complementary analysis of the functional capacity of the microbiome using the GMMs (Figure 2A 

right panel) revealed nominally significant associations for birthweight z-score and labour antibiotics 

at TP1, though these relationships did not remain significant after adjustment for multiple 

comparisons. At TP2, none of the covariates tested had statistically significant associations with 

community composition at the functional GMM level. 

 

Figure 2. Covariates associated with preterm infant gut microbiota. 
(A) Univariable PERMANOVA results showing the association between perinatal variables and the gut bacterial 
community composition at each timepoint and for each data type: left panel = ASV from 16S rRNA sequencing, 
middle panel = species from shotgun sequencing, right panel = Gut metabolic modules (GMM) calculated from KEGG 
orthologs arising from shotgun sequencing. The variance explained is estimated for each variable independently and 
is indicated by a percentage/blue shades. Significance of PERMANOVA was based on 1000 permutations and was 
adjusted for multiple comparisons using the Benjamini-Hochberg (BH) method; asterisks denote statistical 
significance (^q ≤ 0.1, *q ≤ 0.05, **q≤ 0.01).  
(B, C) Differentially abundant ASVs in association with perinatal factors at timepoint 1 (B) and 2 (C). Bar plots depict 
MaAsLin2-analysis results. ASVs present with at least 1% of abundance in at least 5% of samples were analysed 
(14 ASVs for timepoint 1 and 21 for timepoint 2) and significant results are shown (BH corrected p  < 0.25 as default). 
Bars are coloured according to the covariate they are associated with. Lengths of the bars correspond with the 
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MaAsLin2-model coefficient, which relates to the strength of the association. Error bars indicate the standard error 
(SE) of the model coefficient. In baseline models, we adjusted for postnatal age (timepoint 1), or GA at birth and 
sample collection (timepoint 2); in full adjusted models, all covariates with q-value < 0.1 from univariable 
PERMANOVAs were tested simultaneously. Here, GA at birth was dichotomised to group the infants into extremely 
(GA at birth < 28 completed weeks) and very (GA at birth < 32 completed weeks) preterm.  
Sample sizes for 16S rRNA sequencing: preterm timepoint 1 = 58, preterm timepoint 2 = 103; sample sizes for 
shotgun sequencing: preterm timepoint 1 = 23, preterm timepoint 2 = 97. See Tables S2-S5 for detailed MaAsLin2 
results, and Table S6 for alpha diversity associations. 

GUT MICROBIOTA ASSOCIATIONS WITH MRI FEATURES OF 

ENCEPHALOPATHY OF PREMATURITY 

Following characterisation of the preterm infant microbiota, we investigated associations between 

the gut microbiome and MRI biomarkers of EoP at TEA in 79 infants; brain MRI scans were 

conducted, on average, 3.81 weeks after the collection of TP2 sample (Table S7).  

We first sought to reduce the multidimensionality of the data into a meaningful set of variables 

capturing the variation in the microbiota compositional data. We extracted four principal coordinates 

(PCo) calculated from ASV-level Bray-Curtis dissimilarity matrix; these together explained 40.9% of 

variance in the microbiota community composition data. Correlation analysis between the relative 

abundance of ASVs and the four PCo-s revealed that PCo1 mainly indicated lower relative 

abundances of Bifidobacterium and Cutibacterium, and, though with a weaker correlation coefficient, 

higher abundances of Staphylococcus and a set of Enterobacteriaceae; PCo2 indicated lower 

relative abundances of Escherichia/Shigella and higher abundances of an unidentified ASV in 

Enterobacteriaceae family; PCo3 mainly indicated lower abundances of Klebsiella and, to lesser 

extent, higher abundances of Enterobacteriaceae; and PCo4 indicated lower abundances of 

Enterococcus and interestingly, but to a lesser extent, both higher and lower abundances of different 

Bifidobacterium ASVs (Figure 3). These PCo-bacteria correlations were confirmed using 

metagenomic sequencing (Figure S3), though simultaneously providing better species resolution. 

Notably, PCo2 indicated higher abundances of K. oxytoca, suggesting a species-specification to the 

unnamed Enterobacteriaceae ASV from 16S-based sequencing. From 16S data, we calculated the 

Shannon index and number of observed ASVs as two complementary measures of alpha diversity. 

The PCo-s were orthogonal and showed very weak rank correlations with one another (Spearman 

ρ range 0.03-0.19), suggesting that each of them captures an independent aspect of the variance in 

gut bacterial community composition. The two alpha diversity indices were, as expected, moderately 

correlated with one another (Spearman ρ = 0.63); furthermore, observed ASVs had a moderate 

negative correlation with PCo1 (Spearman ρ = -0.49).  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2023.09.12.23295409doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295409
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

 

Figure 3. Dimensionality reduction of the microbiota community composition data. Bacterial ASV correlations 
with the first four orthogonal principal coordinates (PCo), showing the top 20 strongest correlations for each PCo. 
The % refers to the variance explained by each of the PCos. Red indicates positive and blue negative correlations 
between the PCo-s and ASVs. Sample size n=79 (linked MRI and microbiome data). See Figure S3 for bacterial 
species’ (shotgun sequencing) correlations with the PCo-s. 

The four beta-diversity PCo-s and two alpha diversity indices were then used as main predictors of 

interest in studying the relationships between gut microbiota and MRI biomarkers of EoP. We 

focussed on whole-brain imaging metrics capturing brain size (tissue volumes), microstructure 

derived from diffusion tensor imaging (DTI; fractional anisotropy [FA], radial diffusivity [RD]) and 

neurite orientation dispersion and density imaging (NODDI; neurite density index [NDI], orientation 

dispersion index [ODI], isotropic volume fraction [ISO]), and cortical morphometry (gyrification index, 

thickness, sulcal depth, curvature, surface area). For contextualisation of the image features in 

respect to GA at birth and at scan, please see Table S8. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2023.09.12.23295409doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295409
http://creativecommons.org/licenses/by-nc/4.0/


11 

 

PCo1 negatively correlated with total brain tissue and absolute white matter volume, and positively 

with relative dGM volume (Figure 4A). The incremental R2 upon adding the PCo1 to a null model 

was 2.6% for total brain tissue, 5.4% for white matter, and 8.3% for dGM relative volume. There was 

also a nominally significant association between relative cortical volume and PCo2 (incremental R2 

2.6%). However, no volumetric association remained statistically significant after multiple 

comparison adjustment. 

In contrast, there were statistically significant associations between the microbiota and dMRI 

features of EoP after correction for multiple tests (Figure 4B). PCo2 associated with dGM 

microstructure (incremental R2 was 6.4% for ODI and 2.3% for NDI) and ODI in the cortex 

(incremental R2 7.8%); PCo3 associated with measures of global white matter microstructure (gRD, 

gNDI and gISO; incremental R2 was 5.6%, 2.7% and 6.0%, respectively); and PCo4 associated with 

cortical complexity (thickness; incremental R2 5.2%) and microstructure (ODI; incremental R2 7.5%). 

Microbiota richness (number of observed ASVs) also associated with dGM microstructure 

(incremental R2 was 3.9%, 3.4%, 4.3% and 2.7%, for FA, NDI, ODI and RD, respectively) as well as 

ODI in the white matter (incremental R2 4.3%). 

 

 

Figure 4. Microbiota associations with MRI features of encephalopathy of prematurity. 
(A) Regression results for brain volumetric measures. 
(B) Regression results for brain microstructural measures. 
Models are adjusted for gestational age at birth and at scan; microbiota PCo-s and alpha diversity metrics were 
adjusted for gestational age at sampling via linear regression, retaining the residuals. Full colour points indicate 
nominal p-value < 0.05; asterisks (*) indicate Benjamini-Hochberg (BH)-method-adjusted p-value < 0.25. Red 
indicates positive and blue negative associations. Relative volumes are calculated by normalising to total tissue 
volume (the sum of the volumes of cortical grey matter, white matter, deep grey matter, cerebellum, brainstem, 
hippocampi and amygdalae). FA = fractional anisotropy; RD = radial diffusivity; NDI = neurite density index; ODI = 
orientation dispersion index; ISO = isotropic volume fraction; cGM = cortical grey matter; dGM = deep grey matter, 
CB = cerebellum; sulc = sulcal depth; GI = gyrification index, g = general factor.  
Sample sizes (total n=79): volumetric and cortical structural complexity analysis = 76, white matter microstructure 
analysis = 74, and cortical and deep grey matter and cerebellar microstructural diffusion analysis = 74. See Table S8 
for contextualisation of the image features in respect to GA at birth and at scan, Tables S9-S10 for ASV- and species-
level MaAsLin2 results, and Figure S5 for representative brain maps. 

The statistically significant microbiota-brain associations after FDR correction (except for the 

correlation between observed ASVs and gODI), remained significant in sensitivity analyses where 

we adjusted for birthweight z-score and sex, and excluded infants with NEC (data not shown). 
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PCo-s capture complex patterns of variation within bacterial communities; therefore, to better 

understand how specific bacterial biomarkers may be related to brain features, we performed post-

hoc analysis using MaAsLin2 for those MRI features that showed statistically significant associations 

with gut microbiota in PCo- and alpha diversity-based analyses. These results were partially in line 

with those obtained using the microbial community PCo-s (Figure 5; Table S9). Bifidobacterium, the 

strongest driver of the PCo1, was not significantly associated with any of the brain microstructural 

measures tested. In line with the PCo2-dGM microstructure findings, Escherichia/Shigella, the 

strongest negative driver of PCo2, showed significant associations with FA (q = 0.204), NDI (q = 

0.004), and ODI (q = 0.061) in dGM. Also in line, Enterobacteriaceae, the strongest positive driver 

of PCo2, correlated significantly with dGM ODI (q = 0.025). Klebsiella, the strongest negative driver 

of PCo3, was ranked at the top of the list of associations with gRD (q = 0.328), and was interestingly 

significantly associated with NDI (q = 0.089) and ODI (q = 0.162) in dGM. In contrast, Enterococcus, 

the strongest negative driver of PCo4, was not significantly associated with any of the MRI markers. 

These analyses revealed further relationships between brain MRI features and bacterial taxa beyond 

the main drivers of the community composition variance. Notably, different Veillonella ASVs 

positively correlated with dGM FA/NDI (q range 0.018 – 0.209) and negatively with ODI (q range 

0.083 – 0.115).  

Analyses using the shotgun data showed similar bacteria-brain associations (Table S10). 

Importantly, these replicated the E.coli, Klebsiella spp. (oxytoca, michiganesis, pneumoniae) and 

Veillonella parvula correlations with dGM microstructure, and E. coli correlations with cortical ODI. 

Interestingly, using these data, Bifidobacterium breve positively correlated with FA in the dGM. 
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Figure 5. Taxa-level analyses correlating brain microstructural features with the relative abundances of 
ASVs. Analyses were conducted using MaAsLin2, testing differences in ASVs present with at least 1% of abundance 
in at least 10% of samples (n=13 ASVs). ASVs are ordered by the strength of association with each brain imaging 
feature. Lengths of the bars correspond with the MaAsLin2-model coefficient, which relates to the strength of the 
association. Error bars indicate the standard error (SE) of the model coefficient. Full colour bars and asterisks (*) 
indicate Benjamini-Hochberg (BH)-method-adjusted p-value < 0.25. Red indicates positive and blue negative 
associations. ASV = amplicon sequence variant; MaAsLin = Microbiome Multivariate Association with Linear Models; 
FA = fractional anisotropy; RD = radial diffusivity; NDI = neurite density index; ODI = orientation dispersion index; 
cGM = cortical grey matter; dGM = deep grey matter, g = general factor. 

BACTERIAL FUNCTIONAL CAPACITY AND BRAIN MICROSTRUCTURE 

To probe potential functional implications of the bacteria-brain relationships, we calculated gut-brain 

modules47 (GBMs) from the shotgun data. Among the most abundant GBMs were several related to 

excitotoxic pathways including glutamate and quinolinic acid metabolism (Figure 6A). 

PCo1 correlated the strongest with modules related to quinolinic acid and menaquinone synthesis; 

PCo2 correlated with modules related to degradation of tryptophan, and inositol; PCo3 correlated 

with modules for the synthesis of S-adenosylmethionine (SAM) and degradation of tryptophan; and 

PCo4 correlated with GABA and inositol degradation (Figure 6B).  
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We then studied the relationships between GBM abundances and those MRI markers that were 

identified as significantly associated with the gut microbiota PCo-s or alpha diversity using 

MaAsLin2. This revealed the strongest associations between modules related to the capacity of 

propionate and tryptophan metabolism and NODDI measures in the deep and cortical grey matter 

(Figure 6C, Table S11). dGM microstructure additionally associated with modules related to 

caseinolytic peptidase B (ClpB), SAM and glutamate synthesis – three most abundant GBMs 

identified. 

Lastly, to understand which bacteria could contribute to the brain-associated GBMs, we studied the 

correlations between species and module abundances as well as the species-stratified module 

abundances. In line with PCo-GBM correlations (Figure 6C), we found correlational evidence that E. 

coli is the strongest contributor to the modules related to the capacity of tryptophan and propionate 

degradation, and Klebsiella spp. have high contributions to the capacity of propionate synthesis 

(Figure S4). Bifidobacterium spp. were among the main contributors to the most abundant GBMs. 
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Figure 6. Gut-brain modules in association with brain microstructure in preterm infants. 
(A) Mean relative abundance of the gut-brain modules reflecting functional potential of the metagenome; bars are 
coloured by the prevalence of the modules. 42 out of 56 GBMs were detected in the microbiome-MRI matching 
dataset; all are present in at least two samples. 
(B) Gut-brain module correlations with the first four orthogonal principal coordinates (PCo) calculated from 16S rRNA 
beta diversity data, showing the top 20 strongest correlations for each PCo. The % refers to the variance explained 
by each of the PCo. Red indicates positive and blue negative correlations between the PCo-s and gut-brain modules. 
(C) Gut-brain modules in correlation with brain microstructural features. Analyses were conducted using MaAsLin2, 
testing differences in gut-brain modules present in at least 10% of samples (n=34 modules). Modules are ordered 
(left to right) by the prevalence in the dataset. Colour corresponds to MaAsLin2-model coefficient, which relates to 
the strength of the association, with blue indicating negative and red positive correlations. Asterisks (*) indicate 
Benjamini-Hochberg (BH)-method-adjusted p-value < 0.25. FA = fractional anisotropy; RD = radial diffusivity; NDI = 
neurite density index; ODI = orientation dispersion index; cGM = cortical grey matter; dGM = deep grey matter, g = 
general factor. See Table S11 for MaAsLin2 results and Figure S4 for species contribution to GBMs. 

DISCUSSION 
We characterised the gut microbiome of preterm infants using 16S rRNA gene and shotgun 

metagenomic sequencing, and determined the most influential clinical drivers of the preterm 

microbiota during NICU care. For the first time, we integrated metagenome data with multimodal 

brain MRI to uncover associations between microbiota community composition, diversity and 

functional capacity, and the EoP.  

NEONATAL MICROBIOTA DEVELOPMENT 

Consistent with previous reports of a dynamic development of the gut microbiota over the neonatal 

period in preterm infants30,48, there was a substantial shift in microbiota diversity and community 

composition between preterm birth and hospital discharge. Shortly after birth, the microbiota of the 

majority of infants was dominated by the facultative anaerobe Staphylococcus. By the time of NICU 

discharge, the microbiota diversity had increased and infants had gut microbiota profiles with high 

relative abundances of either Bifidobacterium or Enterobacteriaceae, mainly Klebsiella spp.; 

community compositions high in Escherichia/Shigella or Enterococcus were also prevalent.  

DIFFERENCES IN THE MECONIUM MICROBIOTA OF TERM AND PRETERM 

INFANTS 

There were small differences in bacterial community composition between term and preterm 

meconium with higher abundance of Escherichia/Shigella and Streptococcus in the preterm group –  

a profile that has been reported previously49. The higher microbiota richness in preterm meconium 

might reflect the slightly higher postnatal age at sampling in the preterm group due to delayed 

passage of meconium in preterm infants, and is consistent with a decrease in alpha diversity in the 

first days of life due to environmental filtering before a gradual increase coinciding with actual 

colonisation30,50. An important technical consideration for interpreting meconium microbiota data is 

that only a small proportion of term infant meconium samples had sufficient bacterial biomass for 

sequencing. Yet, it has been reported previously that meconium has low bacterial DNA51,52, with 

relatively higher detection in preterm infants51. Even among the preterm group, only a minority of 

meconium samples had sufficient DNA yield for shotgun sequencing. Thus, the profiles may not be 

representative of the majority of meconium samples; this could explain some of the differences 

observed in the results with 16S-based vs shotgun sequencing. 

DRIVERS OF THE PRETERM GUT MICROBIOTA AT BIRTH AND AT NICU 

DISCHARGE 

In line with studies in term infants33,34, delivery mode had the strongest correlation with the bacterial 

community composition shortly after birth. There is variability in the preterm literature about the 

impact of mode of delivery22; these data provide additional information from a new cohort. At TP2, 

delivery mode was not associated with microbiota composition, which could reflect either “recovery” 
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of gut microbiota profiles 33, or an overshadowing by prematurity-related co-exposures. Indeed, low 

birth GA was the strongest covariate correlating with bacterial community composition at TP2, which 

suggests there is an allostatic load of prematurity-related co-exposures shaping the preterm 

microbiota. Extremely preterm infants had higher abundance of Veillonella –  a signature taxa in the 

4-month-old term infant microbiota, associated with reduced oxygen concentration and utilisation of 

lactic acid32. Given that low GA also associated negatively with the abundance of Staphylococcus, 

these findings suggest a “younger-looking” microbiota at the time of NICU discharge in infants born 

at a higher GA. Infant sex and antibiotic exposure also contributed to microbiota composition at TP2. 

Only a few studies have investigated the role of sex in microbiota development, yielding mixed 

results30,44,53,54. We found the strongest evidence for higher abundance of Streptococcus in male 

babies. Sex differences in this context are interesting because preterm boys have a higher risk of 

major morbidities than preterm girls45. In line with previous studies36, we report higher abundance of 

Klebsiella in infants exposed to antibiotics during their NICU stay; Enterobacteriaceae, including 

Klebsiella spp. correlate with increased antimicrobial resistance genes in antibiotic-exposed preterm 

infants19,35. Similarly supporting previous findings36, exposure to antibiotics rather than length of 

exposure associated with microbiota composition in preterm infants, suggesting an exquisite 

sensitivity of the preterm microbiota to antimicrobial treatment. 

MICROBIOTA-BRAIN INTERACTIONS: RELEVANCE TO 

ENCEPHALOPATHY OF PREMATURITY 

We took two complementary approaches to study correlations between the microbiome and brain 

structure: we applied dimensionality reduction55 to construct latent variables capturing the main 

variance of bacterial composition, followed by post-hoc MaAsLin2 analyses.  

Results from both methods suggested the strongest correlations between the relative abundances 

of Escherichia/Shigella (E. coli from shotgun sequencing) and dGM and cortical microstructure, 

particularly measures derived from NODDI, and between Enterobacteriaceae (Klebsiella spp. using 

shotgun sequencing) and dGM microstructure. This suggests that gut microbiota associates with 

cellular and dendritic morphology as previously demonstrated in rodent models of microbiota 

disruptions56. Morphological changes in dGM nuclei are commonly observed in preterm infants57–59; 

these associate with reduced microstructural integrity in the white matter and poorer 

neurodevelopmental outcomes5. In addition, preterm birth associates with alterations in cortical 

microstructure and morphology at TEA60.  Escherichia/Shigella and Klebsiella have been linked with 

neurodevelopment previously, primarily with better and worse outcomes, respectively24,26,28,61. Thus, 

the current bacteria-brain findings are intriguing, given the age- and birth GA-associations for the 

NODDI parameters (Table S7). For example, dGM NDI is positively and ODI negatively associated 

with GA at scan, suggesting that decreased abundance of Escherichia and increased abundance of 

Klebsiella spp. associate with microstructural markers related to more mature dGM microstructure. 

However, the functional/behavioural implications of microstructural changes in the neonatal grey 

matter are not yet established, leaving uncertainty in the assignment of positive/negative valence to 

the bacteria-brain relationships. Nevertheless, these findings contribute to the literature highlighting 

the importance of these prevalent bacteria in the microstructural development of deep and cortical 

grey matter in preterm infants. 

Post-hoc analyses also revealed bacteria-brain relationships that were not captured as the main 

drivers of the first four beta diversity PCo-s. Specifically, Veillonella parvula, which associated with 

degree of prematurity, correlated with dGM microstructural parameters, following the same direction 

of effect as GA at scan (Table S7). Veillonella has been associated with neurobehavioural outcomes, 

including motor and temperament development13. Veillonella could play different roles in brain 
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function and behaviour at different developmental phases, and it remains to be established to what 

extent these relationships may be mediated by brain microstructure around the time of birth. 

Calculation of GBMs allowed functional interpretation of the bacteria-brain relationships. In 

particular, the PCo indicated by the abundances of Escherichia and Enterobacteriaceae/Klebsiella 

oxytoca, correlated the strongest with the capacity for tryptophan degradation. Indeed, MaAsLin2 

analyses showed that this module’s abundance correlated with the microstructure in dGM and 

cortex. Based on species-stratified gene annotations and species-module correlations, E. coli was 

the most substantial contributor to this functional property of the microbiome. Tryptophan 

metabolism has been suggested as one of the key gut-brain communication mechanisms in 

preclinical and human observational studies10. E. coli degrades tryptophan into indole, which 

regulates gut epithelial cell function and immune response62, as well as central nervous system 

inflammation via astrocytes63. Thus, our results suggest that E. coli may interact with brain 

microstructural development via tryptophan metabolism, but future mechanistic work and studies 

incorporating metabolome analysis are needed to further study this relationship. 

Synthesis and degradation of the short-chain fatty acid (SCFA) propionate correlated with ODI in 

dGM and cortex, respectively. The strongest contributors to these modules were Klebsiella spp. and 

E. coli, respectively. Propionate, acetate and butyrate are among the most abundant SCFAs in the 

human body. SCFAs have wide-ranging functions64, including (neuro)immune modulation, and 

propionate has been demonstrated to impact the blood-brain-barrier65. Future studies, including 

metabolomics, are required to validate the current findings, and to identify to what extent bacterial-

derived propionate directly interacts with the brain. 

Bifidobacterium is the predominant bacterium in vaginally delivered breastfed infants during the first 

year of life, and several studies have identified positive correlations between Bifidobacterium 

abundance and neurobehavioural outcomes13, including in preterm infants25. It is sometimes used 

as a probiotic to prevent NEC in preterm infants, though clinical efficacy is uncertain and we are not 

aware of studies of its impact, if any, on neurodevelopment66. We found some suggestive evidence 

that the primarily Bifidobacterium-driven PCo1 correlates with total brain and white matter volume 

and with relative dGM volume, reflecting improved brain growth in association with higher abundance 

of Bifidobacterium. We also found that Bifidobacterium spp. were one of the main contributors to the 

three most abundant GBMs in this preterm dataset, which significantly correlated with dGM 

microstructure: ClpB, SAM and glutamate synthesis. This may suggest that Bifidobacterium 

involvement in metabolic pathways may be important for brain structural development. However, 

these potential relationships between Bifidobacterium and brain structure need to be replicated in 

an independent cohort. A recent Cochrane review66 concluded that further large, high-quality trials 

are needed to inform clinical practice about probiotic use for the prevention of NEC in preterm 

infants. Our data indicate that assessment of neurodevelopment should be incorporated into future 

studies of safety and efficacy of probiotics in preterm infants. 

STRENGTHS AND LIMITATIONS 

The main strength and uniqueness of this study is the linked microbiome-MRI dataset. There is a 

scarcity of metagenomics data alongside multi-modal neuroimaging, particularly in the neonatal 

population, making this a valuable contribution to the microbiota-neuroimaging field. We evaluated 

infants born at <32 weeks' gestation, who are at an especially high risk of adverse neurocognitive 

outcomes. The clinical profile of the cohort, the absence of major parenchymal lesions, and the 

similarities of microbiota community composition with other studies, suggest that it is representative 

of the majority of survivors of neonatal intensive care.  
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Low biomass samples, such as those collected from neonates, are at an increased risk for biases 

due to possible bacterial DNA contamination from processing reagents and environment67. We 

included control samples, which enabled to investigate the environmental background and remove 

contaminant taxa from the dataset. Furthermore, the inclusion of shotgun metagenomic sequencing 

alongside 16S enabled us to investigate within-study replicability and probe functional capacity. 

The study has some limitations. Whilst the sample size was larger than that of previous work 

integrating microbiota with neuroimaging in infancy and childhood28,55,68–72, it is still a limitation given 

the high inter-individual variation both in brain microstructural as well as in the microbiota 

development in preterm infants. Small samples and high heterogeneity coupled with the 

multidimensional nature of both microbiota sequencing and neuroimaging datasets and high analytic 

freedom are the main limitations of microbiota-neuroimaging studies, leading to reduced power and 

variability in the results. To reduce dimensionality, we focussed on whole-brain measures capturing 

EoP. However, this may have hindered the detection of more specific brain regions associated with 

microbiota; future studies with larger sample sizes are needed to investigate the regional-specificity 

of the observed global effects. PCo analysis and calculation of GBMs from the microbiome data 

allowed for a principled way of data reduction. There is rapid development of the gut microbiota in 

the neonatal period, thus, the wide age range of sampling could have introduced noise in the 

microbiota-brain relationships; to mitigate this, we always adjusted for age at microbiota sampling. 

The sample size was not sufficiently powered for age- or sex-stratified analyses. 

Whilst shotgun metagenomic sequencing allows evaluation of the functional capacity of the 

microbiome, future studies including metabolomics measurements are needed to confirm whether 

gene abundances equate to differences in metabolite levels. Additionally, our interpretation of 

bacterial species’ contributions to GBMs was based on species-GBM abundance correlations and 

species-stratified GBM annotations, thus, future mechanistic work using in vitro or animal models 

are needed to confirm the validity of these findings. 

Finally, the microbiota-brain association analysis was cross-sectional with the timepoints chosen to 

capture EoP and the allostatic load of prematurity on the gut microbiome. However, this limits causal 

inference: the relationships observed could reflect a separate process causally linked to the 

development of both the gut microbiome and brain structure. Nevertheless, preclinical data shows 

that colonisation of germ-free mice with preterm microbial communities associates with poor growth, 

systemic and neuroinflammation, delayed neuronal development and myelination, disrupted brain 

microstructural connectivity, and behavioural deficits73,74, supporting a causal relationship. Future 

studies with longitudinal microbiome sampling over the NICU period are needed to clarify the critical 

time window for the strongest influence of the gut microbiome on brain microstructural development. 

This is important to identify the optimal time for microbiome modification-based therapies for brain 

health following preterm birth. 

In conclusion, the results contribute to understanding microbiota-brain associations following 

preterm birth and suggest that microbiota modification is a potential new avenue for neuroprotection 

during neonatal intensive care.  
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FIGURE TITLES AND LEGENDS 
Table 1. Baseline characteristics of the study group. 

Figure 1. Overview of microbiota profiles in neonates based on 16S rRNA gene sequencing.  
(A) Relative abundances of the 20 most abundant amplicon sequence variants (ASVs) identified 
across the dataset are visualised per sample, with all other ASVs grouped together as residuals. 
Samples are ordered based on hierarchical clustering of the Bray-Curtis dissimilarity matrix using 
average linkage (see dendrogram).  
(B) Non-metric multidimensional scaling (NMDS) plot based on Bray-Curtis dissimilarity between 
samples; data points and ellipses are coloured by sample type. The ellipses denote the standard 
deviation of data points belonging to each sample type, with the centre points of the ellipses 
calculated using the mean of the coordinates per group.  
(C) Microbiota alpha diversity measured by Shannon index (left) and observed species ASVs (right). 
*** indicates q < 0.001 in pairwise comparisons using emmeans following linear mixed effects model 
comparing alpha diversity indices between the groups and timepoints.  
(D) Differentially abundant ASVs in association with preterm status at timepoint 1. Bar plots depict 
MaAsLin2-analysis results. ASVs present with at least 1% of abundance in at least 5% of samples 
were analysed (10 ASVs) and significant results are shown (BH corrected p  < 0.25 as default). 
Lengths of the bars correspond with the MaAsLin2-model coefficient, which relates to the strength 
of the association. Error bars indicate the standard error (SE) of the model coefficient. MaAsLin2 
models were adjusted for postnatal age at sampling. 
Sample sizes: term timepoint 1 = 12, preterm timepoint 1 = 58, preterm timepoint 2 = 103. See Figure 
S2 for overview of microbiome profiles in preterm neonates arising from shotgun sequencing. 

Figure 2. Covariates associated with preterm infant gut microbiota. 
(A) Univariable PERMANOVA results showing the association between perinatal variables and the 
gut bacterial community composition at each timepoint and for each data type: left panel = ASV from 
16S rRNA sequencing, middle panel = species from shotgun sequencing, right panel = Gut metabolic 
modules (GMM) calculated from KEGG orthologs arising from shotgun sequencing. The variance 
explained is estimated for each variable independently and is indicated by a percentage/blue 
shades. Significance of PERMANOVA was based on 1000 permutations and was adjusted for 
multiple comparisons using the Benjamini-Hochberg (BH) method; asterisks denote statistical 
significance (^q ≤ 0.1, *q ≤ 0.05, **q≤ 0.01).  
(B, C) Differentially abundant ASVs in association with perinatal factors at timepoint 1 (B) and 2 (C). 
Bar plots depict MaAsLin2-analysis results. ASVs present with at least 1% of abundance in at least 
5% of samples were analysed (14 ASVs for timepoint 1 and 21 for timepoint 2) and significant results 
are shown (BH corrected p  < 0.25 as default). Bars are coloured according to the covariate they are 
associated with. Lengths of the bars correspond with the MaAsLin2-model coefficient, which relates 
to the strength of the association. Error bars indicate the standard error (SE) of the model coefficient. 
In baseline models, we adjusted for postnatal age (timepoint 1), or GA at birth and sample collection 
(timepoint 2); in full adjusted models, all covariates with q-value < 0.1 from univariable 
PERMANOVAs were tested simultaneously. Here, GA at birth was dichotomised to group the infants 
into extremely (GA at birth < 28 completed weeks) and very (GA at birth < 32 completed weeks) 
preterm.  
Sample sizes for 16S rRNA sequencing: preterm timepoint 1 = 58, preterm timepoint 2 = 103; sample 
sizes for shotgun sequencing: preterm timepoint 1 = 23, preterm timepoint 2 = 97. See Tables S2-
S5 for detailed MaAsLin2 results, and Table S6 for alpha diversity associations. 

Figure 3. Dimensionality reduction of the microbiota community composition data. Bacterial 
ASV correlations with the first four orthogonal principal coordinates (PCo), showing the top 20 
strongest correlations for each PCo. The % refers to the variance explained by each of the PCos. 
Red indicates positive and blue negative correlations between the PCo-s and ASVs. Sample size 
n=79 (linked MRI and microbiome data). See Figure S3 for bacterial species (shotgun sequencing) 
correlations with the PCo-s. 

Figure 4. Microbiota associations with MRI features of encephalopathy of prematurity. 
(A) Regression results for brain volumetric measures. 
(B) Regression results for brain microstructural measures. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2023.09.12.23295409doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295409
http://creativecommons.org/licenses/by-nc/4.0/


22 

 

Models are adjusted for gestational age at birth and at scan; microbiota PCo-s and alpha diversity 
metrics were adjusted for gestational age at sampling via linear regression, retaining the residuals. 
Full colour points indicate nominal p-value < 0.05; asterisks (*) indicate Benjamini-Hochberg (BH)-
method-adjusted p-value < 0.25. Red indicates positive and blue negative associations. Relative 
volumes are calculated by normalising to total tissue volume (the sum of the volumes of cortical 
grey matter, white matter, deep grey matter, cerebellum, brainstem, hippocampi and amygdalae). 
FA = fractional anisotropy; RD = radial diffusivity; NDI = neurite density index; ODI = orientation 
dispersion index; ISO = isotropic volume fraction; cGM = cortical grey matter; dGM = deep grey 
matter, CB = cerebellum; sulc = sulcal depth; GI = gyrification index, g = general factor.  
Sample sizes (total n=79): volumetric and cortical structural complexity analysis = 76, white matter 
microstructure analysis = 74, and cortical and deep grey matter and cerebellar microstructural 
diffusion analysis = 74. See Table S8 for contextualisation of the image features in respect to GA 
at birth and at scan, Tables S9-S10 for ASV- and species-level MaAsLin2 results, and Figure S5 
for representative brain maps. 

Figure 5. Taxa-level analyses correlating brain microstructural features with the relative 
abundances of ASVs. Analyses were conducted using MaAsLin2, testing differences in ASVs 
present with at least 1% of abundance in at least 10% of samples (n=13 ASVs). ASVs are ordered 
by the strength of association with each brain imaging feature. Lengths of the bars correspond with 
the MaAsLin2-model coefficient, which relates to the strength of the association. Error bars 
indicate the standard error (SE) of the model coefficient. Full colour bars and asterisks (*) indicate 
Benjamini-Hochberg (BH)-method-adjusted p-value < 0.25. Red indicates positive and blue 
negative associations. ASV = amplicon sequence variant; MaAsLin = Microbiome Multivariate 
Association with Linear Models; FA = fractional anisotropy; RD = radial diffusivity; NDI = neurite 
density index; ODI = orientation dispersion index; cGM = cortical grey matter; dGM = deep grey 
matter, g = general factor. 

Figure 6. Gut-brain modules in association with brain microstructure in preterm infants. 
(A) Mean relative abundance of the gut-brain modules reflecting functional potential of the 
metagenome; bars are coloured by the prevalence of the modules. 42 out of 56 GBMs were 
detected in the microbiome-MRI matching dataset; all are present in at least two samples. 
(B) Gut-brain module correlations with the first four orthogonal principal coordinates (PCo) 
calculated from 16S rRNA beta diversity data, showing the top 20 strongest correlations for each 
PCo. The % refers to the variance explained by each of the PCo. Red indicates positive and blue 
negative correlations between the PCo-s and gut-brain modules. 
(C) Gut-brain modules in correlation with brain microstructural features. Analyses were conducted 
using MaAsLin2, testing differences in gut-brain modules present in at least 10% of samples (n=34 
modules). Modules are ordered (left to right) by the prevalence in the dataset. Colour corresponds 
to MaAsLin2-model coefficient, which relates to the strength of the association, with blue indicating 
negative and red positive correlations. Asterisks (*) indicate Benjamini-Hochberg (BH)-method-
adjusted p-value < 0.25. 
FA = fractional anisotropy; RD = radial diffusivity; NDI = neurite density index; ODI = orientation 
dispersion index; cGM = cortical grey matter; dGM = deep grey matter, g = general factor. See 
Table S11 for MaAsLin2 results and Figure S4 for species contribution to GBMs.  
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STAR METHODS 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, James P Boarman (James.Boardman@ed.ac.uk). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

All raw 16S and shotgun data and their derivates used for analysis alongside with participant clinical 

data, sample metadata, and neuroimaging data derivates used in this work are deposited in 

Edinburgh DataVault75 (https://doi.org/10.7488/e65499db-2263-4d3c-9335-55ae6d49af2b). 

Requests for access will be considered under the study's Data Access and Collaboration policy and 

governance process (https://www.ed.ac.uk/centre-reproductive-health/tebc/about-tebc/for-

researchers/data-access-collaboration, James.Boardman@ed.ac.uk). The microbiome and 

participant metadata reported in this study cannot be deposited in a public repository due to them 

containing information that could compromise participant consent. Requests for raw neuroimaging 

data will similarly be considered under the study's Data Access and Collaboration policy and 

governance process: https://www.ed.ac.uk/centre-reproductive-health/tebc/about-tebc/for-

researchers/data-access-collaboration.  

Code used for the data analysis in this paper is available here: https://git.ecdf.ed.ac.uk/jbrl/neonatal-

microbiota-and-brain-dysmaturation.  

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

Study participant details 

Participants were preterm infants (GA at birth <33 weeks) and term-born controls recruited as part 

of a longitudinal cohort study designed to investigate the effects of preterm birth on brain structure 

and long-term outcome29. Recruitment, sampling and MRI acquisition were at the Royal Infirmary of 

Edinburgh, UK, between 2016-2021. The study was conducted according to the principles of the 

Declaration of Helsinki, and ethical approval was obtained from the UK National Research Ethics 

Service (South East Scotland Research Ethic Committee 16/SS/0154). Parents provided written 

informed consent. 

Exclusion criteria were death during neonatal period, major congenital malformations, chromosomal 

abnormalities, congenital infection; infants with overt parenchymal lesions (cystic periventricular 

leukomalacia, haemorrhagic parenchymal infarction), post-haemorrhagic ventricular dilatation, or 

contra-indications to MRI were excluded from MRI analyses. Term-born infants who required 

admission to the NICU were also excluded. 

All infants were cared for in the Neonatal unit of the Simpson Centre for Reproductive Health, Royal 

Infirmary of Edinburgh, with standardised feeding, antibacterial and antifungal guidelines. Preterm 

infants admitted to the NICU in the Simpson Centre for Reproductive Health are not routinely 

administered any pro- or prebiotic supplements. Clinical data was collected from antenatal and 

neonatal electronic patient records. 

Clinical variable definitions Incidence of neonatal sepsis (early or late onset) was defined as 

detection of a bacterial pathogen from blood culture, or physician decision to treat with antibiotics 

for ≥ 5 days in the context of growth of coagulase negative Staphylococcus from blood or a negative 

culture but raised inflammatory markers in blood. Necrotising enterocolitis (NEC) was defined as 
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stages II or III according to the modified Bell’s staging for NEC which required medical treatment for 

≥ 7 days or surgical treatment, respectively76. Bronchopulmonary dysplasia (BPD) was defined as 

the requirement for supplemental oxygen or respiratory support at 36 weeks gestational age. 

Retinopathy of prematurity (ROP) was defined as requiring treatment with laser therapy or anti-

VEGF. Birthweight z-scores were calculated according to International Fetal and Newborn Growth 

Consortium for the 21st Century (INTERGROWTH-21st) standards for preterm infants77. 

Antibiotic exposure was assessed by three composite variables: (i) exposure to antibiotics during 

the first three days of life, (ii) exposure to antibiotics at any other time during the NNU stay, and (iii) 

proportion (%) of antibiotic exposure days during NNU stay (total number of antibiotic treatment days 

was divided by the number of days in NNU). The antibiotic treatment for all preterm infants with 

suspected and confirmed neonatal sepsis conformed to the following principles: babies up to 72 h 

of age were commenced on benzylpenicillin and gentamicin, babies > 72 h of age were commenced 

on piperacillin/tazobactam and vancomycin. To reduce unnecessary exposure to antibiotics, 

treatment was stopped after 48 h if blood cultures were negative and the clinician had a low suspicion 

about infection. Some infants in the cohort were also treated with azithromycin, cefotaxime, co-

amoxiclav, flucloxacillin, linezolid, meropenem and metronidazole according to symptoms and 

diagnostic results. 

Daily nutritional intake for preterm infants was collected from birth until discharge. Each day was 

categorised as consisting of exclusive maternal breast milk feeds, exclusive formula milk feeds, 

exclusive donor expressed milk feeds, or any combination of these feeding types. Data was available 

as the sum of each feeding type over the entire duration of NNU stay. As previously78,79, exclusive 

breast milk exposure was defined as the % of inpatient days that infants received exclusive breast 

milk feeds, which included both maternal and/or donor breast milk. Infants were categorised into two 

groups based on breast milk exposure: high breast milk exposure was defined as exclusive breast 

milk feeds for ≥ 75% of inpatient days and low breast milk exposure was defined as exclusive breast 

milk feeds for < 75% of inpatient days. 

METHOD DETAILS 

Faecal sample collection and processing 

Faecal material was collected from dirty diapers by parents, NICU staff or research team. The 

samples were frozen at -20°C directly after sample collection prior to transfer to a -80°C freezer in 

the Queens Medical Research Institute (QMRI, University of Edinburgh) until further analyses; no 

preservation buffers were used. Faecal material was collected from the first bowel movement 

(meconium; TP1) from term and preterm infants, and a second faecal sample was collected from 

preterm infants prior to discharge from the NICU (pre-discharge sample; TP2), which was around 

TEA. When preterm infants were transferred to another NICU prior discharge, the second sample 

was collected prior to transfer. A total of 143 meconium and 107 pre-discharge samples were 

collected during the study period; 44 preterm infants had both samples obtained. 

DNA isolation 

The bacterial DNA from faecal samples was extracted at the QMRI as previously described33,80 

involving phenol/bead beating in combination with the Mag Mini DNA Isolation Kit (LGC genomics, 

Germany). Samples were thawed on ice for as little time as possible to obtain one 10 μl inoculation 

loop of raw faeces which was added to a 2 ml screwcap tubes containing a mixture of 150 μl lysis 

buffer (Mag Mini DNA Isolation Kit, LGC genomics, Germany), 0.1 mm zirconium beads (BioSpec 

products, USA) in 650 μl lysis buffer, and 500 μl of phenol saturated with Tris-HCl (pH 8.0; BioSpec 

products, USA). The samples were mechanically disrupted twice for 2 minutes at 2100 

oscillations/minute using a bead beater (BioSpec products, USA). The samples were then 
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centrifuged for 10 minutes at 5000 rpm at room temperature. Then, the aqueous phase was added 

to 1300 μl of binding buffer (Mag Mini DNA Isolation Kit) with 10 μl magnetic beads (LGC genomics, 

Germany) in a sterile 1.5 ml Eppendorf tube and incubated for 30 minutes at room temperature on 

a thermos shaker (Hettich lab technologies, USA) to allow DNA binding. Subsequently, the 

supernatant was discarded. The magnetic beads were washed twice with wash buffer 1 (Mag Mini 

DNA Isolation Kit,), once with wash buffer 2 (Mag Mini DNA Isolation Kit), and air-dried for 15 minutes 

at 55°C. DNA was eluted in 50 μl elution buffer. Adaptions in the standard DNA isolation procedure 

were applied for timepoint 1 samples due to low DNA yield and interference with extraction protocol. 

Thus, the following adaptions were applied: (i) two inoculation loops of faeces were used as input 

material; (ii) lysis buffer volume was increased to 200 μl; (iii) addition of six 2 mm glass beads 

(Scientific Laboratory Supplies, UK) for more efficient mechanical sample disruption; (iv) to improve 

water phase separation, the initial centrifugation was increased to 15 minutes and an additional 

centrifugation for 5 minutes was performed for some samples to improve separation of the aqueous 

phase; however, when there was little separation of the aqueous layer, more volume from the other 

layers was included in the next extraction steps; (v) the washing steps were performed with 400 μl 

of the buffers; (vi) the DNA was eluted in a final volume of 35 μl to increase final DNA concentration.  

To avoid potential cross-contamination from high-abundant to low-abundant samples, DNA from 

meconium and pre-discharge faecal samples was isolated on separate days. Each extraction was 

accompanied by negative (200 μl of lysis buffer) and positive controls (ZymoBIOMICS Microbial 

Community Standard [Zymo Research, USA] and/or a convenience saliva sample). 

The amount of extracted bacterial DNA was determined by quantitative polymerase chain reaction 

(qPCR) as previously80,81 with universal primers and probes targeting the 16S-rRNA gene (forward: 

5′-CGAAAGCGTGGGGAGCAAA-3′, reverse: 5′-GTTCGTACTCCCCAGGCGG-3′, TAMRA probe: 

6FAM-ATTAGATACCCTGGTAGTCCA-MGB; Life Technologies, USA). 

16S rRNA gene sequencing  

Samples that yielded DNA concentration of >0.18 pg/μl were considered for 16S rRNA gene 

sequencing (Figure S1). 

V4 hypervariable region of the 16S rRNA gene was amplified as previously82: amplicon libraries 

were generated by PCR using barcoded primers (515F [5’-GTGCCAGCAGCCGCGGTAA-3’[ and 

806R [5’-GGACTACCAGG-GTATCTAAT-3’]83), using 5μl of DNA as template. Two mock DNA 

communities (see below) and a non-template control were included in each MiSeq PCR plate and 

amplified alongside the samples and isolation positive and negative controls.  

The DNA mock communities used alongside samples for the amplification of V4 hypervariable region 

of the 16S rRNA gene were: equimolarly pooled bacterial DNA from eleven species (Bacteroides 

fragilis, Haemophilus influenzae, S. pneumoniae, Streptococcus pyogenes, Klebsiella oxytoca, 

Klebsiella pneumoniae, haemolytic Streptococcus group A, Pseudomonas aeruginosa, 

Staphylococcus epidermidis, Staphylococcus aureus and Moraxella catarrhalis); and the 

ZymoBIOMICS Microbial Community DNA Standard (Zymo Research, USA).  

The amplified DNA concentration was quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit 

(Thermo Fisher Scientific, USA) and visualised on gel electrophoresis to ensure successful 

amplification. The amplicons were pooled at equimolar amounts and purified using a combination of 

agarose gel purification (GeneJET Gel Extraction and DNA Cleanup Micro Kit) and purification by 

AMPure XP magnetic beads (Thermo Fisher Scientific, MA, USA). 

As previously82, 16S rRNA gene sequencing was performed using the MiSeq Reagent Kit v2 on the 

Illumina MiSeq platform (Illumina, USA). Sequencing was performed by Edinburgh Genomics 
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(University of Edinburgh, UK) on a total of 191 samples, 23 negative and 18 positive controls in one 

run. 

Bioinformatic processing and quality control of 16S rRNA sequences 

16S rRNA gene sequencing data processing was performed in R (version 4.2.1)84 as previously 

described85. Paired-end raw reads were filtered and trimmed (maxEE = 2; truncLen = 200/150 bp for 

forward and reverse reads, respectively), merged, denoised, chimera filtered and binned into ASVs 

using the DADA2 (version 1.16.0) in R86. Taxonomy was assigned using the DADA2 implementation 

of the naïve Bayesian classifier using the Silva v138.2 reference database87. Species-level 

annotations were added using the addSpecies() function. ASVs not assigned to the kingdom 

Bacteria or assigned to the family Mitochondria or class Chloroplast were removed. 

Contamination was assessed using decontam package in R88 (isContaminant function, “combined” 

method, default parameters), combined with manual inspection of putative contaminating ASVs. 

Using decontam, DNA extraction blanks were used as negative controls and values from 16S qPCR 

were used for the measure of DNA concentrations. To ensure the accuracy of the method, these 

contaminant ASVs (n=72) were carefully inspected by plotting the 16s qPCR DNA concentration 

data against the relative abundance. Second, in order to exclude ultra-rare taxa from the final 

dataset, the ASV table was filtered by removing ASVs that were identified at a relative abundance 

of <0.1% and present in less than two samples89. Thereafter, the remaining list of ASVs were cross-

matched to those taxa identified as contaminants by Salter et al90. These ASVs were manually 

inspected by plotting the 16s qPCR DNA concentration data against the relative abundance per 

isolation batch. Contaminant species were defined as ASVs abundant only in the lowest density 

samples in each isolation and/or only in isolation blanks. These additional contaminant ASVs (n=27) 

were then additionally removed from the raw ASV list after which filtering of the ultra-rare taxa was 

repeated. After excluding contaminating and ultra-rare taxa, the number of remaining reads per 

sample was investigated. Samples that had a final read count of less than 5000 (n=8) were excluded 

from the final dataset; these 8 samples also had >70% of the reads removed during the 

decontamination process, suggesting the remaining reads may not reliably represent the community 

composition. Duplicate samples (n=4) were also excluded from the final dataset. These quality 

control steps removed a mean of 3.75% of the raw reads from the dataset. Following data quality 

control, the 16S-based sequencing produced a mean of 35416 reads (range 7534 – 109456) per 

sample. The ASV table contained 174 ASVs. 

In the final analytic sample, all participants with TP2 samples and 70/136 (51.5%) TP1 samples were 

included (Figure S1). Included participants with TP1 samples were more likely obtained from preterm 

participants and were thus collected at a later gestational and postnatal age. 

Metagenomic shotgun sequencing and bioinformatic processing 

Samples with 16S qPCR concentration >0.8ng/μl (n=121) alongside three saliva positive controls 

and eight isolation negative controls were considered for shotgun metagenomic sequencing at 

Novogene facility (Novogene Co., Ltd, Cambridge, UK). Sequencing was performed on the NovaSeq 

6000 platform (Illumina) with a read length of 150-bp paired-end reads producing 9G raw data per 

sample. Shotgun sequencing failed for all negative controls, indicating absence or very low 

abundance of biological material, and one biological sample from TP1. 

Data pre-processing and annotation was performed by Edinburgh Genomics. Whole metagenome 

shotgun sequencing produced a mean of 37410649 (range 2512236 –  81101422) raw reads per 

sample. The raw reads were cleaned using cutadapt (v3.5)91. Adapters were removed, reads were 

cut when the quality dropped below 30, and reads shorter than 50 bases were removed. Reads 

belonging to the host were removed by bowtie2 (v2.4.1)92,93 using Homo Sapiens (GRCh38) as a 
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reference. Files sequenced on multiple lanes but belonging to the same sample were merged into 

single forward and reverse files. 

Taxonomic profiling was performed using MetaPhlAn (v3.1)94 with the standard database 

(mpa_v31_CHOCOPhlAn_201901). Functional profiling was performed using HUMAnN (v3)94 with 

the default chocophlan (chocophlan.v201901_v31) and the uniref90 databases 

(uniref90_annotated_v201901b). As MetaPhlAn and HUMAnN do not use paired information of 

reads, all reads of a sample were merged into a single file and used for taxonomical/functional 

assignment. As shotgun metagenomic sequencing was performed on higher density samples, the 

relative contribution of potentially contaminant taxa is smaller, thus, no further quality 

controls/decontamination on species/functional level were performed. Functional gene families data 

was grouped to KOs using the humann_regroup_table function, both for community-level totals and 

species-stratified gene families. The KO abundance data table was total-sum-scaled (TSS) to 

relative abundances using the humann_renorm_table function; the unmapped and ungrouped reads 

were taken into account for TSS-normalisation, but excluded from downstream statistical analyses. 

From the normalised KO table we computed GMMs96 and GBMs47 using the omixer-rpmR library95 

using the default settings for both community and taxon-stratified levels. Shotgun sequencing 

dataset contained a total of 223 species, 94 GMMs, and 43 GBMs. 

Magnetic resonance imaging data acquisition 

Infants were scanned at TEA at the Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, 

University of Edinburgh, UK, using a Siemens MAGNETOM Prisma 3T MRI clinical scanner 

(Siemens Healthcare, Erlangen, Germany) and a 16-channel phased-array paediatric head coil in 

natural sleep as previously described98. Each acquisition was inspected contemporaneously for 

motion artefact and repeated if there had been movement but the baby was still sleeping; diffusion 

MRI acquisitions were repeated if signal loss was seen in three or more volumes. 

MRI acquisition protocols are detailed in the study protocol paper29. The following sequences were 

used in this study: a T2-weighted (T2w) sampling perfection with application optimised contrasts by 

using flip angle evolution (SPACE) structural scan (repetition time [TR] = 3200 ms, echo time [TE] = 

409 ms, acquisition plane = sagittal, voxel size = 1 mm isotropic, FOV = 128 mm, acquisition time = 

2:13 min), and a multishell axial diffusion MRI (dMRI) scan. dMRI was acquired in two separate 

acquisitions to reduce the time needed to reacquire any data lost to motion artefacts: the first 

acquisition consisted of 8 baseline volumes (b = 0 s/mm2 [b0]) and 64 volumes with b = 750 s/mm2; 

the second consisted of 8 b0, 3 volumes with b = 200 s/mm2, 6 volumes with b = 500 s/mm2 and 64 

volumes with b = 2500 s/mm2 (acquisition time = 4:29 + 5:01 min). An optimal angular coverage for 

the sampling scheme was applied100. In addition, an acquisition of 3 b0 volumes with an inverse 

phase encoding direction was performed (acquisition time = 0:28 min). All dMRI images were 

acquired using single-shot spin-echo echo planar imaging (EPI) with 2-fold simultaneous multislice 

and 2-fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all three diffusion 

acquisitions had the same parameters (TR/TE 3400/78.0 ms). 

Structural images were reported by a paediatric radiologist with experience in neonatal MRI (AJQ). 

Images with evidence of post-haemorrhagic ventricular dilatation, cystic periventricular leukomalacia 

or central nervous system malformation were excluded from subsequent analysis. 

Imaging data pre-processing 

Details on dMRI processing have been previously published98 using MRtrix3103 and FMRIB Software 

Library (FSL)104. Briefly, for each subject, the two dMRI acquisitions were first concatenated and 

then denoised using a Marchenko-Pastur-PCA-based algorithm105; eddy current, head movement 

and EPI geometric distortions were corrected using outlier replacement and slice-to-volume 
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registration106,108,110,112; bias field inhomogeneity correction was performed by calculating the bias 

field of the mean b0 volume and applying the correction to all the volumes113. The structural images 

were processed using the minimal processing pipeline of the developing Human Connectome 

Project (dHCP)109 to obtain the bias field corrected T2w, brain mask, tissue segmentation and the 

different tissue probability maps. The mean b0 EPI volume of each subject’s dMRI acquisition was 

co-registered to their structural T2w volume using boundary-based registration using FMRIB's Linear 

Image Registration Tool (FLIRT)114. 

From the diffusion images we calculated the DTI (FA, RD) and NODDI (NDI, ODI and ISO) maps. 

The DTI model was fitted in each voxel using only the b = 750 s/mm2 shell. NODDI maps were 

calculated using all shells and the recommended values of the parallel intrinsic diffusivity for neonatal 

brain tissues111,115 using the original NODDI MATLAB toolbox 

(http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab).  

Selection of image features 

Volumes. We calculated the volumes of the total tissue, cortical grey matter, deep grey matter, white 

matter, cerebellum, and the ventricles from the tissue parcellation obtained from the dHCP 

pipeline109. For cortical grey matter, deep grey matter, white matter and the cerebellum both raw and 

relative (i.e. normalised to total tissue volume) volumes were obtained to quantify absolute growth 

of the tissues as well as that relative to total brain growth, respectively. 

Grey matter microstructure. For cortical and deep grey matter and the cerebellum, the mean DTI 

and NODDI metrics were calculated, using the recommended value for the parallel intrinsic diffusivity 

for neonatal grey matter (1.25 μm2/m) for NODDI map calculations115. For the cortex, mean 

gyrification index, thickness, sulcal depth, curvature and surface area as measures of cortical 

complexity/morphometry were also calculated109. 

White matter microstructure. To capture global white matter dysmaturation, we segmented 16 major 

tracts and derived general factors (g-factors) for each of the DTI and NODDI metrics as described 

previously98. The only difference with the previous work was that the tracts were brought from ENA50 

neonatal template space to native space via registration of the FA maps to ENA50 FA template using 

rigid, affine and symmetric normalization (SyN) implemented in Advanced Normalization Tools107. 

For the tracts, the NODDI metrics were calculated using the recommended values of the parallel 

intrinsic diffusivity for neonatal white matter (1.45 µm2/ms)115. 

For contextualisation of the image features, we performed linear regression modelling for each 

neuroimaging feature as the outcome and GA at birth and at scan as the predictors (Table S8). 

Representative brain maps are provided in Figure S5. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All statistical analyses were performed in R 4.2.184. Visualisations were plotted using the ggplot2102, 

ggpubr116 and cowplot117 packages. Where necessary, distribution of variables and regression 

diagnostic plots were visually inspected to ensure approximate conformation to assumptions; normal 

distribution was additionally assessed using Shapiro-Wilk’s test. P-values from statistical tests were 

adjusted for multiple comparisons using the Benjamini-Hochberg method118 separately within each 

analysis type, producing q-values (see details within each subsection). 

Beta diversity and PERMANOVA 

Beta diversity was calculated as the Bray-Curtis dissimilarity119 matrix based on the TSS-normalised 

(i.e. relative abundances) ASV, species and functional GMMs tables using vegdist function (vegan 

package120). PERMANOVA, modelled by adonis2 (vegan package120) with 1000 permutations, was 

used to identify differences in overall bacterial community composition. Separate PERMANOVAs 
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were performed for all pairwise comparisons for the different sample types and timepoints; when 

comparing TP1 vs TP2 composition within preterm infant group we adjusted for repeated measures 

by constraining the permutations within participant (strata = participant ID). To assess the effects of 

perinatal covariates, univariable analyses were conducted for each covariate, separately for the 

timepoints; p-values were adjusted for multiple comparisons across the models. Results with q-value 

< 0.1 were considered as statistically significant and followed up using differential abundance testing. 

For visualisation purposes (Figure 1A and Figure S2A), we applied hierarchical clustering (hclust 

function) on the ASV- and species-level Bray-Curtis dissimilarity matrices. Calinski-Harabasz and 

Silhouette width indices were used to determine whether average (ASV data) or complete (species 

data) linkage was optimal for the different datasets. 

Ordination 

Principal Coordinates Analysis (PCoA) was performed on the ASV-level Bray-Curtis dissimilarity 

matrix using the function pcoa (ape package97). Cailliez transformation was applied to correct for 

negative eigenvalues121. The scree plot of the eigenvalues alongside with proportion of variance 

explained were inspected to determine the optimum number of coordinates to extract. For taxonomic 

and functional interpretation of the main axes of variance (i.e. the extracted PCo-s), Spearman 

correlation coefficients were calculated between the PCo scores and the relative abundances of the 

ASVs, species, GBMs and GMMs. 

Species contribution to gut-brain modules 

To understand which bacterial species contribute to the calculated gut-brain modules47, we took two 

approaches. First, we calculated Spearman rank correlation coefficients between the relative 

abundances of the gut-brain modules and 25 most abundant species in the dataset. Second, we 

plotted the relative abundance of the gut-brain modules stratified by species. The latter approach 

illustrates the extent to which a species’ genes could be attributed to a gut-brain module. 

Alpha diversity 

Shannon index and the number of observed ASVs were calculated using the estimate_richness 

function (phyloseq package122). These indices were calculated based on the ASV table after removal 

of contaminant taxa but before filtering of the ultra-rare taxa. This full ASV table was rarefied to the 

minimum sequencing depth (10200 reads before filtering of ultra-rare taxa) using rarefy_even_depth 

function. Linear mixed effects modelling (lmer function within package lmerTest99, Satterthwaite's 

method) was used to assess differences in alpha diversity indices between the sample types and 

timepoints, fitting participant ID as a random effect to adjust for repeated measures. For observed 

ASVs, the assumption of normal distribution of model residuals was violated and therefore the values 

were log10-transformed. Post-hoc analyses were conducted using the package emmeans101. P-

values were adjusted for multiple comparisons for the main effects across the models for the two 

alpha diversity indices, and separately for the three pairwise comparisons. We then assessed the 

associations between perinatal covariates and alpha diversity indices in preterm infants at the two 

timepoints. We calculated Spearman correlation coefficients for the associations between 

continuous variables and alpha diversity indices; t-tests (TP2) and Wilcoxon rank-sum tests (TP1) 

were applied to test for the differences in alpha diversity indices between groups of infants based on 

categorical variables. P-values were adjusted for multiple comparisons separately for the timepoints. 

Covariates with q-value < 0.1 in univariable models were followed up with multivariable linear 

regression modelling including all covariates to adjust for the potential confounding effects between 

the variables. 
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Associations between gut microbiota and brain MRI features 

Baseline linear regression models. First, the microbiota features (PCo-s and alpha diversity indices) 

were adjusted for GA at sample collection by fitting a linear model of each feature on GA at sample 

collection and retaining the residuals. We adjusted for sampling age in this manner rather than using 

it as a covariate in the model with the brain MRI feature as the outcome to avoid spurious correlations 

between GA at microbiota sampling and brain MRI features. Then, a linear regression model was 

performed for each residualised microbiota feature as the predictor, each MRI feature as the 

outcome, and GA at birth and at scan added as covariates. All values were scaled (z-transformed) 

before fitting the models, resulting in standardised regression coefficients. P-values were adjusted 

for the FDR across all models separately for volumetric and microstructural/cortical morphometric 

MRI features. Due to the exploratory nature of the study and given the correlated nature of the 

neuroimaging measures, results with q-value < 0.25 were considered as noteworthy and 

investigated further in sensitivity and post-hoc differential abundance analyses. FDR correction of 

the p-values provides a balance between type I and type II errors; 0.25 is the default threshold in 

MaAsLin2 and there is precedence of using this cut off in microbiota-brain/behaviour studies70,123. 

To quantify the variance in each brain imaging metric accounted for by the microbiota PCo-s or 

diversity indices, the incremental R2 was calculated as the difference between the multiple R2 of 

each model with that from the null model including only the covariates (GA at birth and at scan) as 

predictors. We used analysis of variance (ANOVA) to test whether the baseline model with the 

microbiota feature as the predictor fit the data significantly better compared to the null model. 

Covariate identification and adjustment (sensitivity analyses). The clinical variables that were 

significantly (q-value < 0.1) associated with microbiota alpha- or beta-diversity at TP2 on ASV-level 

(sex, birthweight z-score, antibiotics >72h of life, and NEC) were tested for associations with brain 

MRI features. Two-sample t-tests were used to compare the means of normally distributed 

continuous features between the groups of the categorical covariates; Wilcoxon rank-sum tests were 

applied to compare differences in non-normally distributed MRI features; Spearman correlation 

analysis was used to test for significant associations between birthweight z-score and MRI features. 

Variables that were nominally significantly (p < 0.05) associated with at least one of the brain MRI 

features were added as covariates in the fully adjusted model. These variables were: birthweight z-

score, sex and NEC. Only three infants in the sample were diagnosed with NEC, thus, instead of 

adding this variable as a covariate, a sensitivity analysis was performed excluding infants with NEC. 

Differential abundance testing 

MaAsLin246 was used to identify bacterial ASV, species and functional capacity biomarkers 

associated with factors of interest. We applied TSS-normalisation  prior to MaAsLin2 modelling. As 

by default in the method, we considered results with q-values < 0.25 as statistically significant.  

In analyses assessing the associations between bacterial abundance and perinatal covariates, 

models were performed separately for the two timepoints. We tested for the effects on ASVs (16S) 

and species (shotgun) that were present with at least 1% of abundance (min_abundance = 0.01) in 

at least 5% of samples (min_prevalence = 0.05); the normalisation method within MaAsLin2 was set 

to “none”; all other arguments were used as by default. Baseline analyses at TP1 were adjusted for 

postnatal age at sample. Baseline models at TP2 were adjusted for the degree of prematurity (GA 

group; very vs extremely preterm) and GA at sample collection. At TP1 we didn’t adjust for GA at 

birth given the lack of statistically significant association in univariable PERMANOVA; at TP2 we 

adjusted for GA at sample collection instead of postnatal age given the high collinearity between GA 

at birth and postnatal age. In fully adjusted models, all clinical variables were tested simultaneously. 

For species, an additional model was performed for TP1 samples including labour antibiotics in the 

model. 
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To identify ASVs, species and GBMs associated with brain imaging features, MaAsLin2 was 

conducted for those brain MRI features that were significantly (q-value < 0.25) associated with any 

of the microbiota feature in the baseline models. MaAsLin2 reverses predictors and outcomes 

compared to PCo-based analyses, thus, to achieve alignment of the MaAsLin2 models with the initial 

baseline regression model, we first adjusted the brain MRI features for GA at birth and at scan by 

fitting a linear model of each feature on GA at birth and at MRI, retaining the residuals. These 

residuals were then used independently as the predictors in the MaAsLin2 models, including GA at 

faecal sample collection as a covariate. Due to the relatively small sample size in comparison with 

the number of bacterial taxa, in all analyses, we tested for effects on ASVs and species that were 

present with at least 1% of abundance in at least 10% of samples; other arguments were as specified 

above; for GBMs, the default MaAsLin2 parameters were used. 

Reporting summary 

We followed the Strengthening The Organization and Reporting of Microbiome Studies (STORMS) 

checklist124 in describing the methodology and reporting results.  
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SUPPLEMENTAL ITEMS TITLES 

FIGURES: 

Figure S1 (relates to Table 1). Flowchart detailing the inclusion and exclusion of samples and 

participants in the study. 

Figure S2 (relates to Figure 1). Overview of microbiome profiles in preterm neonates from shotgun 

metagenomic sequencing.  

(A) Relative abundances of the 25 most abundant species identified across the dataset are 

visualised per sample. Samples are ordered based on hierarchical clustering of the Bray-Curtis 

dissimilarity matrix using complete linkage (see dendrogram).  

(B) Mean relative abundances of the 30 most abundant gut metabolic modules in preterm infant 

stool at timepoint 1 (top) and 2 (bottom); bars are coloured by the prevalence of the modules at the 

two timepoints.  

(C,D) Non-metric multidimensional scaling plot based on Bray-Curtis dissimilarity between samples 

at (C) species (PERMANOVA R2 = 3.31%, p = 0.002) (D) and gut metabolic modules (PERMANOVA 

R2 = 4.17%, p = 9.99 × 10-4) level; data points and ellipses are coloured by sample type. The ellipses 

denote the standard deviation of data points belonging to each sample type, with the centre points 

of the ellipses calculated using the mean of the coordinates per group. 94/103 gut-brain modules 

were identified in the dataset.  

Sample sizes: preterm timepoint 1 = 23, preterm timepoint 2 = 97. 

Figure S3 (relates to Figure 3). Bacterial species from shotgun metagenomic sequencing correlating 

with the first four orthogonal principal coordinates (PCo) calculated from the 16S-based data, 

showing the top 20 strongest correlations for each PCo. The % refers to the variance explained by 

each of the PCos. Red indicates positive and blue negative correlations between the PCo-s and 

species. 

Figure S4 (relates to Figure 6). Species contribution to gut-brain modules.  

(A) Correlation heatmap showing the Spearman rank correlation between the relative abundance of 

25 most abundant species and gut-brain modules; modules are ordered by the mean relative 

abundance in the dataset. Red indicates positive and blue negative correlations.  

(B) Relative abundance of the six gut-brain modules associated with MRI features stratified by 

species to show the contributions from known and unknown bacteria; for each module, only seven 

species with the highest abundance of that module are shown. Depth of the blue colour represents 

the mean relative abundance of the species in the dataset, with darker colours corresponding to 

higher overall relative abundance. 

Figure S5 (relates to Figures 4-5). Representative brain maps. 

Top panel: segmentation of the brain tissues of interest, overlaid on the Developing Human 

Connectome Project 40-week T2w template; middle panel: diffusion tensor imaging maps; bottom 

panel: neurite orientation dispersion and density imaging maps using the parallel diffusivity values 

for neonatal white matter (left) and grey matter (right). Maps are averaged over 20 random 

participants in this study. 

TABLES: 

Table S1 (relates to Table 1). Additional characteristics of the study group. 

Table S2 (relates to Figure 2). MaAsLin2 results for the model testing for the effects of perinatal 

covariates in preterm samples at timepoint 1, adjusting for postnatal age at sample collection. ASVs 

present with at least 1% of abundance in at least 5% of samples were analysed. 

Table S3 (relates to Figure 2). MaAsLin2 results for the model testing for the effects of perinatal 

covariates in preterm samples at timepoint 2, adjusting for degree of prematurity and GA at sample 

collection. ASVs present with at least 1% of abundance in at least 5% of samples were analysed. 

Table S4 (relates to Figure 2). MaAsLin2 results for the model testing for the effects of perinatal 

covariates in preterm samples at timepoint 1, adjusting for postnatal age at sample collection. 

Species present with at least 1% of abundance in at least 5% of samples were analysed. 
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Table S5 (relates to Figure 2). MaAsLin2 results for the model testing for the effects of perinatal 

covariates in preterm samples at timepoint 2, adjusting for degree of prematurity and GA at sample 

collection. Species present with at least 1% of abundance in at least 5% of samples were analysed. 

Table S6 (relates to Figure 2). Associations between perinatal variables and alpha diversity indices. 

P-values were adjusted for FDR using the Benjamini-Hochberg method. Sepsis, necrotising 

enterocolitis and bronchopulmonary dysplasia refer to diagnosis of these at any time during 

admission. 

Table S7 (relates to Figures 4-6 and Table 1). Individual infant TP2 microbiome and brain MRI scan 

ages. There is a weak correlation between GA at TP2 sample and GA at MRI (Spearman rho = 

0.122). 

Table S8 (relates to Figure 4). Associations of global volumetric and microstructural MRI features 

with GA at birth and at scan. Results from linear regression model with each of the MRI feature as 

the outcome and GA at birth and at scan as the predictors. All values were scaled (z-transformed) 

before fitting the models, thus, the regression coefficients are in the units of standard deviations. 

cGM = cortical grey matter, dGM = deep grey matter, WM = white matter, CB = cerebellum, sulc = 

sulcal depth, GI = gyrification index, FA = fractional anisotropy, RD = radial diffusivity, NDI = neurite 

density index, ODI = orientation dispersion index, ISO = isotropic volume fraction, g = general factor. 

Table S9 (relates to Figure 5). ASV-level analyses correlating brain microstructural features with the 

relative abundances of ASVs. Analyses were conducted using MaAsLin2, testing differences in 

ASVs present with at least 1% of abundance in at least 10% of samples (n=13 ASVs). Brain features 

were tested in separate models. Brain features were first adjusted for gestational age at birth and at 

MRI via linear regression, retaining the residuals. Then, MaAsLin2 models were performed for the 

microbiota composition table as the outcome and each residualised brain MRI feature as the 

predictor, adjusting for gestational age at faecal sample collection. FA = fractional anisotropy; NDI = 

neurite density index; ODI = orientation dispersion index; cGM = cortical grey matter; dGM = deep 

grey matter, g = general factor. 

Table S10 (relates to Figure 5). Taxa-level analyses correlating brain microstructural features with 

the relative abundances of species. Analyses were conducted using MaAsLin2, testing differences 

in species present with at least 1% of abundance in at least 10% of samples (n=16 species). Brain 

features were tested in separate models. Brain features were first adjusted for gestational age at 

birth and at MRI via linear regression, retaining the residuals. Then, MaAsLin2 models were 

performed for the microbiota composition table as the outcome and each residualised brain MRI 

feature as the predictor, adjusting for gestational age at faecal sample collection. FA = fractional 

anisotropy; NDI = neurite density index; ODI = orientation dispersion index; cGM = cortical grey 

matter; dGM = deep grey matter, g = general factor. 

Table S11 (relates to Figure 6). Module-level analyses correlating brain microstructural features with 

the relative abundances of gut-brain modules. Analyses were conducted using MaAsLin2, with 

default settings (testing differences in modules present in at least 10% of samples; n=34 modules). 

Brain features were tested in separate models. Brain features were first adjusted for gestational age 

at birth and at MRI via linear regression, retaining the residuals. Then, MaAsLin2 models were 

performed for the microbiota composition table as the outcome and each residualised brain MRI 

feature as the predictor, adjusting for gestational age at faecal sample collection. FA = fractional 

anisotropy; NDI = neurite density index; ODI = orientation dispersion index; cGM = cortical grey 

matter; dGM = deep grey matter, g = general factor.  
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