medRxiv preprint doi: https://doi.org/10.1101/2023.09.11.23295383; this version posted September 12, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuit.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

MANUSCRIPT

High burden of anti-microbial resistance among neonatal blood stream infections in Southeast Asia: results of the NeoSEAP study

Benjamin F R Dickson¹, Nina Dwi Putri², Riyadi Adrizain³, Leny Kartina⁴, Maria Esterlita Villaneuva Uy⁵, Gayana Gunaratna⁶, Chau Le⁷, Hoang Tran⁷, Hương Nguyễn Xuân⁸, Distayay Sukarja², Tetty Yuniati³ Martono Utomo⁴, Nguyen Thi Kieu Trinh⁸, Hoang Nguyen Thanh Thuy⁹, Tran Thi Cam Tu¹⁰, Le Tuyet Hong¹¹, Siew Moy Fong¹², Michelle Harrison¹, Phoebe C M Williams^{*1}, on behalf of the NeoSEAP consortium

- ¹Faculty of Medicine & Health The University of Sydney, AUSTRALIA
- 30 ²Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta INDONESIA
 - ³Hasan Sadikin Hospital, University of Padjaran, Bandung, INDONESIA
 - ⁴Soetomo Hospital, University of Airlangga, Surabaya INDONESIA
 - ⁵Institute of Child Health and Human Development, National Institute of Health, Philippine General Hospital, Manila
- ³Hasan Sadikir
 ⁴Soetomo Hosp
 ⁵Institute of Ch
 ³Hasan Sadikir
 ⁵Institute of Ch
 ³Hasan Sadikir
 ⁶Colombo Sour
 ⁶Colombo Sour
 ⁷Da Nang Hosp
 ⁸Pham Chau Tr

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
\end{array}$

20 21 22

23

24

25

26 27

28

- 5 ⁶Colombo South Teaching Hospital, Colombo, SRI LANKA
- ⁶ ⁷Da Nang Hospital for Women and Children, Da Nang, VIETNAM
- ⁷ ⁸Pham Chau Trinh University, Da Nang, VIETNAM
- 38 ⁹Da Nang Tam Tri General Hospital, Da Nang, VIETNAM
- 39 ¹⁰Nha Trang Tam Tri General Hospital, Nha Trang, VIETNAM
- 40 ¹¹Dong Thap Tam Tri General Hospital, Dong Thap, VIETNAM
- 41 ¹²Sabah Women's and Children's Hospital, Sabah, MALAYSIA
- 44 *Corresponding author: <u>Phoebe.williams@sydney.edu.au</u>
- 45 46

42 43

- 47
- 48
- 49 50

medRxiv preprint doi: https://doi.org/10.1101/2023.09.11.23295383; this version posted September 12, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

51 Abstract

- 52 **Background:** Progress on neonatal sepsis has remained modest in recent decades and is threatened by the 53 global rise of antimicrobial resistance. The Southeast Asian region has a high burden of both neonatal sepsis 54 and antimicrobial resistance. Despite this, their remains a lack of robust epidemiological data on the causes of 55 neonatal sepsis and the prevalence of AMR in the region.
- 56 **Methods:** We evaluated the causes of neonatal sepsis and AMR burden in 10 sites across five countries in
- 57 South and Southeast Asia (Sri Lanka, Indonesia, The Philippines, Malaysia and Vietnam). Retrospective data
- on all blood cultures collected from neonates between 1^{st} January $2019 31^{st}$ December 2020 were extracted
- 59 from laboratory records. Data were also collected on the availability of clinical resources, the implementation
- 60 of infection prevention and control strategies, and antimicrobial prescribing practices.
- Findings: A total of 1,528 blood cultures were positive for significant isolates over the study period. Gramnegative pathogens predominated (1,163/1,528, 76.1%) with the most frequently isolated pathogens *Klebsiella* spp. (408/1,528, 26.7%) and *Acinetobacter* spp. (261/1,528, 17.08%) Among Gram-negative Enterobacteriaceae pooled resistance to ampicillin, gentamicin, third-generation cephalosporins (ceftriaxone and/or cefotaxime) and carbapenems was 75% (193/257), 59% (393/665), 67% (441/655) and 18.6% (125/672). For Gram negative non-Enterobacteriaceae resistance to gentamicin and carbapenems was 76.6% (326/282) and 69.7% (207/297).
- 68 **Interpretation:** Neonatal sepsis among study sites was caused predominantly by Gram-negative pathogens 69 and associated with high levels of non-susceptibility to common empirical treatment regimes.

7071 Keywords

Neonatal sepsis, Neonatal meningitis, antimicrobial resistance, antibiotic resistance, Southeast Asia, Sri
 Lanka, Indonesia, The Philippines, Vietnam, Malaysia, Global health, child health.

7475 Introduction

Significant progress has been made in reducing child mortality in recent decades[1]. Despite this, neonatal deaths have only witnessed relatively modest improvements[1,2]. Sepsis remains an important cause of neonatal mortality with an estimated half a million deaths occurring annually[2]. Many survivors also face long-term sequelae including higher post-discharge mortality rates, cognitive and physical disabilities[3]. This burden disproportionally affects low- and middle-income countries (LMICs), where 85% of neonatal sepsisrelated deaths occur[4].

- Concurrently, the rise of antimicrobial resistance (AMR) threatens to halt, or even reverse recent global health
 gains[5]. Deaths from AMR are projected to outpace those from diabetes and cancer combined by 2050[5].
 The AMR burden already does, and will continue to, inequitably fall on LMICs, where fragile health systems
 are less able to front this emerging challenge[5].
- 87

Neonates are particularly vulnerable to the rise of AMR. The rapid progression and non-specific presentation 88 of neonatal sepsis drives high-rates of antimicrobial use. Simultaneously, premature infants experience long 89 90 hospital admissions, which increase the probability of AMR colonisation and nosocomial infections. This risk 91 is compounded in LMICs, where sepsis is predominantly caused by gram-negative infections, and over-92 burdened health systems foster horizontal AMR transmission[6]. Emerging data in Africa and South Asia have 93 demonstrated concerning levels of resistance to common first-, second- and third-line empirical treatment 94 regimes to the extent that it is now estimated that one-third of neonatal sepsis deaths are directly attributable 95 to AMR [7-11].

96

97 The Asian region has the highest global population, accounts for 40% of global cases of neonatal sepsis, and 98 is anticipated to have the greatest number of deaths attributable to AMR by 2050[5,12,13]. Despite this, there 99 remains a paucity of data on both the causes neonatal sepsis and the burden of AMR in this region [14]. These 91 data are particularly critical in neonatal sepsis, where rates of culture-negative sepsis are high, so treatment 91 relies heavily on empirical regimes based on known pathogen distributions, and susceptibility profiles[15].

102

103 This study therefore sought to contribute to this epidemiological gap by evaluating the causes of neonatal 104 sepsis, and the associated burden of antimicrobial resistance across several countries in South and Southeast

Asia. To provide context to these data, it also assessed available healthcare resources, the implementation of 105 106 infection prevention and control (IPC) strategies, and antimicrobial prescribing practices at each site.

107

- **Methods** 108
- 109 Study design

This project was conducted by the Neonatal Sepsis in Southeast Asia and the Pacific (NeoSEAP) consortium. 110 111 It was a multicentre, observational study conducted in 10 sites across five countries in South and Southeast 112 Asia (Sri Lanka, Indonesia, The Philippines, Vietnam and Malaysia). The study included three components: 1) a survey of available healthcare resources and utilisation of IPC strategies; 2) a retrospective audit of blood 113 cultures collected from neonates over a 24-month period, and 3) a prospective antimicrobial point prevalence 114 115 survey (PPS) evaluating the treatment, demographic and clinical data of all infants less than 180 days old.

116 117 Site selection

The study included countries with identified gaps in epidemiological data on the causative pathogens of 118 neonatal sepsis and their associated AMR burden. Sites within each country were then selected through active 119 120 recruitment.

121

122 Data collection

Data were collected using the electronic data-collection instrument REDCap (www.redcap.org). Information 123 on the availability of hospital resources and the implementation of IPC strategies was obtained from hospital 124 125 records and staff, and then verified by site-visits were possible. During the PPS, all admitted infants receiving antimicrobial therapy at 8am on a pre-defined date between December 2022 and January 2023 were identified. 126 Demographic, clinical and treatment data were then extracted from hospital records by clinical staff. 127

128

129 Microbiological data from all blood cultures collected from neonates (defined as ≤ 28 days corrected 130 gestational age) from 1st January 2019 to 31st December 2020 were systemically extracted from electronic 131 and/or paper laboratory records. Data on the result, species (from a pre-defined list) and antimicrobial susceptibility profile were recorded. Positive cultures from the same patient with the same organism within 132 133 four weeks were considered a repeat and were excluded from the study.

134

135 The indication for neonatal blood culture collection in all sites was clinical instability and/or suspicion of a severe infection. Blood cultures were processed with the BacTec FX System (Becton Dickinson, Sparks USA) 136 and/or BacT/ALERT 3D (bioMerieux, Inc. Durham USA) automated microbial detection systems. Positive 137 138 cultures underwent identification and antimicrobial susceptibility testing using VITEK-2 (bioMerieux, Inc. Durham, USA), Phoenix (Becton Dickinson, Sparks USA) automated analysers, and conventional methods. 139 In Sri Lanka, no automated analyser is available with pathogen identification for gram-negative pathogens 140 141 limited to lactose-fermentation status, rather than genus or species level due to resource constraints. 142 Antimicrobial susceptibility results were interpreted according to breakpoints established by Clinical and Laboratory Standards Institute (CLSI). Intermediate results were classified as resistant for the analysis. 143

144 145 Data analysis

Data were managed in Microsoft Excel (Version 16) and analysed in Stata 16 (Stata corporation, TX). 146 Proportions with exact 95% binomial confidence intervals were generated for pathogen frequency and AMR 147 prevalence and compared using Chi-squared or Fisher exact tests. For the three Indonesian sites, country-level 148 149 pooled coverage estimates for Ampicillin plus gentamicin, non-pseudomonal active third generation cephalosporins and carbapenems were generated using a weighted-incidence syndrome combination 150 antibiogram (WISCA) as previously described[16]. No formal statistical evaluations of the association 151 between AMR prevalence, resource availability and infection prevention and control strategies were 152 153 undertaken because of the limited number of sites. The analysis of the PPS and fungal isolates will be reported 154 separately.

- 155
- 156
- 157 Ethical approval

158 Ethics approval was obtained from Universitas Indonesia, Jakarta; Institutional research board, Dr. Soetomo

159 Hospital, Surabaya (0339/KEPK/XII/2021); and Komite Etik Penelitian RSUP Dr. Hasan Sadikin, Bandung.

Because the study was clinical audit, a waiver of participant consent was approved by the HREC committees 160 161 at each site, and a waiver of ethical approval was granted for the Tam Tri Hospital Network.

162 163 Results

Site characteristics and resources 164

The characteristics and location of the 10 study sites included in the study are outlined in Table 1 and Figure 165 166 1. Seven of the sites were public tertiary teaching hospitals, whilst the remaining three were private referral 167 hospitals (all located in Vietnam). All hospitals delivered infants on-site, with a median of 1,594.5 (IOR: 1,308 -4,918) births per year. The median bed capacity (both post-natal ward and admitted) was 87 (IQR: 46 - 120) 168 with an average of 1,168.5 (IQR: 247 - 1895) admissions per year. Among admitted infants the average 169 170 proportion of premature infants was 41.9% (IQR: 11.3 - 51.8%). All ten sites had access to total-parenteral nutrition whilst nine (90%) were equipped with incubators, eight (80%) offered invasive ventilation and four 171 (40%) had established donor milk programs. 172

- 173
- 174 Infection prevention & control strategies

Figure 2. shows a heatmap of the infection prevention and control resources available and strategies 175 implemented at each site. All ten sites had established local IPC guidelines, and the majority (90%) employed 176 IPC specific staff. Antiseptic hand rub and gloves were always available at 6 (60%) and 9 (90%) of sites 177 respectively. The median proportion of infants breastfeeding on discharge was 80% (IQR 70 - 92%). 178 Kangaroo care was routine practiced by 9 (90%) sites. 179

180

181 Blood culture collection and empirical treatment regimes

Table 2. outlines the blood culture collection practices and empirical treatment regimens by site. Seven of the 182 183 10 sites (70%) routinely collected blood-cultures prior to starting antibiotics, with 48 hours most frequently considered the cut-off for a negative culture (range: 48 hours - five days). 184

185

186 Most sites (90%) used multiple sources to inform empirical management practices of neonatal early- and lateonset sepsis and meningitis including national (100%), local (90%), World Health Organization (60%) and 187 United Kingdom National Institute for Clinical Evidence (NICE) (20%) recommendations. Most local and 188 189 national guidelines (89%) were published at least two or more years prior to the study. The predominant regime used for early-onset sepsis was ampicillin plus gentamicin (70%). In contrast, regimes for late-onset 190 sepsis and meningitis were more varied, but most containing an aminoglycoside plus a penicillin-derivative 191 and/or cephalosporin. Antibiotics classified in the 'Watch' group by the World Health Organization (WHO), 192 193 were incorporated into empirical treatment regimens for late-onset sepsis, and meningitis in 60% and 80% sites respectively. Two sites (20%) recommended anti-fungal prophylaxis for at-risk infants: one using 194 nystatin and the other fluconazole. 195

- 196
- 197 Neonatal blood cultures

The number of neonatal blood cultures and the species isolated are shown in Table 3. Over the study period, 198 199 there were a total of 1,528 positive blood cultures with clinically significant isolates as outlined alongside denominator data in Table 4. The median blood culture positivity rate from sites with available denominator 200 201 data was 11.21 (IOR: 7.9 - 21.04%). Among significant isolates, gram-negatives predominated (1,163/1,528, 202 76.1%), followed by gram-positives (242/1,528, 15.8%) and Candida spp. 123/1,528 (8%).

203

204 The species identified in positive cultures are outlined in Figure 2. and Table 4. The most frequently isolated 205 pathogens were Klebsiella spp. (408/1,528, 26.7%), Acinetobacter spp. (261/1,528, 17.08%) and Enterobacter spp. (98/1,528, 6.41%). The gram-positive species S. aureus and Group B Streptococcus only accounted for 206 3.34% (51/1,528) and 2.16% (33/1,528) of isolates respectively. There was a significant difference between 207 208 the proportion of isolates caused by Candida spp. between sites with (12.2% 95% CI 9.0 - 15.9) and without 209 anti-fungal prophylaxis (6.74%, 5.4 – 8.3%) (p=0.001).

210

Figure 3., Table 5., Table 6., and Table 7., outline the prevalence estimates of pooled and species-level AMR 211 among positive bacterial isolates, while Figure 4., highlights the pooled non-susceptibility to key 212 213 antimicrobials. Among gram-negative Enterobacteriacae pooled resistance to ampicillin, gentamicin, third-214 generation cephalosporins (ceftriaxone and/or cefotaxime) (3GC) and carbapenems was 75% (193/257), 59% medRxiv preprint doi: https://doi.org/10.1101/2023.09.11.23295383; this version posted September 12, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

(393/665), 67% (441/655) and 18.6% (125/672). Resistance to gentamicin and carbapenems was higher for
gram-negative non-enterobacteriaecae at 76.6% (326/282) and 69.7% (207/297). Among gram-positives, the
prevalence of methicillin-resistant *S. aureus* was 26.1% (12/46), and vancomycin-resistant Enterococcus spp.
was 5.88% (4/68). Across all isolates, the prevalence of 3GC and carbapenem resistance was highest in
Indonesia, Philippines and Sri Lanka, and lower in Malaysia and Vietnam. *Klebsiella spp.* and *Acinetobacter*spp., the two most prevalence species, harboured the highest prevalence of resistance to 3GCs (86%, 325/376)
and carbapenems (77%, 194/252) respectively.

222

227

Of the 804 positive bacterial isolates from Indonesia, 710 (88%) had susceptibility data and were included in the Bayesian WISCA model. Estimated coverage was 25% (95% credible interval 22 to 29%) for aminopencillin plus gentamicin, 20% (17 to 23%) for 3GC, and 65% (62 to 69%) for carbapenems. More detailed results of these analyses have previously reported [16].

228 Discussion

This study addressed important epidemiological gaps by evaluating the causes of neonatal sepsis, and the associated AMR burden in 10 sites across five countries in South and Southeast Asia. It demonstrated a predominance of gram-negative pathogens associated with alarming levels of resistance to commonly recommended empirical agents. These results highlight the urgent need for updated empirical treatment regimes, novel antimicrobial agents, and studies to understand the mechanisms of AMR development and spread in high-burden settings.

235 236 These findings align with observational studies elsewhere in Asia and Africa suggesting that gram-negative 237 bacteria are the major cause of neonatal sepsis in resource-limited settings [6-10]. The predominance of 238 Klebsiella spp. and Acinetobacter spp., which are typically associated with nosocomial infections, is consistent 239 with findings elsewhere and underscores the likely role of horizontal transmission in the acquisition of AMR in these settings[8,15,17]. In contrast to high-income countries, the gram-positive bacteria Group B 240 241 Streptococcus and S. aureus, appear to be less clinically important. Although not captured in this study, studies 242 in similar settings with a high burden of Klebsiella spp. and Acinetobacter spp. indicate that the pathogen 243 incidence between early- and late-onset infections were relatively similar[8,17].

244

The leading sepsis pathogens in this study all demonstrated concerning levels of resistance to major 245 antimicrobial classes. These resistance rates were similar to those previously observed [8,9,17], highlighting 246 the urgent need for novel antimicrobial agents to effectively treat the growing number of neonates in low- and 247 248 middle-income countries with multi-drug resistant infections. The current WHO empirical treatment regimens 249 do not provide sufficient coverage for the pathogen distribution and AMR burden in these settings[18]. In response, sites adapted their local regimes to improve likelihood of treatment success, but this was associated 250 251 with high use of 'watch' classified antimicrobials and considerable variation in regimes used. Updated 252 empirical treatment guidelines in settings with a high burden of multidrug resistant infections are therefore 253 required to help inform healthcare providers and harmonise global practices. This guidance will require both 254 greater data on the genetic mechanisms of resistance, as well as pathogen distribution and resistance patterns 255 by early- and late-onset infections to ensure they provide sufficient and appropriate coverage.

256

Of note, the high burden of AMR observed in this study occurred in settings with well-established IPC programs. Most sites had deployed multiple strategies to mitigate AMR transmission but faced high clinical workloads compounded by limited staffing and resources. The variable gaps in each program, and the persistence of AMR despite these efforts demonstrates the need improved data on AMR transmission routes so that targeted interventions can be implemented to reduce the spread of AMR.

262

An important finding in this study was the high proportion of infections caused by *Candida spp.* (8%). Whilst anti-fungal prophylaxis was implemented in two-sites, the incidence of *Candida* spp. also remained considerable (6.7%) in sites not implementing prophylaxis. Given this burden of *Candida* spp. infections and demonstrated efficacy of anti-fungal prophylaxis in vulnerable infants, its widespread adoption in the region should be strongly considered [19].

268

These findings should be interpreted within the context of some study limitations. Firstly, sites were 269 predominantly large, tertiary-care hospitals with complex-patient loads selected through non-random 270271 sampling. The observed pathogen distribution and resistance profiles may therefore not be generalisable to 272 other health-care settings in the region. Secondly, blood culture data were retrospective and collected at the 273 hospital level rather than the individual patient level. This method may have introduced bias and limited 274 analyses of the timing and clinical correlates of infection. Lastly, the incomplete species-level identification 275 in Sri Lanka hindered, and may have biased pooled species- and family-level estimates.

276

This study nonetheless provides robust evidence that neonatal sepsis in these sites in South and Southeast Asia 277 278 was caused predominantly by gram-negative pathogens with a high burden of AMR. It strengthens calls for 279 updated empirical treatment regimes, and novel therapeutic agents to treat the increasing burden of multi-drug resistant infections. It also highlights the need for studies to better understand the acquisition and transmission 280 281 AMR so that target interventions can developed.

282 283 Contributions

284 PCMW and BFRD designed the study. NDP, RA, LK, MEVU, GG, CL, HT, HNX and SMF collected study data. MS provided technical advice on the study design and interpretation. MH supported sites with data 285 286 collection. BFRD and JB undertook the data analysis. BFRD and PCMW produced the first draft of the paper. 287 All authors reviewed and approved the final draft of the paper.

288

289 Acknowledgements

like to thank the Dr. Le Xuan Tuy 290 We would from Tam Tri General Hospitals (tuy.le.dn@tmmchealthcare.com); Dr. Helen Malinda Kurniawan (helenmalindaa@gmail.com) and Dr. Anisa 291 Bela Anggraini Kolopaking (anisakolopaking@gmail.com) from Cipto Mangunkusumo Hospital); Dr Naritha 292 293 Vermasari (narithav@gmail.com) and Dr Firstya Dyah (firstyadiyah@gmail.com) from Dr Soetomo 294 Hospital); Dr Djatnika Setiabudi, Dr Anggraini alam, Dr Adhi Kristianto Sugianli and Dr Filla Reviyani 295 Suryaningrat from (Hasan Sadikin Hospital); for their contribution to this project.

296 297

298 Funding: This study was supported by an Australian National Health and Medical Research Council 299 (NHMRC) grant.

300

Declaration of Interest: We declare no conflicts of interest. 301 302

303 References

- 304 Wang, H.; Abbas, K.M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; 1. Abdelalim, A.; Abolhassani, H.; Abreu, L.G.; Abrigo, M.R. Global age-sex-specific fertility, mortality, 305 306 healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: 307 a comprehensive demographic analysis for the Global Burden of Disease Study 2019. The Lancet 2020, 308 396, 1160-1203.
- 309 2. Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; 310 Kissoon, N.; Schlattmann, P. Global incidence and mortality of neonatal sepsis: a systematic review 311 and meta-analysis. Archives of Disease in Childhood 2021, 106, 745-752.
- Organization, W.H. Global report on epidemiology and burden of sepsis: current evidence, identifying 312 3. gaps and future directions [Internet]. Geneva, 2020. 313
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, 314 4. 315 K.S.; Kissoon, N.; Finfer, S. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet 2020, 395, 200-211. 316
- 317 5. O'neill, J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev. 318 Antimicrob. Resist. 2014.
- 319 6. Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. bmj 2019, 364. 320
- 321 7. Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.-A.; Klugman, K.; Davies, S. Access to effective antimicrobials: a worldwide challenge. The Lancet 2016, 387, 168-175. 322

medRxiv preprint doi: https://doi.org/10.1101/2023.09.11.23295383; this version posted September 12, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

- Agarwal, R.; Sankar, J. Characterisation and antimicrobial resistance of sepsis pathogens in neonates
 born in tertiary care centres in Delhi, India: a cohort study. *The Lancet Global Health* 2016, 4, e752 e760.
- Li, G.; Bielicki, J.A.; Ahmed, A.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; Guinsburg, R.; da Silva
 Figueiredo, C.E.; Vieira, R.S.; Silva, A.R. Towards understanding global patterns of antimicrobial use
 and resistance in neonatal sepsis: insights from the NeoAMR network. *Archives of disease in childhood* 2020, 105, 26-31.
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.;
 Dunachie, S.; Farzana, R. Effects of antibiotic resistance, drug target attainment, bacterial
 pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis:
 an international microbiology and drug evaluation prospective substudy (BARNARDS). *The Lancet Infectious Diseases* 2021, *21*, 1677-1688.
- Williams, P.C.; Isaacs, D.; Berkley, J.A. Antimicrobial resistance among children in sub-Saharan Africa.
 The Lancet Infectious Diseases **2018**, *18*, e33-e44.
- 12. United Nations. World population prospects. *United Nations Population Division* **2022**.
- Li, J.; Xiang, L.; Chen, X.; Li, S.; Sun, Q.; Cheng, X.; Hua, Z. Global, regional, and national burden of
 neonatal sepsis and other neonatal infections, 1990–2019: findings from the Global Burden of Disease
 Study 2019. *European Journal of Pediatrics* 2023, *182*, 2335-2343.
- Moore, N.; Ashley, E.A.; Dickson, B.; Douangnouvong, A.; Panyaviseth, P.; Turner, P.; Williams, P.C.M.
 A Systematic Review of Antimicrobial Resistance Among Children in Low-and Middle-Income
 Countries in the Western Pacific Region (WPRO). Available at SSRN 4430748.
- Milton, R.; Gillespie, D.; Dyer, C.; Taiyari, K.; Carvalho, M.J.; Thomson, K.; Sands, K.; Portal, E.A.; Hood,
 K.; Ferreira, A. Neonatal sepsis and mortality in low-income and middle-income countries from a
 facility-based birth cohort: an international multisite prospective observational study. *The Lancet Global Health* **2022**, *10*, e661-e672.
- Putri, N.D.; Dickson, B.; Baker, J.; Adrizain, R.; Kartina, L.; Sukarja, D.; Cathleen, F.; Husada, D.; Utomo,
 M.T.; Yuniati, T. Epidemiology of Neonatal Sepsis in Indonesia: High Burden of Multidrug-Resistant
 Infections Reveals Poor Coverage Provided by Currently-Recommended Neonatal Sepsis Treatment
 Regimens.
- Russell, N.J.; Stöhr, W.; Plakkal, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.;
 Balasegaram, M.; Ballot, D. Patterns of antibiotic use, pathogens, and prediction of mortality in
 hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort
 study (NeoOBS). *PLoS Medicine* 2023, 20, e1004179.
- 35618.Dale, H. WHO Pocket Book of Hospital Care for Children--Guidelines for the Management of Common357Illnesses with Limited Resources. Nursing Standard 2006, 20, 36-37.
- 35819.Cleminson, J.; Austin, N.; McGuire, W. Prophylactic systemic antifungal agents to prevent mortality359and morbidity in very low birth weight infants. Cochrane Database of Systematic Reviews 2015.
- 360
- 361

62 **Tables, Figures and Supplemental Data**

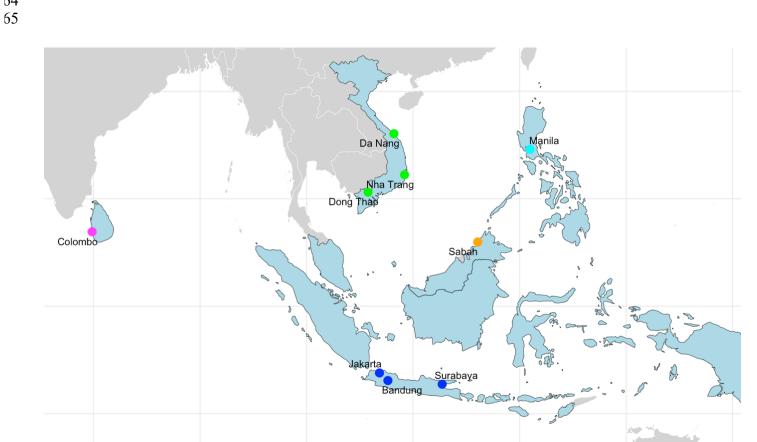


Figure 1. Map of included countries and study sites

Table 1. Characteristics of NeoSEAP sites

			Indonesia		Philippines	Sri Lanka	Malaysia			tnam	
Site		1	2	3	4	5	6	7	8	9	10
Care type	Ownership	Public Tertiary	Private Referral	Private Referral	Private Referral						
Beds	Post-natal ward	2	24	28	48	30	104	107	25	40	40
	Special-care Nursery	17	24	40	30	6	58	12			6
	HDU	19	44	32	0	10	24	111	10^	54^	0
-	ICU	30	14	20	30	8	18	49			0
	Total	68	106	120	108	54	204	279	25	40	46
Staffing	Nurses (Total FTE)	116	64	53	42	25	162	61	3	0	12
-	Doctor (Total FTE)	14	7	8	24	12	25	14	1	0	4
	Consultant (Total FTE)	1	3	4	7	2	1	3	1	0	1
Deliveries	Deliveries on-site	Yes	Yes	Yes							
	Birth per year	1,508	1,681	853	3,365	4,918	14,052	10,159	492	1,308	1,339
Admissions	Total	1,433	1,895	1,490	904	398	6,081	2,448	52	215	247
	Premature	823	797	715	864	206	986	1,023	1	12	28
Services	Neonatal Surgery	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	No
	Incubators (number)	17	40	43	27	16	29	17	1	0	1
<u>.</u>	Non-invasive ventilation	Yes	No	Yes							
-	Invasive ventilation	Yes	No	No							
	Inotropes	Yes	No	Yes	Yes						
	TPN	Yes	Yes	Yes							
	Donor-milk	Yes	No	No	Yes	No	No	Yes	No	No	Yes

^Neonatal beds on paediatric ward

Country			Indonesia		Philippines	Sri Lanka	Malaysia	Vietnam					
Site		1	2	3	4	5	6	7	8	9	10		
Blood cultures	Routine pre- treatment	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No		
	Culture negative cut- off (time)	5 days	48 hours	72 hours	48 hours	48 hours	48 hours	72 hours	48 hours	5 days	48 hours		
Treatment guidelines used (update year)		Local (2019), National (2019), WHO	Local (2020), National (2018), WHO	Local (2016), National (2016), WHO	Local (2016), National (2020)	Local (2016), National (2014), NICE	Local (2020), National (2018), WHO	Local (2021), National (2016), WHO	National (2022)	Local (2020), National (2015), Children's Hospital 1	Local (2020, National (2015), WHO, NICE		
Empirical antimicrobial regimes*	EONS	AMP 50 mg/kg TDS GEN 5 mg/kg OD	AMP 100 mg/kg BD GEN 4 mg/kg OD	AMP 50 mg/kg BD GEN 5 mg/kg OD	AMP 50 mg/kg TDS AMK 15 mg/kg OD	PEN 100 mg/kg BD GEN 5 mg/kg OD	AMP 50 mg/kg BD GEN 5 mg/kg OD	AMP 50 mg/kg TDS GEN 4 mg/kg OD	AMP 150 mg/kg BD GEN 5 mg/kg OD	AMP 150 mg/kg TDS AMK 15 mg/kg OD CTX 100 mg/kg BD	AMP 150 mg/kg TDS GEN 4 mg/kg OD		
	LONS	AMP/Sulbac. 50 mg/kg TDS GEN 5 mg/kg OD	CTX 150 mg/kg TDS	AMP 50 mg/kg BD GEN 5 mg/kg OD	CAZ 100 mg/kg TDS AMK 15 mg/kg OD	PEN 100 mg/kg BD CTX 50 mg/kg TDS	Cloxacillin 50mg/kg BD GEN 5 mg/kg OD	Ticarcillin 80 mg/kg QID AMK 15 mg/kg OD	CTX 150 mg/kg TDS GEN 5 mg/kg OD	AMP 150 mg/kg TDS CTX 150 mg/kg TDS AMK 15 mg/kg	AMP 150 mg/kg BD GEN 4 mg/kg OD		
	Meningitis	AMP/Sulbac. 50 mg/kg TDS GEN 5 mg/kg OD	MEM 40 mg/kg TDS	CTX 100 mg/kg BD GEN 8 mg/kg OD	AMP 50 microg/kg TDS AMK 15 mg/kg OD	CTX 50 mg/kg TDS	PEN 100,000 IU/kg BD CTX 50 mg/kg BD	AMP 50 mg/kg QID GEN 4mg/kg OD CTX 50mg/kg QID	CTX 100 mg/kg OD GEN 5mg/kg OD	OD AMP 300 mg/kg QID AMK 15 mg/kg OD CTX 200 mg/kg QID	AMP 300 mg/kg TDS GEN 4mg/kg OD CTX 300 mg/kgTDS		
Anti-fungal prophylaxis	Recommende d	No	No	Nystatin 100,000 IU PO TDS^	Fluconazole 3mg/kg IV q72h~	No	No	No	No	No	No		

*Colour refers AWaRe classification: Access (green), Watch (yellow), Reserve (red). All antibiotic doses are intravenous. OD (Once daily), BD (Twice daily), TDS (Three times daily), QID (Four times daily). ^Nystatin criteria: Weight <1500g; GA <32 weeks. ~Fluconazole criteria: Weight <= 1500g + broad spectrum Abx;

Weight >1500g + NBM >5 days. AMP (Ampicillin), GEN (Gentamicin), AMK (Amikacin), MEM (Meropenem), CAZ (Ceftazidime), CTX (Cefotaxime or Ceftriaxone)

Table 3. Frequency of bacterial isolates in neonatal blood cultures by site (n=1,405)

Country			Indonesia		Philippines	Sri Lanka	Vietnam	Total
Site	Pathogen	1	2	3	4	5	7	
Gram negative	Acinetobacter spp.	90 (20.22)	61 (18.94)	11 (12.09)	67 (24.01)	30 (30.61)	1 (0.44)	261 (17.08)
(n) (%)	Citrobacter spp.	2 (0.45)	0	0	0	0	0	2 (0.13)
	E. coli	19 (4.27)	31 (9.63)	7 (7.69)	14 (5.02)	1 (1.02)	9 (4)	96 (6.28)
	Enterobacter spp.	62 (13.93)	5 (1.55)	6 (6.59)	9 (3.23)	7 (7.14)	1 (0.44)	98 (6.41)
	Klebsiella spp.	204 (45.84)	64 (19.88)	33 (36.26)	92 (32.97)	2 (2.04)	6 (2.67)	408 (26.7)
	Lactose-fermenting (LF) coliforms	0	0	0	0	14 (14.29)	0	14 (0.92)
	Non-lactose-fermenting (NLF) coliforms	0	0	0	0	11 (11.22)	0	11 (0.72)
	Non-typhoid Salmonella	0	21 (6.52)	0	0	0	0	21 (1.37)
	Proteus spp.	1 (0.22)	2 (0.62)	0	0	0	0	4 (0.26)
	Pseudomonas spp.	17 (3.82)	6 (1.86)	4 (4.4)	8 (2.87)	5 (5.1)	1 (0.44)	46 (3.01)
	S. typhi	(0)	2 (0.62)	0	1 (0.36)	0	0	3 (0.2)
	Serratia spp.	3 (0.67)	9 (2.8)	6 (6.59)	40 (14.34)	1 (1.02)	9 (4)	69 (4.52)
	Other	8 (1.8)	17 (5.28)	1 (1.1)	0 (0)	5 (5.1)	94 (41.78)	130 (8.51)
	Total	406 (0)	218 (67.7)	68 (74.73)	231 (82.8)	76 (77.55)	121 (53.78)	1163 (76.11)
Gram	Enterococcus spp.	9 (2.02)	7 (2.17)	0	7 (2.51)	6 (6.12)	0	30 (1.96)
oositive (n) (%)	Group A Streptococcus	1 (0.22)	1 (0.31)	0	0	1 (1.02)	0	3 (0.2)
	Group B Streptococcus	1 (0.22)	11 (3.42)	0	2 (0.72)	12 (12.24)	2 (0.89)	33 (2.16)
	S. aureus	7 (1.57)	7 (2.17)	2 (2.2)	5 (1.79)	7 (7.14)	7 (3.11)	51 (3.34)
	S. pneumoniae	0	0	0	0	0	0	1 (0.07)
	Other	0 (0)	56 (17.39)	10 (10.99)	0 (0)	-10 (-10.2)	66 (29.33)	124 (8.12)
	Total	18 (4.04)	82 (25.47)	12 (13.19)	14 (5.02)	16 (16.33)	75 (33.33)	242 (15.84)

Country #		1	1 2			I S		78	9	1
				23	4	5	, ,	0		_
Hospital IPC guidelines &	Local IPC guideline									
(Yes/No)	IPC specific staff									
	IPC unit									
	IPC staff training									
	IPC audits									
	HAI reporting									
	HAI surveys									
	Room entry									
Handwash availability ——— (proportion of time)*	Bedside									
PPE availability	Gloves (non-sterile)									
(proportion of time)*	Gloves (sterile)									
	Mask (surgical)									T
	Mask (N95)									T
	Sterile Gown									t
	Sterile Drape									t
	Antiseptic									t
	Autoclave									T
	Eye protection									
Equipment cleaning (type)~	Medical									t
	Resuscitation									t
	Feeding									t
Equipment change	IV set									-
(frequency)^	Incubator water									+
	NIV water									┝
	Ventilator water								<u> </u>	+
Breastfeeding (proportion) ^{&}	Discharge									╞
	-									
	At 6 weeks									
Lactation support available (Yes/No)										
Donor milk available (Yes/No)										t
Kangaroo care available (Yes/No)										

Figure 2. Heatmap of resource availability and Infection prevention & control strategies by site

Country			IN		РН	SL	ML		v	N		Total
Site		1	2	3	4	5	6	7	8	9	10	
Blood cultures analysed		2059	1649	1731	3831	-	2525	3004	0	0	5	14804
Positive cultures	Including contaminants	614	-	179	525	124	94	273	0	0	0	1809
Significant isolates	Total	445	322	91	279	98	68	225	0	0	0	1528
	Total core^	437	249	80	279	103	61	65	0	0	0	1274
	Total core with AST	407	208	76	278	99	61	45	0	0	0	1174
	Gram-positive*	18	82	12	14	16	25	75	0	0	0	242
	Gram-negative	406	218	68	231	76	43	121	0	0	0	1163
	Candida spp.	21	22	11	34	6	0	29	0	0	0	123

*Excluding Coagulase-negative Staphylococci. ^Core organisms referred to pathogen species captured in the study, other pathogens were grouped as 'other'. *AST (Antimicrobial susceptibility testing). #IN (Indonesia), PH (Philippines), SL (Sri Lanka), ML (Malaysia), VN (Vietnam).

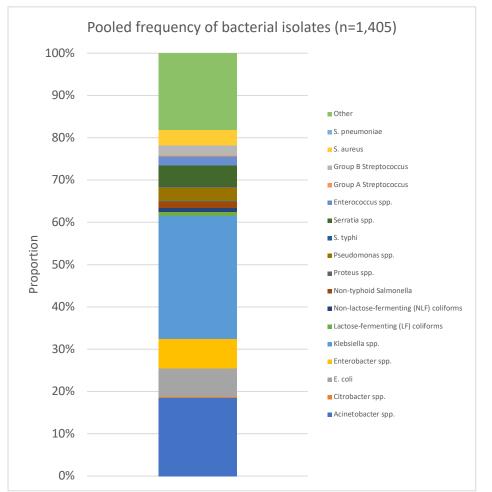
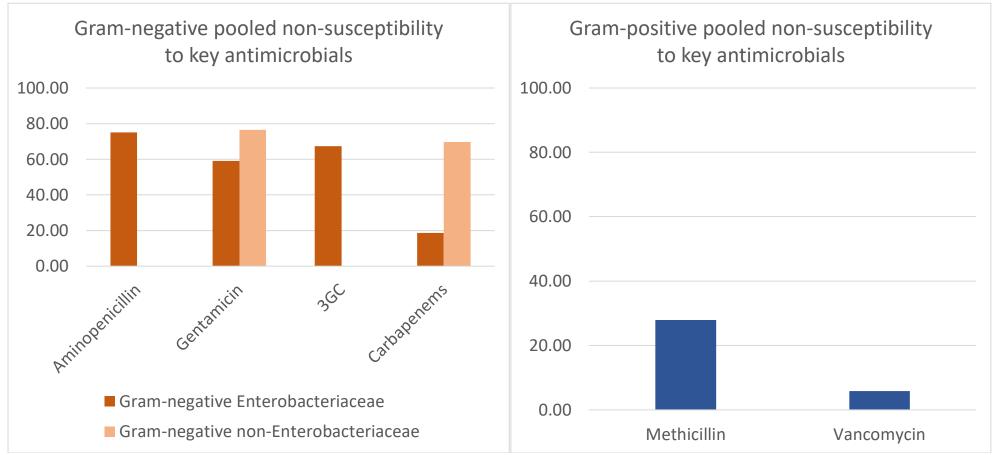


Figure 3. Pooled frequency of positive bacterial isolates

		Indonesia		Philippines	Sri Lanka	Malaysia	Vietnam	Total
Antimicrobial	1	2	3	4	5	6	7	
	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%
			Gram-negative no	n-Enterobacteriaceae				
Amikacin	66/97 (68.04)	38/62 (61.29)	8/15 (53.33)	3/70 (4.29)	28/34 (82.35)	0/6 (0)	0/1 (0)	143/285 (50
Carbapenems	73/102 (71.57)	49/62 (79.03)	7/15 (46.67)	49/75 (65.33)	28/35 (80)	0/6 (0)	1/2 (50)	207/297 (69
Cefepime	42/58 (72.41)	60/62 (96.77)	12/15 (80)	54/75 (72)	0/0 (0)	0/5 (0)	1/2 (50)	169/217 (77
Ceftazidime	57/79 (72.15)	58/62 (93.55)	12/15 (80)	53/75 (70.67)	30/32 (93.75)	0/6 (0)	0/2 (0)	210/271 (77
Ciprofloxacin	61/86 (70.93)	54/62 (87.1)	0/15 (0)	48/75 (64)	22/27 (81.48)	0/6 (0)	1/2 (50)	186/273 (68
Co-trimoxazole	9/29 (31.03)	18/57 (31.58)	0/11 (0)	16/67 (23.88)	24/26 (92.31)	0/0 (0)	0/0 (0)	67/190 (35.
Gentamicin	69/92 (75)	57/62 (91.94)	12/15 (80)	51/75 (68)	25/30 (83.33)	1/6 (16.67)	1/2 (50)	216/282 (76
Piperacillin-Tazobactam	71/100 (71)	58/62 (93.55)	9/15 (60)	53/75 (70.67)	0/0 (0)	0/6 (0)	0/1 (0)	191/259 (73
Tigecycline	19/95 (20)	11/62 (17.74)	3/15 (20)	0/0 (0)	0/0 (0)	0/0 (0)	0/0 (0)	33/172 (19.
Tobramycin	0/0 (0)	0/0 (0)	0/15 (0)	11/75 (14.67)	0/0 (0)	0/0 (0)	1/2 (50)	12/92 (13.0
			Gram-negative I	Interobacteriaceae				
3GC	196/251 (78.09)	77/105 (73.33)	38/52 (73.08)	88/155 (56.77)	29/35 (82.86)	4/32 (12.5)	9/25 (36)	441/655 (67
Amikacin	115/257 (44.75)	38/105 (36.19)	12/52 (23.08)	18/155 (11.61)	7/31 (22.58)	1/24 (4.17)	0/12 (0)	191/636 (30
Aminopenicillin	52/77 (67.53)	50/52 (96.15)	0/13 (0)	43/63 (68.25)	24/27 (88.89)	24/25 (96)	0/0 (0)	193/257 (75
Amoxicillin-Clavulanate	180/274 (65.69)	81/91 (89.01)	38/52 (73.08)	114/155 (73.55)	30/33 (90.91)	20/32 (62.5)	19/24 (79.17)	482/661 (72
Carbapenems	60/274 (21.9)	13/105 (12.38)	9/52 (17.31)	23/155 (14.84)	20/33 (60.61)	0/28 (0)	0/25 (0)	125/672 (18
Cefepime	113/165 (68.48)	41/91 (45.05)	44/52 (84.62)	84/155 (54.19)	0/0 (0)	3/32 (9.38)	7/25 (28)	292/520 (56
Ceftazidime	160/212 (75.47)	80/91 (87.91)	40/52 (76.92)	83/155 (53.55)	20/25 (80)	3/32 (9.38)	7/25 (28)	393/592 (66
Ciprofloxacin	134/236 (56.78)	55/105 (52.38)	0/52 (0)	40/155 (25.81)	19/31 (61.29)	8/32 (25)	4/25 (16)	260/636 (40
Co-trimoxazole	72/125 (57.6)	49/105 (46.67)	0/52 (0)	51/155 (32.9)	13/24 (54.17)	12/32 (37.5)	6/13 (46.15)	203/506 (40
Fosfomycin	0/0 (0)	0/0 (0)	8/52 (15.38)	0/0 (0)	0/0 (0)	0/0 (0)	0/0 (0)	8/52 (15.3
Gentamicin	205/262 (78.24)	90/105 (85.71)	34/52 (65.38)	26/155 (16.77)	21/34 (61.76)	7/32 (21.88)	10/25 (40)	393/665 (59
Netilmicin	0/0 (0)	0/0 (0)	2/52 (3.85)	0/40 (0)	8/15 (53.33)	0/0 (0)	0/0 (0)	10/107 (9.3
Piperacillin-Tazobactam	16/61 (26.23)	3/12 (25)	3/12 (25)	0/49 (0)	0/1 (0)	1/10 (10)	0/1 (0)	23/146 (15.
Tigecycline	5/263 (1.9)	5/91 (5.49)	20/52 (38.46)	0/0 (0)	0/0 (0)	0/0 (0)	0/0 (0)	30/406 (7.3
Tobramycin	0/0 (0)	0/0 (0)	0/52 (0)	2/141 (1.42)	0/0 (0)	0/0 (0)	7/25 (28)	9/218 (4.1
Trimethoprim	0/0 (0)	43/91 (47.25)	0/52 (0)	0/0 (0)	0/0 (0)	0/0 (0)	5/12 (41.67)	48/155 (30.9


Note: Antibiotics excluded with less than a pooled totals of 50 isolates (Gram-negative) and 20 isolates (Gram-positive)

			Gram	n Positive				
3GC	1/1 (100)	0/10 (0)	/ (0)	0/2 (0)	0/2 (0)	0/6 (0)	0/1 (0)	1/22 (4.55)
Aminopenicillin	3/13 (23.08)	0/6 (0)	0/2 (0)	4/7 (57.14)	0/6 (0)	0/1 (0)	0/0 (0)	7/35 (20)
Methicillin	0/2 (0)	0/4 (0)	0/2 (0)	2/5 (40)	3/7 (42.86)	1/16 (6.25)	6/7 (85.71)	12/43 (27.93
Clindamycin	1/2 (50)	4/14 (28.57)	0/2 (0)	1/7 (14.29)	5/13 (38.46)	5/21 (23.81)	7/9 (77.78)	23/68 (33.82
Co-trimoxazole	0/3 (0)	0/4 (0)	0/2 (0)	0/0 (0)	1/7 (14.29)	1/17 (5.88)	5/6 (83.33)	7/39 (17.95
Erythromycin	0/2 (0)	3/10 (30)	/ (0)	0/2 (0)	3/8 (37.5)	2/5 (40)	2/2 (100)	10/29 (34.4
Penicillin	5/9 (55.56)	0/20 (0)	1/2 (50)	7/14 (50)	2/21 (9.52)	15/22 (68.18)	6/9 (66.67)	36/97 (37.1
Teicoplanin	0/13 (0)	0/0 (0)	0/2 (0)	0/0 (0)	0/0 (0)	0/0 (0)	0/7 (0)	0/22 (0)
Vancomycin	2/12 (16.67)	0/10 (0)	0/2 (0)	2/12 (16.67)	0/7 (0)	0/18 (0)	0/7 (0)	4/68 (5.88)

Note: Antibiotics excluded with less than a pooled totals of 50 isolates (Gram-negative) and 20 isolates (Gram-positive)

		Indonesia		Philippines	Sri Lanka	Malaysia	Vietnam	Total
Antimicrobial	1	2	3	4	5	6	7	
	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)	(n/N) (%)
				Aminopenicillin				
E. coli	8/17 (47.06)	26/26 (100)	0/7 (0)	10/14 (71.43)	0/1 (0)	14/15 (93.33)	0	58/80 (72.5)
Enterobacter	42/55 (76.36)	5/5 (100)	0	2/9 (22.22)	4/4 (100)	8/8 (100)	0	61/81 (75.31)
Enterococcus	2/8 (25)	0/6 (0)	0	4/7 (57.14)	0/6 (0)	0/1 (0)	0	6/28 (21.43)
Serratia	1/2 (50)	6/6 (100)	0/6 (0)	31/40 (77.5)	1/1 (100)	1/1 (100)	0	40/56 (71.43)
				Gentamicin				
Acinetobacter	66/77 (85.71)	55/57 (96.49)	10/11 (90.91)	48/67 (71.64)	23/25 (92)	1/1 (100)	0/1 (0)	203/239 (84.9
E. coli	9/17 (52.94)	23/26 (88.46)	4/7 (57.14)	3/14 (21.43)	0/1 (0)	6/15 (40)	6/9 (66.67)	51/89 (57.3)
Enterobacter	33/55 (60)	0/5 (0)	3/6 (50)	3/9 (33.33)	6/7 (85.71)	0/8 (0)	0/1 (0)	45/91 (49.45
Klebsiella	161/185 (87.03)	50/53 (94.34)	26/33 (78.79)	20/92 (21.74)	0/2 (0)	0/7 (0)	4/6 (66.67)	261/378 (69.0
Pseudomonas	3/15 (20)	2/5 (40)	2/4 (50)	3/8 (37.5)	2/5 (40)	0/5 (0)	1/1 (100)	13/43 (30.23
Serratia	2/2 (100)	3/6 (50)	1/6 (16.67)	0/40 (0)	1/1 (100)	1/1 (100)	0/9 (0)	8/65 (12.31)
			3rd	Generation Cephalospo	orins			
E. coli	9/19 (47.37)	3/26 (11.54)	4/7 (57.14)	4/14 (28.57)	0/1 (0)	2/15 (13.33)	5/9 (55.56)	27/91 (29.67
Enterobacter	26/44 (59.09)	5/5 (100)	3/6 (50)	2/9 (22.22)	5/6 (83.33)	0/8 (0)	0/1 (0)	41/79 (51.9)
GBS~	1/1 (100)	0/9 (0)	0	0/2 (0)	0/2 (0)	0/5 (0)	0/1 (0)	1/20 (5)
Klebsiella	158/183 (86.34)	53/53 (100)	30/33 (90.91)	77/92 (83.7)	2/2 (100)	1/7 (14.29)	4/6 (66.67)	325/376 (86.4
Serratia	2/2 (100)	3/6 (50)	1/6 (16.67)	5/40 (12.5)	1/1 (100)	1/1 (100)	0/9 (0)	13/65 (20)
				Carbapenems				
Acinetobacter	68/85 (80)	47/57 (82.46)	6/11 (54.55)	46/67 (68.66)	27/30 (90)	0/1 (0)	0/1 (0)	194/252 (76.9
E. coli	5/17 (29.41)	9/26 (34.62)	2/7 (28.57)	2/14 (14.29)	0/1 (0)	0/15 (0)	0/9 (0)	18/89 (20.22
Enterobacter	8/56 (14.29)	0/5 (0)	1/6 (16.67)	0/9 (0)	6/7 (85.71)	0/4 (0)	0/1 (0)	15/88 (17.05
Klebsiella	47/195 (24.1)	4/53 (7.55)	6/33 (18.18)	20/92 (21.74)	1/2 (50)	0/7 (0)	0/6 (0)	78/388 (20.1
Pseudomonas	5/17 (29.41)	2/5 (40)	1/4 (25)	3/8 (37.5)	1/5 (20)	0/5 (0)	1/1 (100)	13/45 (28.89
Serratia	0/3 (0)	0/6 (0)	0/6 (0)	1/40 (2.5)	0/1 (0)	0/1 (0)	0/9 (0)	1/66 (1.52)
				Penicillin				
Enterococcus	2/7 (28.57)	0/6 (0)	0	4/7 (57.14)	0/6 (0)	0	0	6/26 (23.08)
GBS	0	0/9 (0)	0	0/2 (0)	0/12 (0)	0/5 (0)	0/2 (0)	0/30 (0)
S. aureus	2/1 (200)	0/4 (0)	1/2 (50)	3/5 (60)	2/2 (100)	15/16 (93.75)	6/7 (85.71)	29/37 (78.38
				Methicillin				
S. aureus	0/2 (0)	0/4 (0)	0/2 (0)	2/5 (40)	3/7 (42.86)	1/16 (6.25)	6/7 (85.71)	12/43 (27.91
				Vancomycin				
Enterococcus	2/6 (33.33)	0/6 (0)	0	2/7 (28.57)	0/0 (0)	0/1 (0)	0	4/20 (20)
S. aureus	0/6 (0)	0/4 (0)	0/2 (0)	0/5 (0)	0/7 (0)	0/16 (0)	0/7 (0)	0/47 (0)

Note: Species with less than 15 total isolates omitted from table. ~GBS (Group B Streptococcus)

