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Multimodal mental health assessment with remote
interviews using facial, vocal, linguistic, and

cardiovascular patterns
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Gari D. Clifford

Abstract— Objective: The current clinical practice of psychi-
atric evaluation suffers from subjectivity and bias, and requires
highly skilled professionals that are often unavailable or unaf-
fordable. Objective digital biomarkers have shown the potential
to address these issues. In this work, we investigated whether
behavioral and physiological signals, extracted from remote
interviews, provided complimentary information for assessing
psychiatric disorders.

Methods: Time series of multimodal features were derived from
four conceptual modes: facial expression, vocal expression, lin-
guistic expression, and cardiovascular modulation. The features
were extracted from simultaneously recorded audio and video
of remote interviews using task-specific and foundation models.
Averages, standard deviations, and hidden Markov model-derived
statistics of these features were computed from 73 subjects.
Four binary classification tasks were defined: detecting 1) any
clinically-diagnosed psychiatric disorder, 2) major depressive
disorder, 3) self-rated depression, and 4) self-rated anxiety. Each
modality was evaluated individually and in combination.

Results: Statistically significant feature differences were found
between controls and subjects with mental health conditions. Cor-
relations were found between features and self-rated depression
and anxiety scores. Visual heart rate dynamics achieved the best
unimodal performance with areas under the receiver-operator
curve (AUROCs) of 0.68-0.75 (depending on the classification
task). Combining multiple modalities achieved AUROCs of 0.72-
0.82. Features from task-specific models outperformed features
from foundation models.

Conclusion: Multimodal features extracted from remote inter-
views revealed informative characteristics of clinically diagnosed
and self-rated mental health status.

Significance: The proposed multimodal approach has the
potential to facilitate objective, remote, and low-cost assessment
for low-burden automated mental health services.

Index Terms—Telehealth, Machine Learning, Digital
Biomarker, Multimodal, Depression, Anxiety Disorder, Mental
Health, Computer Vision, Acoustic, Foundation model, remote
photoplethysmography
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I. INTRODUCTION

The World Health Organization estimated in 2019 that
13% of the world population, or close to one billion people
worldwide, live with a mental disorder, where most of them
do not have access to effective care [1]. Since the COVID-
19 pandemic, those numbers have been rising rapidly, and the
pandemic continued to impede access to already underserved
psychiatric health services [2]–[4]. In addition to being the sec-
ond most common cause of years of life lived with disability
worldwide [5], this crisis of psychiatric disorders translates
to an economic burden of $280 billion every year in the
United States alone [6]. To reduce the high yearly cost and to
delay the transition into often chronic or life-long psychiatric
conditions, it is critical to gain a better understanding and
to provide objective, fast, and accessible detection of those
disorders to enable early and effective interventions. However,
the present diagnosis and phenotyping of psychiatric disorders
fail to fully satisfy this dire need due to its subjectivity and
biases, and access to psychiatric care is limited even in high-
income countries such as the US [7].

Currently, psychiatric disorders such as depression and
anxiety disorder are diagnosed through the subjective clinical
evaluation of signs and symptoms established by the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-
5) [8] or the International Classification of Diseases, 10th
revision [9]. These diagnostic criteria often suffer from low
inter-rater reliability. In the DSM-5 field trials [10], inter-rater
reliability (Cohen’s kappa, κ) was just 0.28 for a diagnosis
of major depressive disorder (MDD) and 0.20 for general
anxiety disorder (GAD). The reliability for a diagnosis of
MDD was even lower (κ = 0.16) when interviews were
carried out by general practitioners [11], who perform large
percent of diagnoses worldwide [12] and in the US as well
due to the decline of supply of psychiatrists [13]. Factors
such as differences in training, biases (race, gender, culture),
and interview style were the most common explanations for
discrepancies between raters [14], [15]. Self-rated question-
naires such as General Anxiety Disorder-7 (GAD-7) [16], and
Patient Health Questionnaire-9 (PHQ-9) [17] are also widely
used in practice for initial screening and symptom monitoring
purposes. Naturally, these scales are highly subjective as they
are self-reported: the symptoms reported tend to be over-
reported and more severe than observer ratings and highly
depend on the subjective response processes [18].
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The rapid development of objective automated digital as-
sessment tools has the potential to aid clinicians in the diag-
nosis and evaluation of mental illness and to limit the impact
of these illnesses on patients and on society [19]. Research
groups have developed tools using various types of data modal-
ity, validated in numerous mental health populations, including
depression [20], [21], anxiety disorder [22], schizophrenia
[23], posttraumatic stress disorder (PTSD) [24], and almost all
common psychiatric disorders. Diverse modalities of signals
have been investigated, including behavioral signals, such as
facial and body movements [20], [21], [25], speech acoustics
[26]–[28], verbal or written content [29], sleep [30] and activ-
ity [24], [31] patterns, as well as physiological signals such as
cardiovascular (heart rate [24], [32], electrocardiogram [28],
[33], etc. ) and neural signals (electroencephalogram [34],
[35], functional magnetic resonance imaging [36], [37] and
functional near-infrared spectroscopy [38]). The multimodal
approach, or the combination of multiple types of signals, has
been widely adopted to improve the accuracy and robustness
of those automated assessments [39], [40]. For example, [41],
[42] combined behavioral signals, including cues from video,
audio, and text, while others [24], [43] found the combination
and interaction between physiological and behavioral signals
were also useful in evaluating disorders.

While the findings in the above studies were promising,
there remain unsolved challenges: data in most of them were
collected within a lab-controlled environment and/or with
specialized hardware, which prohibits potential future access
and might not be able to generalize to actual clinical practice.
The increasing use of telemedicine in psychiatry in recent
years, even further accelerated by the COVID-19 pandemic
[44], provided a promising approach to improve the access
and effect of psychiatric care [45]–[47], while at the same
presented an unprecedented opportunity of data collection
for objective psychiatric assessments development without the
limitation of geographical location and specialized hardware
[48]. This begs the question of whether data collected re-
motely, such as in [49], [50], and in our previous research
protocol [19], can provide a similar level of information as
the data collected in a lab-controlled environment.

To address those challenges, we investigated whether each
and the combination of behavioral and physiological signals,
extracted from audio-visual recordings of remote telehealth
interviews, which were collected using heterogeneous generic
electronic devices (laptops, tablets, or smartphones) from the
patients, were informative in assessing the multiple facets of
psychiatric disorders of control subjects and subjects with
mental health conditions (MHC).

The main contributions of this work are as follows: (1)
We showed that audio-visual recordings of remote interviews
collected fully remotely and without device limitation could be
used to assess mental health states, with similar performance
compared to the performance shown in previous studies where
data were collected from lab-controlled environments. (2)
We proposed a multimodal machine learning analysis frame-
work, where we extracted both hand-crafted features and self-
supervised-learned representations of facial, vocal, linguistic,
and remote photoplethysmography (rPPG) patterns using sig-

nal processing approaches and state-of-the-art deep learning
models, including convolutional neural networks (CNN) and
transformer-based [51] foundation models. (3) Using those
features and derived temporal dynamics, we compared the
performance of features extracted from different modalities,
with different models, and the performance of the combined
features of multiple modalities, in classifying states of depres-
sion, anxiety, and whether mentally healthy (i.e., without any
diagnosed disorder) using both self-reported scales (PHQ-9,
GAD-7) and diagnoses made by clinicians.

II. DATASET

A. Participants

The overall recruitment protocol can be found in Cotes et al.
[19], where we planned to recruit three outpatient groups: (1)
50 patients with schizophrenia, (2) 50 patients with unipolar
major depressive disorder, and (3) 50 individuals with no
psychiatric history. Due to the difficulty of recruiting enough
in-person schizophrenia subjects during COVID-19, in this
work, we focused on analyzing subjects recruited as control
and depressed subjects. A total of 84 subjects were recruited
as of July 17th, 2023, excluding schizophrenia subjects. The
Emory University Institutional Review Board and the Grady
Research Oversight Committee granted approval for this study
(IRB# 00105142). Interviewees were recruited from Research
Match (researchmatch.org), a National Institutes of Health-
funded online recruitment strategy designed to connect po-
tential participants to research studies, and through Grady’s
Behavioral Health Outpatient Clinic utilizing a database of
interested research participants. Participants were aged 18−65
and were native English speakers. For the initial screening,
interviewees were recruited for either a control group (no
history of mental illness within the past 12 months) or a group
currently experiencing depression. All diagnoses and group
categorizations were verified and finalized by the overseeing
psychiatrist and clinical team after the semi-structured inter-
view.

Two subjects did not meet the inclusion criteria based
on the information shared during the interview. Interviews
from four subjects were accidentally interrupted or unrecorded
due to technical issues with the subjects’ devices, and the
recorded audio or video files from five subjects were corrupted
or led to signal extraction errors in certain modalities (for
example, rPPG extraction error due to large percentage of
facial occupation due to large yaw angle). Hence, data from
73 subjects were included in the analyses. Table I shows the
demographics of those included participants.

B. Interviews and measurements

The study team created the interview guide and proto-
col and have components that simulate a psychiatric intake
interview [19]. All interviews were conducted remotely via
Zoom’s secure, encrypted, HIPAA-compliant telehealth plat-
form. Both Video and Audio were recorded. The remote
interview was divided into three parts: 1) A semi-structured
interview composed of a series of open-ended questions, a
thematic apperception test [52], phonetic fluency test [53], and
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TABLE I: Demographics of the 73 subjects grouped by
diagnoses ± indicates the standard deviation of the measured
variable. Subjects with current mental health conditions or
a history of diagnosis within 12 months were grouped as
“MHC”, while the rest were considered “Controls”. For gen-
der, “M” refers to male, “F” refers to female, “NB” refers
to non-binary, and “NA” refers to subjects who refused to
answer. For race, “W” refers to White, “B” refers to Black,
“A” refers to Asian, “H” refers to Hispanic, ”O” refers to
subjects who identify to more than one race, and “NA” refers
to subjects who refused to answer. The year of education
indicates the number of academic years a person completed
in a formal program provided by elementary and secondary
schools, universities, colleges, or other formal post-secondary
institutions. High school completion usually corresponds to
12 years of education, whereas college completion usually
corresponds to 16 years. † Education levels from two subjects
were not recorded, and therefore the last entry is based on 22
Controls and 49 MHC individuals. No significant differences
(Mann-Whitney, p > 0.05) were found in ages and years of
education between Controls and MHC.

Controls MHC
Number of Subjects 22 51

Age (Years) 42.7 ± 14.0 36.6 ± 13.2
Gender (M/F/NB/NA) 9/13/0/0 10/38/2/1

Race (W/B/A/H/O/NA) 10/7/2/0/2/1 28/10/9/2/2/0
Years of Education† 17.3 ± 4.6 16.7 ± 2.5

semantic fluency test [54], 2) a sociodemographic section, and
3) clinical assessments which included the Mini-International
Neuropsychiatric Interview (MINI) 6.0 [55], McGill Quality
of Life Questionnaire [56], General Anxiety Disorder-7 [16],
and Patient Health Questionnaire-9 [17].

C. Categorization

Subjects were categorized into four different two-class cat-
egorizations based on self-rated scales or clinicians’ diagnoses
to evaluate feature performances in classifying categorizations
generated from under different assessment procedures.

1) The first and primary categorization is control (n=22)
vs. subjects with mental health conditions (MHC,
n=51) based on diagnoses as shown in Table I. The
latter included subjects diagnosed with any mental
health condition currently or a history of diagnosis
within 12 months, including disorders like MDD, major
depressive episode (MDE), comorbid or primary GAD,
PTSD, panic disorder, social anxiety, agoraphobia,
psychotic disorder, manic illness, personality disorder,
and obsessive-compulsive disorder. The control group
included the remaining subjects, who could have mild
suicidality, mild agoraphobia, mild substance abuse and
dependence, or a remote history (not in the previous
12 months) of MDD/MDE and are not currently on an
antidepressant medication.

The following three categorizations only included a
subset of subjects due to inclusion/exclusion criteria

and missing self-rating results.

2) The second categorization is non-MDD-control (n=18)
vs. MDD (n=38, past or current). Since both groups
in the first categorization are heterogeneous, we used
this categorization to assess further whether differences
could be found between controls and subjects with past
or current MDD. In this case, we defined non-MDD-
control as subjects with no lifetime history of MDD
or other mental health conditions (but could have mild
suicidality, mild agoraphobia, mild substance abuse and
dependence), while the MDD subjects have primary
diagnoses of MDD but could include comorbid GAD,
PTSD, panic disorder, social anxiety, agoraphobia, and
substance use disorder.

3) The third categorization is moderately depressed (PHQ-
9 scores > 10, n=24) vs. rest (PHQ-9 scores <= 10,
n=43). PHQ-9 scores were not reported for six sub-
jects, resulting in 67 subjects in this categorization. To
evaluate performance in classifying the severity of self-
rated depression symptoms, we used a PHQ-9 score-
based categorization and adopted a cutoff of 10, which
indicates moderate depression [17].

4) The fourth categorization is moderate GAD severity
(GAD-7 scores > 10, n=16) vs. rest (GAD-7 scores
<= 10, n=49). GAD-7 scores were not reported for 8
subjects, resulting in 65 subjects in this categorization.
Similar to the third categorization, we used a GAD-7
score-based categorization and adopted a cutoff of 10,
which indicates moderate anxiety and a reasonable cut
for identifying cases of GAD [16], to evaluate perfor-
mance in classifying the severity of self-rated anxiety
symptoms.

III. METHODS

A. Multimodal feature extraction

Figure 1 shows the proposed multimodal analysis frame-
work that extracts visual, vocal, language, and rPPG time
series signals at the frame or segment level, summarizes those
time series with statistical and temporal dynamic features at
the subject level (except for text embedding from the large lan-
guage model, where the model directly generated subject-level
embedding), and evaluates the performance of these features
in clinical diagnoses or self-rated severity classification tasks
described in section. II-C.

1) Facial expressions and visual patterns: We followed the
CNN-based facial expression analysis framework we proposed
in our previous work [20], [57]. For each frame of the
recordings sample at 1 Hz (one frame per second), the face
of the participant is detected with RetinaFace [58] using a
ResNet-50 [59] backbone network trained on the “WIDER”
face dataset [60]. The face detector achieved an accuracy of
95.5% on the “Easy” validation set in WIDER face dataset,
where the faces were already much more difficult to detect
than the faces in our use case. After segmentation, the face
is fed into another CNN with VGG19 [61] structure, which
was trained on the “AffectNet” dataset [62], to estimate the
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Fig. 1: Overview of the processing pipeline. Colored dashed-boxes denote features from different modalities, including
physiological, visual, audio, and language features.

probabilities of the facial emotion expressed being into seven
categories, namely neutral, happiness, sadness, surprise, fear,
disgust, and anger. This facial emotion classifier was tested
on the evaluation set in the AffectNet dataset and on a subset
of the Radboud Faces Database (RaFD) [63]. It achieved an
accuracy of 63.3% in the AffectNet evaluation set and 90.1%
on the front-facing subset of the RaFD, while the accuracy of a
random guess approach is 14.4%. and the agreement between
two human annotators on the test set of AffectNet is only
60.7%.

To include facial behaviors less affected by cultural dif-
ferences, we adopted JAA-Net [64] to recognize 49 facial
landmarks and 12 facial action units [65] (AUs, or the individ-
ual components of facial muscle movement) expressed in the
frame. JAA-Net is a deep learning model that combines CNN
and adaptive attention module, and it achieved an average AU
detection accuracy of 78.6% (including AU1, 2, 4, 6, 7, 10,
12, 14, 15, 17, 23, 24) and face alignment mean error of
3.8% inter-ocular distance on BP4D dataset [66] with three-
fold cross-validation.

In addition to manually-defined facial expression signals,
including facial emotions, AUs, and facial landmark move-
ments, a self-supervised large vision foundation model named
“DINOv2” [67] was also used to extract general visual em-
bedding of the segmented facial area. While video foundation
models have better performance in short-video clips, the image
foundation model was used because the average length of the
video recorded in this study was significantly longer (one hour
vs. a few seconds). DINOv2 is a vision transformer (ViT) [68]
with one billion parameters trained on 1.2B unique images that

achieved decent performance on video classification tasks with
linear evaluation, including an accuracy of 90.5% on “UCF-
101” dataset [69]. A 1024-dimensional visual embedding was
generated from frames sampled at 1 Hz using the “ViT-L/14”
[68] model.

2) Language sentiments and representations: The patient-
side audio files were transcribed into texts using Amazon
Transcribe on HIPAA-compliant Amazon web services at
Emory, following the protocol detailed in our previous study
[70]. Similar to the audio analysis, only patient-side transcripts
during the semi-structured interview section were used to
avoid using subjects’ answers to sociodemographic or clinical
assessment questions.

We have previously found different word use patterns in
subjects with and without MDD using the linguistic inquiry
and word count (version LIWC-22) dictionary [71]. Here large
language models (LLMs) were used to identify the sentiments
and extract general representations to better understand the
subjects’ linguistic patterns. More specifically, three LLMs
were used: (1) At the utterance level, a distilled RoBERTa
model [72], [73] finetuned on 80% of 20k emotional texts (the
rest 20% was used as the test set with an average accuracy of
66%) was used to recognize one of seven emotions including
neutral, happiness, sadness, surprise, fear, disgust, and anger.
(2) Also at the utterance level, another RoBERTa-based model
finetuned on 15 diverse review datasets with a leave-one-
dataset-out accuracy of 93.2% [74] was used to recognize
positive or negative sentiment. Such fine-tuned utterance-level
deep learning models have been found to generate effective
representations in related contexts such as anxiety [75]. (3)

Synthesized faces in Fig. 1 were removed per medRxiv requirement.
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LLAMA-65B [76], one of the state-of-the-art open-sourced
decoder-only transformer models with 65 billion parameters
which were trained on over one trillion tokens of texts, was
used to generate an 8196-dimensional text embedding for the
entire transcripts during the semi-structured interview.

3) Vocal features and representations: Both manually de-
fined acoustic features and general audio representations were
extracted from audio files. Only patient-side audio during
the semi-structured interview section was used to avoid the
potential information leak directly from subjects’ answers to
sociodemographic or clinical assessment questions in MINI or
in self-rated questionnaires described in section II-B.

For manually defined features, PyAudioAnalysis [77] pack-
age was used to extract acoustic features at each 100ms win-
dow with 50% overlap, including zero crossing rate, energy,
entropy of energy, spectral centroid/spread/entropy/flux/rolloff,
Mel frequency cepstral coefficients, and 12 chroma vector and
corresponding standard deviations. WavLM [78], which is a
self-supervised audio foundation model with 316M parameters
(“WavLM Large”) trained on 94k hours of audio, was used
to extract general audio representations. It has shown state-
of-the-art performance in the universal speech representation
benchmark [79]. Recorded audio files were first resampled to
16k Hz and then segmented into non-overlapping 20ms seg-
ments following [78]. A 1024-dimensional audio embedding
was generated for each 20ms segment using WavLM.

4) Remote PPG cardiovascular features: Remote PPG sig-
nals were extracted from the video recordings using the pyVHR
package [80], [81]. The facial skin areas were recognized in
each frame using a CNN, 100 regions of interests (ROIs)
were sampled, and the pixel values were averaged across the
pixels in each ROI for each RGB channel, respectively. Then,
an unsupervised method, named orthogonal matrix image
transformation [82], was used to transform RGB values in
one ROI to an estimated 25 Hz rPPG signal based on QR
decomposition. The power spectral density of rPPGs at each
ROI was computed in six seconds windows sliding every
second, and the medians of the inverse of peak frequency
(60/peak frequency) were used to estimate heart rates at every
second.

Lastly, the averaged estimated rPPGs at each ROI were used
to extract cardiovascular dynamic features using PhysioNet
Cardiovascular Signal Toolbox [83] with a 300s window and
a 30s sliding window. The cardiovascular dynamic features in-
cluded time and frequency domain heart rate variability, accel-
eration and deceleration capacity, entropy measures, and heart
rate turbulence measures. Highly tolerant rejecting thresholds
were set to avoid rejecting high percentage of data, including
setting lowest tolerable mean signal quality index (as defined
in [83]) to be 0.1, allowing certain R-R intervals to be longer
than ten seconds, allowing two neighboring R-R intervals to
have a length difference of more than one second, and allowing
a 30 seconds gap at the beginning of the PPG signals.

B. Subject-level features and temporal analyses

Statistics of the time series extracted above were used as
subject-level features. Both average and standard deviations

over time were calculated for lower-dimensional (< 100)
time series, including time series of facial expressions (facial
emotions, AUs, and facial landmark locations sampled at 1
Hz), acoustic features (sampled at 20 Hz), language sentiments
(sampled at each utterance), and estimated heart rates (sampled
at 1 Hz). Only averages were calculated for higher-dimensional
( > 100) time series, including time series of WavLM audio
embedding and DINOv2 visual embedding. LLAMA-65B
embedding of the entire semi-interviews was directly used as
subject-level features.

In addition to nonparametric statistics, hidden Markov mod-
els (HMM) were used to model the dynamics of the low
dimensional time series, and statistics (duration and frequency
of inferred states) of the unsupervisely learned HMMs were
used as subject-level features. An HMM with a Gaussian ob-
servation model and four states was learned for each modality
separately using SSM package [84]. The number of states
was selected because it represents the smallest number of
states needed to model known different states: asymptomatic,
symptomatic, uncertain, and padding states. Each time series
of one modality from one subject k, Xk, was considered
as one noisy observation, where it is padded with zeros
to the maximum temporal length Tmax found from X1 to
XN (N = 73). i.e., Xk is a Tk × d with a feature dimension
of d and a temporal length of Tk was padded (Tmax−Tk)×d
zeros at the end, so all Xk has the same shape of Tmax × d.
The modality-specific HMM was then fitted on X , and the
most likely hidden states Zk with the shape of Tmax×4 were
inferred for each sequence Xk. Lastly, the time steps spent
and the frequency (non-neighboring occurrences) of all four
states were calculated for each subject and used as subject-
level dynamic features.

C. Classification analyses

We evaluated features generated from the above-described
processes in four two-class classification tasks described in
Section. II-C. Classification performances were measured by
the average area under the receiver operating characteristic
(AUROC) and the average accuracy in 100 repeated five-fold
cross-validations, where subjects were randomly stratified into
five approximately equally sized folds in each repetition.

1) Demographic variables: Demographic variables, includ-
ing one-hot-encoded race, one-hot-encoded gender, age, and
years of education, were combined into a demographic feature
vector for each subject and also evaluated as a benchmark in
unimodal classification. However, demographic features were
not considered in the multimodal classification.

2) Unimodal evaluation: For each modality, statistics (av-
erages and standard deviations) and HMM-derived features
were evaluated separately using a logistic regression (LR)
with l2 regularization or a gradient boosting decision tree
(GBDT) classifier, depending on the dimensionality of the
features, where LR was used for features with fewer than 100
dimensions.

3) Multimodal fusion: Both early and late fusion of differ-
ent modalities were considered. For early fusion, features from
all modalities were concatenated into a single feature vector
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as the input to a GBDT classifier. For late fusion, the majority
vote of each unimodal classifier was used as the multimodal
classification results. To avoid noise from classifiers without
classification power, we also compared the majority voting
results from classifiers that showed non-random (defined as
AUROC > 0.5) performance in the validation set (a 20%
subset within the training fold). The non-random classifiers
were re-trained with all the data in the training fold before
being used for testing.

D. Statistical Analyses

We used statistical tests to assess the differences in the
probability distributions of features between different groups
of subjects (such as groups described in Section. II-C and
demographic groups) and the differences in performance re-
sulting from different features. Mann-Whitney rank tests were
applied between features or characteristics of different subject
groups to determine whether significant differences exist be-
tween the two groups. McNemar’s test was used to evaluate
the classification disagreement between pairs of classification
settings. Wald Test was used to determine if a significant
correlation was found between two variables. Significance was
assumed at a level of p < 0.05 for all tests.

IV. RESULTS

A. Unimodal feature patterns across groups

Here we performed a selected array of analyses of the
clinically relevant patterns found in different modalities in
different groups of subjects, providing additional objective
evidence to previous clinical observations.

1) Blunted visual affect and increased sadness in language:
While ”blunted affect” was mostly in the context of a negative
symptom of schizophrenia, it has been widely reported in other
mental disorders like MDD [85]–[87] and other non-psychotic
disorders [88]. Measured by the sum of average AU intensities
over the interview, we found that non-medicated subjects with
current MDD had lower facial expressivity compared to non-
MDD controls (Mann-Whitney, p = 0.04), and subjects with
mental health conditions also had lower facial expressivity
compared to controls (Mann-Whitney, p = 0.03). However, no
differences in facial expressivity were found between subjects
with past MDD and non-MDD controls, and no statistically
significant linear correlations were found between facial ex-
pressivity and self-rated PHQ-9 or GAD-7 scores.

Through language sentiment analysis, neither was verbally
blunted affect found in the MDD or MHC groups nor language
expressivity correlate with self-rated scores. However, the
average sadness level expressed in language was found to
be higher in MDD groups compared to non-MDD-controls
(Mann-Whitney, p = 0.02) and was positively correlated with
PHQ-9 (Wald test, ρ = 0.31, p = 0.01) and GAD-7 (Wald
test, ρ = 0.37, p = 0.002) scores. In comparison, the sadness
level expressed visually did not increase in MDD groups.

2) Increased acoustic spectral flux: The average spectral
flux, defined as the squared difference between the normal-
ized magnitudes of the spectra of the two successive frames
averaged across the semi-structured interviews, was found to

be positively correlated with PHQ-9 (Wald test, ρ = 0.26, p =
0.03) and GAD-7 (Wald test, ρ = 0.25, p = 0.04) scores,
indicating a faster change of acoustic tones in subjects with
more severe depression and anxiety symptoms.

3) Increased complexity in heartbeat intervals: No signifi-
cant alternation of average heart rate or standard deviation of
heart rate during the interview was found between groups. The
complexity of the heartbeat time series, measured by the area
under the multiscale entropy curve, was significantly higher in
non-medicated MDD groups compared to non-MDD-controls
(Mann-Whitney, p = 0.01), consistent with previous findings
using electrocardiogram [89], [90].

4) Effect of medication: Compared to non-medicated MDD
subjects, medicated MDD subjects showed a higher level of
facial expressivity (Mann-Whitney, p = 0.05) and sadness
(Mann-Whitney, p = 0.04), while only non-medicated subjects
with current MDD showed a higher level of sadness through
language compared to medicated subjects with current MDD
(Mann-Whitney, p = 0.04). In addition, decreased heartbeat
interval complexity (Mann-Whitney, p = 0.02) and increased
standard deviation of heart rate (Mann-Whitney, p = 0.02)
were observed with medication in subjects with past and
current MDD compared to non-medicated MDD subjects,
while the average heart rate remained similar between both
groups.

B. Dynamics inferred from HMM state duration and frequency

Dynamic features, including inferred HMM state duration
and frequency, were found to be the most useful features
in classification tasks, as shown in Table II, especially for
facial expressions and rPPG modalities. Significant linear
correlations were found between these dynamic features and
PHQ-9/GAD-7 scores.

Figure 2 shows the correlation plots between the frequency
of the states in emotion and heart rate time series. The padding
states (described in section III-B) from rPPG and facial
expression HMMs were omitted as they would only present
once (frequency=1) as the padding in the end. Statistically
significant positive correlations were found between all non-
padding state frequency and self-rated scores except emotion
state 2, indicating a higher switching rate between hidden
states may be related to more severe depression and anxiety
symptoms.

C. Classification performance

Table II shows the classification performance of both clin-
ically diagnosed and self-rated mental health disorders using
static and dynamic features from vision, audio, language, and
physiology. Each column shows the performance of two-class
classification using one of the four categorizations defined in
Section. II-C in the same order. The best-performing features
achieved an AUROC of 0.68 to 0.75 in unimodal classification
tasks, while the selected majority voting described in Section
III-C3 achieved an AUROC of 0.82 in detecting current or
recent (last 12-month) mental disorders, an AUROC of 0.77
in detecting past and current MDD, an AUROC of 0.82 in
detecting PHQ-9 based moderate depression, and an AUROC
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Fig. 2: PHQ-9 and GAD-7 scores vs. rPPG and facial expression HMM state frequencies Each subfigure shows the scatter
plot between self-rated scores and the frequency of a learned HMM state, along with a linear regression model fit with the
95% confidence interval. The top row shows how those learned state correlate with PHQ-9 scores and the bottom row shows
how they correlate with GAD-7 scores. Texts in each subfigure denote the Pearson correlation coefficient (ρ) and the p-value
using the Wald test.

of 0.72 in detecting GAD-7 based moderate anxiety disor-
der. Late fusion using selected majority voting ( row “9.3”)
outperformed early fusion with the direct concatenation of
features (McNemar’s test, p ≪ 0.01) due to the extremely
high dimensionality of the concatenated features.

While demographic variables achieved higher than random
performance in all four tasks, we found they were not strong
predictors of mental health disorders compared to the proposed
features, as shown in row “1” in Table II.

1) Moments and dynamics of facial expressions revealed
mental states but general visual patterns did not: While we
also extracted facial landmarks as described in Section III-A1,
we found adding static statistics of facial landmarks or includ-
ing facial landmarks in the HMM modeling deteriorated the
performance. Row “2” in Table II shows the performance using
just the statistics of facial emotions and AUs. Interestingly, the
average and standard deviation of facial expressions failed to
classify clinical diagnoses but successes in classifying self-
rated depression and anxiety. In comparison, the temporal
properties derived from HMM resulted in significantly better
(McNemar’s test, p ≪ 0.01) classification performance, except
for self-rated depression detection. Lastly, using the temporal
dynamics of facial expressions achieved the best performance
in self-rated anxiety in all modalities.

In comparison, visual embedding generated from DINOv2
failed to generalize to this specialized dataset and did not
achieve non-random classification in any of the tasks.

2) Language sentiments beat general language represen-
tation in small and specialized dataset: Compared to other
modalities, language features were extracted at a lower sam-
pling rate (at each utterance or the entire semi-structured
interview), while LLMs were able to abstract the texts into
much shorter sequences of features or even into a single
vector when LLAMA-65B was used. The average and stan-
dard deviation of the language sentiments achieved the best
performances compared to static features of other modalities.

Using HMM to model the sentiment dynamics did not improve
performance, as shown in all other modalities (comparing
rows “4.2” and “4.1”). These results showed that part of the
dynamics expressed through the words was already captured
by LLM and abstracted into utterance sentiments, and the
sentiment dynamics over multiple utterances might not be as
important.

Additionally, while using LLAMA-65B embedding showed
decent performance compared to other non-language modal-
ities, using language sentiments achieved similar or better
results in all tasks. This showed that general language repre-
sentation might not be as useful as disorder-related sentiment
analysis, especially in smaller and highly-specialized datasets,
as demonstrated in this study, and suggested in related work
on text-based depression and personality detection [91], [92].

3) Vocal features were under-performing compared to other
modalities: While many previous studies [26], [27], [93] have
shown that vocal features are useful in detecting depression
and anxiety disorder, in this study, other modalities out-
performed both spectral/entropy-based acoustic features and
general speech representation from WavLM except in self-
rated depression detection.

4) HMM modeled dynamics were more informative com-
pared to cardiovascular features for highly noisy rPPG sig-
nals: As shown in row “8.1” in Table II, using cardiovascu-
lar features yielded inferior performance compared to other
modalities. The key reason is the estimated rPPG signals
were highly noisy at each ROI or after averaging across all
ROIs, which led to errors (such as peak detection error) in
downstream cardiovascular feature calculations. On average,
25.8% of the estimated rPPGs were not used for downstream
analyses even with highly tolerant rejecting thresholds as
described in Section III-A4. Using HMM-derived features
from modeling heart rate time series resulted in the best or
second-best performance in all four tasks among all unimodal
approaches, reaching AUROCs from 0.68 to 0.75.
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TABLE II: Classification performance of clinical diagnoses and self-rated depression/anxiety severity. Each column shows
the performance of two-class classification using one of the four categorizations defined in Section. II-C in the same order.
The average and the standard deviation of AUROCs and accuracies (in brackets) from a hundred randomly-split five-fold
cross-validations are reported. The term avgs denotes averages, and stds denotes standard deviations. “random” indicates that
the classifier performed no significantly better (McNemar’s test, p > 0.05) than random guessing (AUROC=0.5). The best
classification performance in each task (column) achieved by a single modality was shown in bold text, while the second best
was underlined. Multiple metrics were underlined or marked bold when no statistical significance (McNemar’s test, p > 0.05)
between classifiers was found. The best classification performance in each task (column) achieved by multimodal fusion was
shown in bold text. “†” indicates significantly better performance (McNemar’s test, p < 0.05) was achieved with the indicated
feature type in this classification task (each column) compared to other unimodal features, where “‡” indicates significantly
better performance (McNemar’s test, p < 0.05) was achieved with multimodal voting compared to using any unimodal features.

Feature type Metric 1. Control vs. MHC 2. Non-MDD-Control vs. MDD 3. PHQ-9 > 10? 4. GAD-7 > 10?
1. Demographic variables AUROC 0.54± 0.04 0.54± 0.04 0.61± 0.03 0.57± 0.05

Accuracy 0.56± 0.04 0.57± 0.04 0.58± 0.04 0.60± 0.04
2. Facial emotions + AUs

2.1 Avgs and stds AUROC random random 0.56± 0.06 0.55± 0.04
Accuracy random random 0.60± 0.05 0.62± 0.04

2.2 HMM features AUROC 0.65± 0.03 0.66± 0.04 0.61± 0.04 0.68± 0.05
Accuracy 0.64± 0.03 0.66± 0.04 0.60± 0.04 0.67± 0.03

3. DINOv2 avgs and stds Both random random random random
4. Language sentiment

4.1 Avgs and stds AUROC 0.69± 0.03 0.66± 0.04 0.64± 0.05 0.63± 0.04
Accuracy 0.67± 0.04 0.68± 0.04 0.67± 0.05 0.64± 0.04

4.2 HMM features AUROC 0.62± 0.03 0.64± 0.04 random 0.65± 0.05
Accuracy 0.65± 0.03 0.60± 0.03 random 0.73± 0.04

5. LLAMA-65B AUROC 0.64± 0.07 0.53± 0.08 0.68± 0.04 0.64± 0.05
Accuracy 0.68± 0.05 0.59± 0.07 0.68± 0.03 0.70± 0.04

6. WavLM avgs and stds AUROC random 0.58± 0.05 0.60± 0.06 0.59± 0.02
Accuracy random 0.61± 0.05 0.64± 0.05 0.71± 0.02

7. Vocal acoustics
7.1 Avgs and stds AUROC random random 0.68± 0.05 random

Accuracy random random 0.67± 0.05 random
7.2 HMM features AUROC 0.57± 0.05 0.51± 0.06 0.51± 0.05 0.53± 0.05

Accuracy 0.59± 0.04 0.53± 0.05 0.53± 0.05 0.60± 0.04
8. rPPG

8.1 Cardiovascular features AUROC random 0.55± 0.07 0.65± 0.04 0.56± 0.05
Accuracy random 0.61± 0.05 0.60± 0.04 0.59± 0.04

8.2 HMM features AUROC 0.72± 0.05 † 0.73± 0.05 † 0.75± 0.03 † 0.68± 0.04
Accuracy 0.76± 0.04 † 0.73± 0.05 † 0.71± 0.03 † 0.67± 0.03

9. Fusion (row 2-8)
9.1 Feature concatenation AUROC 0.63± 0.07 random 0.59± 0.05 0.53± 0.05

Accuract 0.68± 0.05 random 0.61± 0.04 0.62± 0.04
9.2 Majority vote AUROC 0.70± 0.05 0.68± 0.07 0.75± 0.05 0.71± 0.05

Accuracy 0.73± 0.03 0.71± 0.04 0.71± 0.04 0.76± 0.03
9.3 Selected vote AUROC 0.82± 0.04 ‡ 0.77± 0.02 ‡ 0.82± 0.04 ‡ 0.72± 0.04 ‡

Accuracy 0.75± 0.03 ‡ 0.76± 0.01 ‡ 0.74± 0.04 ‡ 0.75± 0.03 ‡

V. DISCUSSION AND CONCLUSION

In this work, we performed a thorough multimodal analysis
on 73 subjects using remotely-recorded telehealth interviews
and showed that the facial, vocal, linguistic, and cardiovascular
features extracted from these audiovisual recordings could
reveal informative characteristics of both clinically diagnosed
and self-rated mental health status. The results provided early
evidence of the usefulness of multimodal digital biomarkers
extracted from low-cost and non-lab-controlled data with min-
imal hardware limitations. Comparisons were made between
different modalities and between features derived from the
latest transformer-based foundation models and more defined
features derived from traditional methods, offering insights
on which modalities and methods might be most suited for
automated remote mental health assessments.

A. Performance of different modalities

When comparing the classification performance using fea-
tures extracted from different modalities, it is clear that overall
physiological characteristics outperformed other manually-
defined or data-driven behavioral characteristics. Heart rate
dynamics were highly relevant in classifying self-rated and
clinician-diagnosed disorders, even though the heart rates were
estimated indirectly from light changes on the face. While it is
not surprising to find associations between cardiovascular dy-
namics and psychiatric disorders, as shown in previous studies
of neurobiological mechanisms [94] and statistical analyses
[95], [96], the results raised questions on the behavioral
features extracted in this study. More investigations are needed
to answer whether they underperformed because the current
state-of-the-art models cannot capture enough information in
remote interviews, or behavioral signals are not as useful as
physiological signals in telehealth settings, even for human
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experts.
Among behavioral modalities, overall facial and language

patterns led to better classification performance than patterns
derived from audio, although the latter resulted in a compara-
ble performance in detecting self-rated depression. While over-
all facial and language patterns led to similar levels of perfor-
mance, it is worth noting that they performed very differently
in different tasks, suggesting the same modality might perform
differently for different mental health assessment tasks. For
example, facial expression dynamics were much more useful
in detecting self-rated anxiety than self-rated depression, yet
similarly useful in detecting clinical MDD. On the contrary,
Language embedding was more powerful in detecting self-
rated disorders than clinically diagnosed disorders. These
findings caution us on translating and interpreting results found
using self-rated or self-reported scales directly for clinical
applications, where the categorization criteria and process are
different, in addition to the subject distribution shift, which
was not shown in this study (as they were evaluated on the
same group of subjects).

B. The use of foundation models

Foundation models have gained enormous popularity in the
last few years with the rapid development of pre-training
and self(semi)-supervised training methods [97], [98], espe-
cially since the release of OpenAI’s ChatGPT. LLMs, along
with visual [67], audio [78], and multimodal [99] foundation
models were widely applied in many disciplines, including
the mental health domain, but primarily limited to language
analyses and self-rated (self-reported) conditions [100], [101].
By comparing the direct use of unimodal foundation model-
generated embedding to manually defined features from the
same modalities, we showed how they perform in more
clinically-relevant tasks under the telehealth settings.

The statistics of the visual embedding from DinoV2 were
not at all useful in detecting mental health disorders. This find-
ing was partially expected because the majority of extracted
general visual representations would be more relevant to the
texture and appearance of the face, especially after averaging,
while the dynamics of the high-dimensional embedding would
be hard to find with a limited number of recordings (discussed
in more details in section V-C below). Preliminary results
using other vision foundation models in this dataset did not
show better classification performances either, including using
models tuned for facial representation (“FaRL” [102]) and for
facial video representations (“MARLIN” [103]).

Although audio embedding from WavLM only outper-
formed acoustic features slightly here, it showed the potential
of using the general audio embedding from a more diversely
pre-trained audio foundation model in datasets with more
subjects. Interestingly, general text embedding of the entire
semi-structured interview from LLAMA-65B performed sim-
ilarly when compared to sentiment analyses considering the
extremely high feature dimensionality and the small number
of recordings. With the rapid development of LLMs and the
inclusion of more diverse training texts, such as the recent
release of LLAMA2 [104], general LLMs could potentially

outperform fine-tuned task-specific LLMs in mental health
assessment tasks in the near future.

C. Limitations and future directions

Several limitations of this study need to be acknowledged,
as they provide valuable insights into the boundaries of our
findings and potential directions for future studies.

First, the number of subjects (n=73) and their heterogeneity
might limit our findings’ generalizability. While the number
of subjects will grow as we keep collecting data following our
previous protocol [19], the heterogeneity issue might not be
easily addressed. Although we recruited subjects with clear
inclusion/exclusion criteria and further excluded subjects after
the interview if they did not fall into our criteria, the intrinsic
nature of high comorbidity levels in different mental disorders
makes it difficult to recruit a “clean” cohort of subjects
with clear diagnoses of a single type of disorder. Another
heterogeneity came from medication status, which has been
known to affect both behaviors and physiology of the patients
[105]–[107]. That said, we believe the heterogeneity could be
partially addressed as the number of subjects grows because
analyses of smaller and more well-defined groups, which do
not have enough samples currently, could be performed. As the
number of subjects grows, models used for feature extractions
could be potentially fine-tuned on the targeted population
instead of being only trained on open-access datasets, which
could further close the gap in getting accurate features from
the target population.

Second, potential bias in the feature extraction process
might exist. The facial expression model used in this study was
evaluated in our previous research [57], but the features from
other modalities were extracted using open-access models
that may bias towards certain demographic groups, leading
to potential skew in the findings. For example, LLAMA is
reported to be biased in religion, age, gender, and other aspects
as it was trained with internet-crawled data [76]. A thorough
bias analysis must be performed in a future study before
applying it clinically.

Third, the unimodal and multimodal classification and fu-
sion methods used in this study could be improved given a
larger and more densely labeled dataset. Only one label (per
task) was available for the entire recording, which made it
difficult to apply temporal models such as recurrent neural
networks or transformers to directly classify high-dimensional
time series with thousands to tens of thousands of steps. A
potential solution is augmenting the labels by segmenting the
recordings into shorter clips and assigning the same labels for
all the clips from the same subjects. However, this process
may lead to many false positives as the symptoms or cues
relevant to mental health might only appear a few times.
Similarly, a multimodal transformer could be potentially used
for fusion, provided the label sparsity challenge is addressed.
A potential future direction is to label the entire recording
more frequently in time. For example, simple measurements
like self-rated or clinician-rated levels of distress could be
adopted. Another potential direction is to utilize the potential
improvement in pre-trained foundation models. For instance,
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LLMs with larger context windows might enable few-shot
classification by including a few examples of transcripts and
categorizations in the prompt.

D. Potential clinical applications
With larger and more diverse samples, we see considerable

potential clinical utility for the proposed multimodal objective
assessment approach (and future applications informed by this
technology) in several areas: 1) deepening understanding of
psychopathology and outward manifestations of symptoms,
2) utility for diagnostic purposes, 3) assessing changes in
symptoms longitudinally for the same patient, and 4) for
patient self-report, engagement, and empowerment. First, this
technology has the potential to better objectify and quantify
core signs and symptoms of certain mental health conditions,
like affective flattening or tangential speech. Second, this
technology has the potential to augment the initial diagnostic
process for clinicians in both research and clinical settings.
Developing real-time reporting of digital biomarker outputs
in the form of a dashboard may help clinicians may hone
into a certain line of clinical questions to better help establish
a diagnosis. This technology may have a role in reducing
bias and discrimination in the diagnostic process, as currently,
the preponderance of evidence suggests that Black/African
American individuals and Hispanic individuals are dispropor-
tionally diagnosed with psychotic disorders [108]. In time,
combining digital biomarkers in addition to other blood-based
and imaging markers, could play a potential role in subtyping
mental health conditions according to treatment response or
identifying individuals at risk who might develop the condition
[109]. Third, applications of this technology can help clini-
cians and researchers to assess changes in symptoms over time
for the same patient. This is crucial for the health care team to
understand if the treatment plan is working and may help to
accelerate measurement-based care efforts and overcome some
of the barriers to implementation [110]. Additionally, accurate
assessment is the cornerstone of clinical research studies which
ultimately determines whether new treatments are approved,
and unreliable assessments can have significant consequences
to the study and to the field more broadly [111]. Finally,
future applications informed by this technology can play an
important role in empowering patients to participate in self-
assessment and ongoing monitoring of their symptoms. Such
applications may help to improve the accessibility/timeliness
of assessments and even reduce stigma around mental health
[112].
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