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Abstract 

CRISPR base editing screens are powerful tools for studying disease-associated variants at scale. 

However, the efficiency and precision of base editing perturbations vary, confounding the assessment of 

variant-induced phenotypic effects. Here, we provide an integrated pipeline that improves the 

estimation of variant impact in base editing screens. We perform high-throughput ABE8e-SpRY base 

editing screens with an integrated reporter construct to measure the editing efficiency and outcomes of 

each gRNA alongside their phenotypic consequences. We introduce BEAN, a Bayesian network that 

accounts for per-guide editing outcomes and target site chromatin accessibility to estimate variant 

impacts. We show this pipeline attains superior performance compared to existing tools in variant 

classification and effect size quantification. We use BEAN to pinpoint common variants that alter LDL 

uptake, implicating novel genes. Additionally, through saturation base editing of LDLR, we enable 

accurate quantitative prediction of the effects of missense variants on LDL-C levels, which aligns with 

measurements in UK Biobank individuals, and identify structural mechanisms underlying variant 

pathogenicity. This work provides a widely applicable approach to improve the power of base editor 

screens for disease-associated variant characterization. 
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Introduction 1 

Genetic variation contributes substantially to complex disease risk. While well-powered genome-wide 2 

association studies (GWAS)1 and rare variant analyses from cohort studies such as the UK Biobank (UKB)2 3 

have associated thousands of loci and genes with clinical phenotypes, these observational approaches 4 

are often insufficient to identify causal variants. Perturbation-based methods enable evaluation of the 5 

impact of an individual variant in a common genetic background, isolated from genetically linked 6 

variants, and such testing can be performed in high throughput through multiplex assays of variant 7 

effect (MAVEs)3. Numerous types of MAVEs have been developed, including deep mutational scanning 8 

(DMS)4, saturation mutagenesis5, massively parallel reporter assays (MPRA)6, and CRISPR-based 9 

screens7–9.  10 

CRISPR base editing screens have emerged as a uniquely powerful method to study variants in their 11 

endogenous genomic context. Base editors, fusions of Cas9-nickase and single-stranded cytosine or 12 

adenine deaminase enzymes10,11, enable site-specific installation of transition variants. As the majority 13 

of disease-associated variants are single-nucleotide transitions12, base editors enable the installation of 14 

functionally relevant variants in a precise and scalable way. Base editing screens have been employed to 15 

dissect coding variant effects as well as to evaluate GWAS-associated variant functions13–28. 16 

However, base editing efficiency varies substantially depending on the local sequence context 17 

surrounding the target base, the specific Cas9 variant and deaminase used, and the cellular context29. 18 

Moreover, base edits can occur at multiple positions within the single-stranded DNA bubble created by 19 

the guide RNA (gRNA)-DNA binding on the opposite strand, therefore a single gRNA can install a variety 20 

of alleles, each with distinct efficiencies. While there have been efforts to predict editing outcomes 21 

using massively parallel base editor reporter assay data29, these predictions do not generalize well to 22 

unprofiled base editors and cellular contexts20.  23 
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In previous base editing screens, analysis of phenotypic outcomes is confounded by variable editing 24 

efficiencies and outcomes. Phenotypic effects of gRNAs with robust editing are exaggerated, and effects 25 

of variants that are not installed as efficiently are underestimated. Such confounding is especially 26 

pernicious when the target elements are coding variants, as a single gRNA may install distinct coding 27 

variants with different frequencies, and current analysis methods are unable to deconvolve such data.  28 

Existing base editing screens have dealt with the heterogeneity in gRNA efficiency and genotypic 29 

outcomes in several ways. One approach that has been employed is to assume all editable nucleotides 30 

within the editing window are edited with uniform efficiency13. Two recent studies have profiled the 31 

gRNAs used in phenotypic base editing screening using a base editor reporter (or sensor) assay20,21 to 32 

filter gRNAs with low editing efficiency when analyzing their phenotypic data. Despite these initial 33 

efforts, the computational analyses of these screens have not yet been formalized, often relying on 34 

existing tools that were not designed specifically for base editor data with or without the target site 35 

reporter. 36 

Here, we design an experimental-computational pipeline to improve the accuracy of variant effect 37 

estimation in base editing screens. By incorporating a target site reporter sequence into the gRNA 38 

construct, we simultaneously measure the editing efficiency of a gRNA and its phenotypic impact. We 39 

develop a computational pipeline, BEAN, that normalizes the phenotypic scores of target variants using 40 

genotypic outcome information collected from the target site reporter. Moreover, we extend BEAN to 41 

analyze densely tiled coding sequence base editing screen data, sharing information among neighboring 42 

gRNAs to obtain accurate phenotypic scores for each coding variant. BEAN provides a first-in-class 43 

integrated solution to experimental assessment of variant effects through base editing screens. We 44 

systematically benchmark BEAN against current state-of-the-art methods for the analyses of pooled 45 

CRISPR screens and show substantially improved performance of BEAN. 46 
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To leverage activity-normalized base editing screening, we have conducted screens assessing the impact 47 

of low-density lipoprotein cholesterol (LDL-C)-associated GWAS variants and low-density lipoprotein 48 

receptor (LDLR) coding variants on LDL-C uptake in HepG2 hepatocellular carcinoma cells. Genetic 49 

differences in LDL-C levels contribute substantially to coronary artery disease risk. Serum LDL-C 50 

measurements are quantitative and nearly uniformly measured in most biobanks, and thus they provide 51 

among the highest quality human phenotypic data for any trait. A trans-ancestry GWAS meta-analysis 52 

from the Global Lipids Genetics Consortium (GLGC) has identified >900 genome-wide significant loci 53 

associated with blood lipid levels, including >400 loci associated with LDL-C30. LDL-C GWAS loci overlap 54 

strongly with liver-enriched gene expression, nominating liver as the primary tissue driving LDL-C variant 55 

effects31,32. Yet, the causal variants and mechanisms by which many of these loci modulate LDL-C levels 56 

remain unknown. 57 

LDL-C levels are also impacted by rare coding variants. In the most severe instances, inherited 58 

monogenic variants in several genes cause Familial Hypercholesterolemia (FH), a disease associated with 59 

extremely elevated LDL-C levels and premature cardiovascular disease33. The majority of genetic 60 

mutations known to cause FH occur in LDLR, a cell surface receptor that uptakes LDL, thus removing it 61 

from circulation34. Despite the effectiveness of lipid lowering therapies, FH patients are still 2-4-fold 62 

more likely to have coronary events than the general population35. Elevated LDL-C levels increase 63 

cardiovascular disease risk throughout life, so the early identification of at-risk individuals would have 64 

immense clinical utility33. However, many LDLR variants currently lack clinical interpretation. Of the 65 

1,427 LDLR missense variants in the ClinVar database36, 50% are classified as variants of unknown 66 

significance (VUS) or to have conflicting interpretations of pathogenicity (“conflicting”), thus impeding 67 

FH diagnosis. Likewise, of the 758 unique LDLR missense variants carried by sequenced individuals in the 68 

UKB cohort, 69% are either unreported or have an uncertain annotation in ClinVar. Altogether, 69 
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improved understanding of LDLR variant impacts would enable earlier diagnosis and treatment for a 70 

large number of at-risk individuals. 71 

We have modeled the impacts of both common GWAS-associated and rare LDLR coding variants through 72 

base editing installation followed by cellular uptake of fluorescent LDL-C in HepG2 cells, which provides 73 

a scalable flow cytometric assay to measure a key contributing factor of serum LDL-C levels37 given the 74 

majority of serum LDL-C is cleared in liver38. By applying our experimental-computational pipeline to this 75 

screen model, we identify LDL uptake-altering GWAS-associated variants and characterize their 76 

downstream impact on chromatin accessibility, transcription factor binding, and gene expression that 77 

leads to differential LDL uptake. We nominate causal variants that alter LDL-C uptake through impacting 78 

the genes  OPRL1, VTN, and ZNF329, which have not previously been connected with LDL-C levels. 79 

Through saturation tiled base editing of LDLR, not only do we accurately distinguish known pathogenic 80 

vs. benign variants, we find strong correlation between missense variant functional scores and the LDL-C 81 

levels of patients in the UKB who carry these variants. We combine functional scores with structural 82 

modeling to mechanistically classify deleterious variant impacts, revealing a key, conserved tyrosine 83 

residue in each LDLR class B repeat that interacts with the neighboring repeat to maintain structural 84 

integrity. Altogether, BEAN provides a widely applicable tool to characterize single-nucleotide variant 85 

functions. 86 

Results 87 

A base editing reporter profiles endogenous editing outcomes 88 

To enable accurate interrogation of variant effects at scale, we built a platform to perform dense, high-89 

coverage base editing screens that accounts for variable editing efficiency and genotypic outcomes. To 90 

maximize coverage of variants in base editing screens, we built lentiviral adenine (ABE8e)11,39 and 91 

cytosine (AID-BE5)29 deaminase base editor (BE) constructs using the near-PAM-less SpCas9 variant, 92 
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SpRY40. Both BEs showed native genomic editing activity, as measured in HepG2 cells by ASGR1 splice 93 

site editing followed by flow cytometric anti-ASGR1 antibody staining, with ABE8e-SpRY showing 94 

considerably more robust maximal activity (Supplementary Fig. 1a). Editing efficiency was increased by 95 

5-10% by prior lentiviral integration of constitutively expressed BEs and by transient dosing of cells with 96 

the histone deacetylase valproic acid immediately after BE and gRNA transduction (Supplementary Fig. 97 

1b-c), and thus these treatments were implemented in all screens. 98 

Base editing efficiency is known to vary depending on Cas9 binding efficiency as well as the local sequence 99 

and chromatin context surrounding the target base29,41,42, and thus we expected gRNAs to vary 100 

substantially in editing efficiency across target sites. To account for this variability, we synthesized and 101 

cloned each gRNA paired with a 32-nt reporter sequence comprising the genomic target sequence of that 102 

gRNA into lentiviral base editor vectors (Fig. 1a, Methods), akin to previously published CRISPR mutational 103 

outcome reporter constructs20,21. When introduced into cells, the gRNA can edit both its native genomic 104 

target site and the adjacent target site (reporter) in the lentiviral vector, which can be read out using next-105 

generation sequencing (NGS).  106 

We designed two gRNA libraries using this approach to improve understanding of the genetics of LDL-C 107 

levels. The first library (LDL-C GWAS library) targets 583 variants associated with LDL-C levels from the UK 108 

Biobank GWAS cohort (Methods, Supplementary Table 1). We included fine-mapped variants with 109 

posterior inclusion probability (PIP) > 0.25 from either the SUSIE or Polyfun fine-mapping pipelines43,44, 110 

and also variants with PIP > 0.1 within 250 kb of any of 490 genes found to significantly alter LDL-C uptake 111 

from recent CRISPR-Cas9 knockout screens37,45. We designed five tiled gRNAs for each variant allele that 112 

place the variant in positions shown to induce most efficient editing with ABE8e (Fig. 1e)46. Positive control 113 

gRNAs which ablate splice donor and acceptor consensus sites in six genes found to have significantly 114 

altered LDL-C uptake upon knockout37, and 100 non-targeting negative control gRNAs that tile 20 synthetic 115 

variants were included, for a total of 3,455 gRNAs. 116 
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The second library (LDLR tiling library) targeted the LDLR gene (Supplementary Table 2). Taking 117 

advantage of the flexible PAM recognition of SpRY, every possible gRNA targeting the LDLR coding 118 

sequence on both strands was included. Lower density gRNAs, tiled every 2-3-nt, targeted the the 50-nt 119 

flanking each LDLR exon, the LDLR 5’ and 3’ UTR, promoter, and two intronic enhancers (Fig. 1f). This 120 

library also contained 150 non-targeting negative control gRNAs, for a total of 7,500 gRNAs. 121 

We first assessed editing outcomes through lentiviral transduction of each library in HepG2 cells 122 

followed by NGS of gRNA-reporter pairs 10-14 days afterwards. We developed an end-to-end 123 

computational toolkit for base-editing screens, BEAN, which includes the ability to perform quality 124 

control and quantify editing outcomes from raw reads among other functionalities. Importantly, the 125 

quantification step is designed to account for self-editing of the spacer sequence, which we found to 126 

occur at appreciable frequency and with modest correlation with reporter editing frequency (LDL-C 127 

GWAS library median 31%, Pearson r=0.36, LDLR tiling library median 18%, r=0.31, Supplementary Fig. 128 

2). We used BEAN to profile the previously uncharacterized PAM-less base editors ABE8e-SpRY and AID-129 

BE5-SpRY on reporter data from the >10,000 gRNAs in both libraries (Fig. 1b-c, Supplementary Fig. 3). 130 

The result clearly recapitulated the hallmark positional preferences of these base editors5,9 the NRY PAM 131 

preference of the SpRY enzyme10,11, and the relative depletion of editing at AA dinucleotides by ABE8e. 132 

Notably, the average maximal positional ABE8e-SpRY editing frequency at protospacer positions 3-8 133 

across dinucleotide PAM sequences ranges from 32% to 46%, indicating the ability of this enzyme to 134 

install variants efficiently across a wide variety of genomic locations. 135 

To validate that editing of the reporter provides an accurate surrogate for endogenous editing, we 136 

generated a library where both the reporter and endogenous target site are sequenced following the 137 

editing by 49 gRNAs across four loci surrounding LDLR with varying levels of HepG2 chromatin 138 

accessibility (Supplementary Table 3). We demonstrate that nucleotide-level and allele-level reporter 139 

editing fractions correlate well with endogenous target site editing fractions (Fig. 1d, Supplementary 140 
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Fig. 4, average Pearson correlation across 4 loci is r=0.70 for per-nucleotide editing rate r=0.70, per-141 

allele editing rate r=0.69), and the reporter shows higher correspondence than BE-Hive predictions29 142 

(Nucleotide r=0.44, allele r=0.64) (Supplementary Fig. 5). Notably, while reporter editing correlates with 143 

endogenous editing at all four loci, we found that endogenous editing frequency also depends on the 144 

accessibility of the target region, as has been previously reported for Cas9-nuclease47–49 and base 145 

editors41,42. Yet, current computational analyses do not model these dependencies, motivating the 146 

development of a tailored modeling framework. 147 

We then performed fluorescent LDL uptake screens with each library in ≥5 biological replicates, ensuring 148 

>500 cells per gRNA at all stages. We used simulation to determine the optimal flow cytometric sorting 149 

scheme, accounting for variability in gRNA editing rate, gRNA coverage, gDNA sampling and PCR 150 

amplification (https://github.com/pinellolab/screen-simulation/). Based on our simulation result that 151 

finer bin widths improves sensitivity (Supplementary Fig. 6, Supplementary Note 1), we flow 152 

cytometrically isolated four populations per replicate with the very low (0-20% percentile), low (20-153 

40%), high (60-80%), and very high (80-100%) LDL uptake (Fig. 1a), performing NGS on gRNA and 154 

reporter pairs in each sorted population. We observed robust replicability (median Spearman 𝜌=0.84 for 155 

LDL-C GWAS library, 0.88 for LDLR tiling library) in gRNA counts across replicates (Supplementary Fig. 7), 156 

indicating technical reproducibility.  157 
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Figure 1. Activity-normalized base editing screening pipeline. a) Schematic of activity-normalized base editing 

screening process and analysis by BEAN. A library of gRNAs, each paired with a reporter sequence encompassing 

its genomic target sequence, is cloned into a lentiviral base editor expression vector. Lentiviral transduction is 

performed in HepG2, followed by flow cytometric sorting of four populations based on fluorescent LDL-cholesterol 

(BODIPY-LDL) uptake. The gRNA and reporter sequences are read out by paired-end NGS to obtain gRNA counts 

and reporter editing outcomes in each flow cytometric bin. BEAN models the reporter editing frequency and allelic 

outcomes and gRNA enrichments among flow cytometric bins using BEAN to estimate variant phenotypic effect 
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sizes. b) Adjacent nucleotide specificity of ABE8e-SpRY editing represented as a sequence logo from 7,320 gRNAs; 

the height of each base represents the relative frequency of observing each base given an edit at position 0. c) 

Average editing efficiency of ABE8e-SpRY by protospacer position and PAM sequence d) Scatterplots comparing 

nucleotide-level editing efficiency between the reporter and endogenous target sites for a total of 49 gRNAs across 

four loci across 3 experimental replicates. The accessibility of the four loci as measured by ATAC-seq signal in 

HepG2 is shown in the top panel, and the scatterplot markers are colored by the accessibility of each nucleotide. 

Pearson correlation coefficients are shown as r. e) Schematic of the LDL-C variant library gRNA design for selected 

GWAS candidate variants with a Manhattan plot showing variant P-values from a recent GWAS study50. gRNAs tile 

the variant at five positions with maximal editing efficiency (protospacer positions 4-8). f) gRNA coverage of the 

LDLR tiling library across LDLR coding sequence along with 5’ and 3’ UTRs and several regulatory regions.  

Activity-normalized base editing screen analysis with BEAN 158 

We postulated that the gRNA editing outcomes provided by the reporter together with the accessibility 159 

of the target region could improve the quantification of variant phenotypic effects in our pooled BE 160 

screens. To do so, we developed a novel analysis method, BEAN (Base Editor screen analysis with 161 

Activity Normalization), to quantify the effect of each variant from gRNA abundance in sorted 162 

populations along with genotypic outcome information provided by reporter editing. BEAN assumes that 163 

the observed phenotypic distribution in a population of cells for each gRNA derives from a mixture of 164 

cells with unedited and edited alleles (Fig. 2). The proportion of cells carrying a given gRNA that possess 165 

a particular genotype is inferred based on the editing outcome observed in reporter as well as 166 

chromatin accessibility of the target locus using a Bayesian network. The distribution of cells with each 167 

gRNA prior to sorting is modeled as a Gaussian mixture for each underlying genotype produced by that 168 

gRNA. Because multiple gRNAs may induce the same genotypic outcome at different frequencies, BEAN 169 

uses this redundancy to build confidence in the predicted phenotypic impacts of a given genotype. As 170 

the output for each variant, BEAN provides its effect size i.e. the posterior mean phenotypic shift along 171 

with the corresponding z-score, and 95% credible interval (CI). We also note that BEAN can be adapted 172 
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to an arbitrary number and arrangement of sorting bins and other base editing enzymes including those 173 

with uncharacterized editing preferences, and can accommodate screens without reporter or 174 

accessibility information (Methods).  175 

BEAN only assumes population-level consistency between editing of the reporter and endogenous 176 

target site. We hypothesized that variation in editor expression or cellular state may lead certain cells to 177 

be more amenable to editing than others. In this scenario, “jackpot” cells would be more likely to have 178 

editing at both endogenous and reporter loci. To assess this possibility, we compared the enrichment of 179 

a gRNA in the highest vs. lowest sorted LDL uptake quantile bin with the difference in reporter editing 180 

observed in cells sorted into these bins, reasoning that endogenous editing should be highest in the cells 181 

sorted into the enriched bin. We indeed observed such correlation for LDLR and MYLIP splice-ablating 182 

gRNAs (Spearman ρ=0.32, Supplementary Fig. 8), suggesting the existence of cell-level factors leading to 183 

“jackpot” cells with higher editing at both endogenous and reporter loci. However, the correlation 184 

between phenotypic and reporter editing enrichment was weaker when considering all positive control 185 

gRNAs (Spearman ρ=0.13). We thus concluded that incorporating the jackpot effect into BEAN would be 186 

unlikely to improve model performance.  187 
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Figure 2. BEAN models variant effects from activity-normalized base editing screens. Simplified schematic of 

BEAN Bayesian network that models input reporter editing outcomes and gRNA counts. The Bayesian network 

model recapitulates the data generation process starting from a variant-level phenotype Y! and models per-gRNA 

phenotypes as a Gaussian mixture distribution of edited and unedited (wild-type) allele phenotypes. The weights 

of the mixture components are modeled to generate reporter editing outcomes. gRNA abundance in each sorting 

bin is then calculated by discretizing the gRNA phenotype based on the experimental design into the phenotypic 
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quantiles, and is modeled to generate the observed gRNA counts using an overdispersed multivariate count 

distribution (see Methods). BEAN outputs the parameters of the posterior distribution of mean phenotypic shift as 

Gaussian distribution with mean 𝜇"# (effect size), along with negative-control adjusted z-score and credible interval 

(CI), where 𝒟 is the input data. 

BEAN identifies LDL uptake altering GWAS variants 188 

We applied BEAN to the LDL-C GWAS library screen. From the reporter data, variant editing efficiency 189 

per gRNA is highly variable with average edit fraction of 34.0%. Encouragingly, most target variants are 190 

edited at high efficiency by at least one of the five targeting gRNAs (median maximal editing of 60.4%, 191 

Supplementary Fig. 9).  192 

First, we compared the performance of BEAN and five published CRISPR screen analysis methods at 193 

distinguishing the effects of positive control splice-altering variants versus negative control non-194 

targeting gRNAs23,51–54 (Methods, Fig. 3a). To dissect the contributions of individual features to BEAN 195 

performance, we included two reduced versions of BEAN: one that considers reporter editing but not 196 

chromatin accessibility (BEAN-Reporter), and another that ignores the reporter, assuming uniform gRNA 197 

editing efficiency (BEAN-Uniform) (Methods, Supplementary Fig. 10). BEAN outperforms other 198 

evaluated methods at this classification task (Fig. 3b, Supplementary Fig. 11), and this improved 199 

performance is accentuated when the data is subsampled for fewer replicates, demonstrating its ability 200 

to maintain robustness even with less data. Importantly, BEAN shows improved performance (mean 201 

AUPRC=0.90 across 15 2-replicate subsamples) over BEAN-Reporter (mean AUPRC=0.87), which in turn 202 

outperforms BEAN-Uniform (mean AUPRC=0.85), supporting the value of accurately modeling target site 203 

editing. Intriguingly, even BEAN-Uniform outperforms alternative approaches, likely due to more 204 

accurate modeling of sorting bins, suggesting the utility of BEAN in sorting screens without reporter. 205 
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Having demonstrated robust performance of BEAN, we evaluated our ability to characterize common 206 

variants that alter LDL-C uptake. We identified 54 variants that significantly alter LDL-C uptake (95% CI 207 

does not contain 0, Supplementary Table 4). These variants include intronic variants in well-known LDL-208 

C uptake mediators whose knockout altered LDL-C uptake in a recent genome-scale CRISPR screen37 209 

such as ABCA1, LDLR, and SCARB1 (Fig. 3e). We additionally identified coding/intronic variants in APOE, 210 

CCND2, GAS6, and FBLN1 with strong genetic likelihood of causality (UKBB SUSIE fine-mapping PIP > 0.99 211 

and/or the only variant in a fine-mapped credible set30), indicating that the effect of these variants on 212 

serum LDL-C is at least partially mediated by LDL-C uptake.  213 

To validate the inferred effect sizes, we performed individual lentiviral ABE8e-SpRY transduction of 214 

HepG2 cells with gRNAs targeting 22 variants and 4 positive controls (Supplementary Table 5). We 215 

performed fluorescent LDL-C uptake profiling of each edited cell line mixed with an in-well control cell 216 

line in 6 biological replicates (Methods), allowing us to compare changes in LDL-C uptake with matched 217 

data from the screen. The individual LDL-C uptake log-fold-change (LFC) values showed strong 218 

correlation to the BEAN effect sizes (𝜇, Spearman R=0.69, Fig. 3c-d, Supplementary Fig. 12), showing 219 

more robust correlation than BEAN-Uniform (R=0.68), log fold change based on MAGeCK-RRA (R=0.51), 220 

and regression coefficients 𝛽 of MAGeCK-MLE (R=0.61, see Methods). These data demonstrate that 221 

BEAN enables accurate inference of variant effects on LDL-C uptake over a wide dynamic range. 222 

 223 

 224 
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Figure 3. BEAN improves variant impact estimation from the LDL-C GWAS library screen. a) Ridge plot of BEAN z-

score distributions of positive controls, negative controls, and test variants. b) AUPRC of classifying LDLR and 

MYLIP splicing variants vs. negative controls. Metrics for all 5 replicates are shown as markers and metrics of 15 

two-replicate subsamples among the 5 replicates are shown as box plots. c) Spearman correlation coefficient 

between BEAN effect size and log fold change of LDL-C uptake following individual testing of 26 gRNAs. Metrics for 

all 5 replicates are shown as marker and metrics of 15 two-replicate subsamples among the 5 replicates are shown 

as box plots. d) Scatterplot of BEAN effect size and log fold change of LDL-C uptake following individual testing of 

26 gRNAs. Spearman correlation coefficient is denoted as ρ. e) Scatterplot of variant effect size and significance 

estimated by BEAN. Labels show rsIDs of selected variants and dbSNP gene annotations and a manual annotation 

for APOB enhancer in the parenthesis. 

To gain insight into a set of 20 variants for which the mechanism of LDL-C uptake alteration is less clear, 225 

we developed a pipeline to assess the cellular effects of variant installation (Fig. 4a). First, we asked 226 

which of these variants impact chromatin accessibility. We established an approach to perform pooled 227 
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variant editing followed by ATAC-seq. High multiplicity of infection (MOI) lentiviral delivery of a pool of 228 

20 ABE8e-SpRY gRNAs to HepG2 cells was followed by ATAC-seq and paired genomic DNA collection in 229 

three biological replicates in standard and serum-starved conditions. We performed multiplexed PCR 230 

enrichment of the regions surrounding each of the 20 edited variants followed by targeted amplicon 231 

sequencing by NGS. Differential representation of an alternate allele in ATAC-seq relative to gDNA 232 

sequencing implies differential accessibility of the alternate allele than the reference (Fig. 4b). 233 

Eight of the 20 variants are heterozygous in HepG2, and thus we could assess whether these variants 234 

reside in chromatin accessibility quantitative trait loci (caQTL)55, showing differential relative 235 

accessibility of the two haplotypes irrespective of base editing. We found five of these eight variants to 236 

be caQTLs (Fig. 4c). Two of these loci (rs35081008 and rs2618566) were also identified as caQTLs in a 237 

recent analysis of 20 human liver tissue samples56. Importantly, caQTL analysis cannot address the 238 

causality of the evaluated variant due to the presence of linked variants which could contribute to the 239 

differential ATAC-seq signal. 240 

To assess whether individual variants alter chromatin accessibility, we evaluated whether base editing 241 

induces differential accessibility for any of the 20 tested variants. Technical issues including insufficient 242 

representation of the region, insufficient editing, and inability to phase heterozygous loci prevented 243 

assessment of five of the variants (see Methods). Of the 15 remaining variants, eight significantly altered 244 

chromatin accessibility when edited (family-wise error rate 0.1, Fig. 4c). Four such variants (rs11149612, 245 

rs35081008, rs8126001, and rs2618566) were in loci identified as liver tissue caQTLs. Because base 246 

editing only alters a single variant in a locus, this analysis establishes at least partial causality to the 247 

tested variant.  248 

We performed deeper characterization of three variants whose editing alters both LDL-C uptake and 249 

chromatin accessibility. Rs704 is a missense coding variant in VTN and is the only variant in a fine-250 
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mapped credible set from LDL-C GWAS30, suggesting high likelihood of causality. The other two variants 251 

are in gene promoters—rs35081008 is in the ZNF329 promoter, and rs8126001 is in the shared 252 

OPRL1/RGS19 promoter (Fig. 4d). Both variants have moderate probability of causality from GWAS 253 

evidence (SUSIE PIP=0.49 for rs35081008, PIP=0.25 for rs8126001), with the remaining probability in the 254 

rs35081008 locus deriving from a linked variant (rs34003091) 19-nt upstream in the ZNF329 promoter. 255 

None of the putative target genes has been previously found to alter LDL-C uptake, nor do they show 256 

significance in LDL-C burden analyses.  257 

To investigate how the prioritized variants might affect transcription factors (TF) binding sites and 258 

thereby regulate proximal genes involved in LDL-C uptake, we adapted the MotifRaptor pipeline57. 259 

Briefly, MotifRaptor predicts both the binding strength and disruption scores of TF motifs at specified 260 

SNP loci (see Methods). Using the human TFs from the CIS-BP motif database58, for each variant, we 261 

ranked the TFs with high binding and potential disruption by the variant (Supplementary Table 6). For 262 

rs8126001, our approach prioritized two zinc finger TFs, ZNF333 and ZNF770 with enhanced binding site 263 

sequences due to the heterozygous minor allele in HepG2 cells (Supplementary Fig. 13). HepG2 ChIP-264 

seq data59 further support the binding of these TFs at this locus, although the variant lies at the edge of 265 

the peaks (Supplementary Fig. 14). While definitive conclusions about these factors will require further 266 

experimental validation, our observations align with previous research60 suggesting that only a minority 267 

of causal variants directly alter canonical TF binding sequences and instead affect non-canonical 268 

sequences.  269 

We confirmed through RT-qPCR analysis that editing the minor to major alleles of rs35081008 and 270 

rs8126001 leads to increased expression of ZNF329 and OPRL1 respectively (Fig. 4f), which is consistent 271 

with the increased chromatin accessibility induced by these edits. rs35081008 is heterozygous in HepG2, 272 

and we used two linked ZNF329 intronic variants to assess allele-specific expression. In wild-type HepG2, 273 

only 2% of ZNF329 transcripts derive from the minor allele haplotype (Fig. 4e), consistent with the 274 
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diminished chromatin accessibility of this allele (Fig. 4c) and the status of rs35081008 as a liver eQTL. 275 

Editing rs35081008 from minor to major allele restores expression of this haplotype to 35% of total 276 

transcripts (Fig. 4e), providing further evidence that rs35081008Maj results in increased expression of 277 

ZNF329. 278 

We then performed CRISPRa and CRISPRi targeting to assess whether altered expression of the four 279 

candidate target genes alters LDL-C uptake. CRISPRa induction of VTN and ZNF329 significantly increased 280 

LDL-C uptake, and CRISPRi repression of VTN and OPRL1/RGS19 reduced LDL-C uptake (Fig. 4g). In our 281 

base editing experiments, rs704Min shows decreased LDL-C uptake, so we surmise that this allele must 282 

have decreased expression or function, given that decreased VTN expression decreases LDL-C uptake 283 

(Fig. 4h). Prior biochemical characterization has shown decreased cellular binding capacity of rs704Min , 284 

suggesting a possible mechanistic explanation. Our data are consistent with rs35081008Min decreasing 285 

ZNF329 expression, which in turn decreases LDL-C uptake. Finally, our data are most consistent with 286 

rs8126001Min decreasing OPRL1 expression, which leads to decreased LDL-C uptake. This observation 287 

aligns with the higher predictive binding affinity of ZNF333, a transcriptional repressor61,62, with 288 

rs8126001Min and the potential disruption of its binding with rs8126001Maj. In summary, through 289 

accurately quantifying impacts of disease-associated variants on LDL-C uptake, BEAN reveals genetic 290 

mechanisms underlying control of LDL-C levels. 291 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Functional characterization of LDL-C GWAS variants. a) Schematic of potential variant mechanisms and 

the figure panels showing data from each mechanistic experiment. b) Schematic of pooled ATAC-seq analysis to 

identify variants impacting accessibility. Differential representation of allele in gDNA and ATAC-seq reflects 

differential accessibility induced by the base edit or heterozygous reference allele. c) Change in ATAC-seq 

enrichment from the pooled ATAC-seq experiment. 95% confidence intervals are shown as the error bars. “Edited 

variant” denotes the enrichment by base edit and “Allele” denotes the enrichment by either of the heterozygous 

alleles, when available, translated uniformly to major (Maj) to minor (Min) allele direction. Variants where the 
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base edit is conducted from minor allele are denoted as red in the color bar. Family-wise error rate (FWER) with 

Benjamini-Hochberg multiple correction is shown for each enrichment value where FWER < 0.1. d) Genomic tracks 

for three selected variants. DNaseIHS; DNase 1 Hypersensitivity. Multiple transcript variants of RGS19 and OPRL1 

are shown in the middle panel. e) Fraction of ZNF329 minor (Min) allele haplotype reads in gDNA and cDNA from 

untreated HepG2 and HepG2 with rs35081008Min>Maj base editing.  f) Change in gene expression following base 

editing of three selected variants from minor (Min) to major (Maj) allele. P-values of the one sample Student’s t-

test of LFC vs. mean of 0 that are smaller than 0.05 are shown above each bar. g) Change in cellular LDL-C uptake 

following CRISPRa/i of proximal genes for three selected variants. P-values of the one sample Student’s t-test of 

LFC vs. mean of 0 that are smaller than 0.05 are shown above each bar. h) Summary schematic of characterization 

results.   

Saturation LDLR coding sequence tiling screening enables quantitative assessment of rare variant 292 

deleteriousness  293 

We next adapted BEAN to the LDLR tiling library, enhancing the model to specifically assess the 294 

contributions of individual amino acid mutations rather than SNVs, by enabling a more comprehensive 295 

understanding of coding region alterations. Previous coding sequence base editing analyses have assumed 296 

that all editable bases within a window are edited, which leads to erroneous amino acid mutation 297 

assignments, or have analyzed gRNA-level signal only15. We aimed to exploit the combination of dense 298 

tiling afforded by ABE8e-SpRY and reporter editing outcomes to model the effects of coding variants more 299 

accurately. 300 

The LDLR tiling screen showed high coverage of edited nucleotides and amino acids (92% of targetable 301 

nucleotides and 74% of the 860 LDLR amino acids in the LDLR coding sequence were edited at >10% 302 

frequency by at least one gRNA in the reporter, Supplementary Fig. 15). A total of 2,182 distinct variants 303 

were assessed, of which 874 are missense coding variants. Each gRNA produced an average of 2.6 304 

distinct alleles, and each variant was covered by 5.8 gRNAs on average (Supplementary Fig. 16). Thus, 305 
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ABE8e-SpRY tiling of LDLR resulted in a rich dataset of coding variants for the evaluation of their 306 

phenotypic impacts. 307 

As opposed to the LDL-C GWAS analysis in which each gRNA was evaluated based on its editing 308 

frequency at a single target position, we adapted BEAN to account for multi-allelic outcomes. First, BEAN 309 

translates the edited alleles, i.e., aggregates nucleotide-level allele counts that leads to the identical 310 

amino acid transition into a single amino-acid level allele counts, while preserving nucleotide transition 311 

in non-coding regions. BEAN then filters for the translated alleles that are robustly observed (see 312 

Methods) for each gRNA (Fig. 5a). BEAN uses a Bayesian network to combine phenotypic information 313 

from all the gRNAs that produce a given allele. Importantly, the phenotype attributed to each gRNA is 314 

modeled as a mixture distribution of the alleles it generates, with the contribution of each allele 315 

weighted by its corresponding editing frequency. 316 

BEAN assigned significant z-scores (<-1.96, equivalent to 95% credible interval not covering 0) to 145 317 

among 2,182 variants assessed from the LDLR tiling library (Supplementary Table 7), 131 of which 318 

decrease LDL-C uptake. 47 variants that significantly decrease LDL-C uptake are annotated in ClinVar as 319 

pathogenic/likely pathogenic, while 17 are ClinVar VUS/conflicting variants and none are ClinVar 320 

benign/likely benign (Fig. 5g), indicating that BEAN can reliably predict the pathogenicity for variants 321 

without a pathogenic or benign classification (Fig. 5b-c).  322 

We compared the performance of BEAN at distinguishing ClinVar-annotated pathogenic from 323 

benign/likely benign LDLR variants to other available screen analysis methods51–54. To allow comparison 324 

of methods that do not account for editing outcomes, we assigned outcomes to each gRNA either by 325 

assuming all editable bases within the maximal editing window are perfectly edited13 (“All”) or by using 326 

the most frequent predicted outcome from BE-Hive29(“BE-Hive”). As in the LDL-C GWAS screen, BEAN 327 

showed better performance than any other method (Fig. 5d, Supplementary Fig. 17), and BEAN also 328 
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outperformed the model variants that do not account for accessibility (BEAN-Reporter) or reporter 329 

editing outcomes (BEAN-Uniform), further justifying the modeling decision to explicitly leverage editing 330 

outcomes and accessibility. BEAN achieves an AUPRC of 0.88 at this task, indicating highly effective 331 

distinction of pathogenic and benign LDLR variants through scoring HepG2 LDL-C uptake proficiency. 332 

To gain insight into mechanisms by which these variants disrupt LDL-C uptake, we examined BEAN z-333 

scores for variants that reside within conserved functional domains (Fig. 5e-f, Supplementary Fig. 18). 334 

LDLR contains seven highly conserved LDLR class A repeats that bind to LDL. The LDLR class A repeat is 335 

structurally anchored by six highly conserved cysteines that form three disulfide bonds63. As expected, 336 

many of the missense variants with the strongest effects on LDLR function disrupt these cysteines (Fig. 337 

5f). We find that cysteine mutating edits in each of the seven LDLR class A repeats disrupt LDLR activity 338 

(Supplementary Fig. 19), suggesting that structural integrity of all repeats is required for efficient LDL 339 

binding, although disruption is most impactful in repeats 3-7. Truncation experiments have reported 340 

that repeats 1 and 2 are dispensable for LDL binding64, in partial accord with our results65. To examine 341 

the relationship between conservation and function more comprehensively in these repeats, we 342 

compared the BEAN z-score of every installed variant with its change in amino acid conservation score 343 

from the Pfam profile HMM66 (see Methods). We observed strong concordance (Pearson r = 0.57 Fig. 344 

5h), with N-terminal hydrophobic residues and C-terminal calcium-coordinating acidic residues within 345 

the repeats also showing particular functional importance, as expected from the known function of 346 

these domains. 347 

Encouraged by the concordance between our screen and conservation scores within the LDLR class A 348 

repeats, we asked whether BEAN scores could predict functional impairment across the entire LDLR 349 

gene. We examined statin-adjusted LDL-C levels67 in the UK Biobank (UKB) for individuals with paired 350 

exome sequencing and lipid level data. To control for the contribution of other variants in genes known 351 

to impact serum LDL-C level, we filtered out individuals who harbor nonsynonymous APOB or PCSK9 352 
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variants or multiple LDLR missense variants, leading to 9,819 individuals harboring 358 distinct LDLR 353 

missense variants. There are 76 distinct LDLR missense variants observed in our base editing data with 354 

UKB carriers. We observe robust concordance between the average carrier LDL-C and BEAN scores for 355 

these variants (Spearman ρ = 0.40, Pearson r = 0.45, Fig. 5i), suggesting that BEAN provides accurate 356 

quantitative prediction of the impact of LDLR missense variants on control of serum LDL-C levels in the 357 

human population.  358 

As our base editing screen does not exhaust possible mutation types per position, we used the FUSE68 359 

pipeline to impute the impact of unobserved variants at positions at which a different missense variant 360 

is scored. FUSE uses an amino acid substitution matrix derived from 24 deep mutational scanning 361 

datasets to impute functional scores for all possible missense variants at positions observed in base 362 

editing data (BEAN+FUSE score, see Methods). Applying FUSE to the 76 UKB variants with observed base 363 

editing data, BEAN-FUSE shows improved correlation with UKB carrier LDL-C (Spearman ρ = 0.50, 364 

Pearson r = 0.51, Fig. 5j). BEAN-FUSE correlation with UKB carrier LDL-C was robust but lower at all 358 365 

missense LDLR variants with lipid measurements (Spearman ρ = 0.37, Pearson r = 0.35, Supplementary 366 

Fig. 20a). Altogether, BEAN-FUSE provides a pipeline to extend base editing screening to predict 367 

functional impairment for unobserved missense variants, although our data suggest that accuracy does 368 

decrease for unobserved variants.  369 

As base editing provides orthogonal functional assessment to conservation, we asked whether the LDL-C 370 

levels of UKB variant carriers could be predicted with BEAN-FUSE scores and PhyloP 100way vertebrate 371 

conservation scores. Using XGBoost regression69, we achieved more robust correlation with UKB carrier 372 

LDL-C than either BEAN-FUSE or PhyloP alone at the 76 variants observed in the base editing screen 373 

(Spearman ρ = 0.48, Pearson r = 0.61, RMSE=39.0, Fig. 5k, Supplementary Fig. 20c) and at 358 variants 374 

with BEAN-FUSE score (Spearman ρ = 0.37, Pearson r = 0.31, RMSE=51.1, Supplementary Fig. 20b,d). 375 
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This result demonstrates the potential utility of base editing data to improve quantitative phenotype 376 

prediction combined with computational prediction methods.  377 

Individuals with pathogenic FH variants are at higher risk of coronary artery disease (CAD), even after 378 

controlling for LDL-C levels70. However, the vast majority of rare LDLR missense variants lack ClinVar 379 

pathogenic/likely pathogenic designations, preventing information about these potentially disease-380 

causing variants from being shared with patients. Therefore, we asked whether CAD incidence within 381 

LDLR variant carriers could be stratified by functional scores. We found that for individuals with rare 382 

LDLR variants, functional scores processed by BEAN-FUSE were significantly higher for patients with 383 

prevalent or incident CAD (Wilcoxon rank-sum test, p = 0.0479, Fig. 5l). BEAN-FUSE scores provided 384 

more robust stratification of individuals with CAD than statin-adjusted LDL-C values for individuals with 385 

variants covered in the screen (Wilcoxon rank-sum test, p = 0.112, Fig. 5m). This demonstrates the 386 

advantage of quantifying genetic risk, which has a lifelong impact on LDL-C levels, over the snapshot 387 

provided by a single LDL-C measurement. Overall, we show that activity-normalized base editing 388 

screening can yield accurate quantitative estimation of LDLR variant pathogenicity in a large human 389 

cohort. 390 

 391 
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Figure 5. Dissection of LDLR variant effects through BEAN modeling of a saturation tiled base editing screen. a) 

BEAN model for coding sequence tiling screens. Reporter editing efficiencies are calculated at the amino acid-level 

when the edited nucleotides are in coding region. Phenotypes of gRNAs with multi-allelic outcomes are modeled 
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as the Gaussian mixture of allelic phenotypes. If an allele consists of more than one variant, the phenotype of the 

allele is modeled as the sum of the component variants. A Bayesian network is used to model variant-level 

phenotypes, sharing phenotypic information from all available gRNAs. b) Ridge plot of BEAN z-score distributions 

of positive controls, negative controls, and variants. c) Ridge plot of BEAN z-score distributions of Clinvar variants 

annotated as pathogenic/likely pathogenic (P/LP), benign/likely benign (B/LB), conflicting interpretation of 

pathogenicity (conflicting), and Uncertain significance (VUS), and unannotated variants. d) AUPRC of classifying 

ClinVar pathogenic/likely pathogenic vs. benign/likely benign variants. The marker shows the metrics of each 

method run on 4 replicates with no failing samples. Boxplot shows the metrics of 6 2-replicate combinations of the 

4 replicates. e) LDLR domain structure adopted from Oommen et al71. f) BEAN z-scores for variants in the 7 LDLR 

class A repeat domains aligned with the Pfam profile HMM logo. Highly conserved cysteines are highlighted in 

grey. g) Scatterplot of estimated variant effect sizes and z-scores. Labels of selected deleterious variants without 

ClinVar pathogenic/likely pathogenic annotations are shown. h) Scatterplot of LDLR class A repeat missense variant 

BEAN z-scores and ΔPfam profile HMM scores. Higher ΔPfam scores correspond to substitution from highly 

conserved to rarely observed amino acids. i) Comparison of mean statin-adjusted LDL-C level and BEAN z-score for 

variants observed in UKB and base editing. j) Comparison of mean statin-adjusted LDL-C level and BEAN-FUSE 

scores for variants observed in UKB and base editing. k) LDL-C levels of observed missense variants predicted by a 

regression model using BEAN-FUSE and PhyloP scores with 10-fold cross validation, compared with mean statin-

adjusted LDL-C level in UKB. l) Boxplots of BEAN-FUSE functional scores for UKB individuals with variants observed 

in our base editing screen with or without CAD. m) Boxplots of statin-adjusted LDL-C levels of UKB invididuals with 

variants observed in our base editing screen with or without CAD. P-value of two-sided Wilcoxon rank-sum test is 

denoted. r; Pearson correlation coefficient, 𝜌; Spearman correlation coefficient 

Structural basis of LDLR missense variants  392 

We further analyzed LDLR missense variants identified to significantly impair LDL-C uptake by BEAN to 393 

gain insight into mechanisms of their pathogenicity. We first examined variants with top z-scores that 394 

are unannotated or annotated as conflicting, or VUS in ClinVar. The top ranked variant, which shows 395 

even more significant loss-of-function than splice-ablating variants, alters the start codon, preventing 396 
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full-length LDLR translation. Other top variants such as C222R, C261R, C289R, and C364R disrupt 397 

conserved disulfide bond-forming cysteines in LDLR class A repeats and EGF-like domains. Top-ranked 398 

variant in the of the signal peptide L16P  substitute hydrophobic leucines with prolines in the 399 

transmembrane alpha helix, which is likely to distort the alpha helix72 and the  neighboring L15P has 400 

been shown to reduce LDLR transport to the plasma membrane73. Neighboring L14S that also ranks high 401 

substitutes hydrophobic leucine with serine in the hydrophobic h-region central to the signal peptide74. 402 

Additionally, multiple variants disrupt calcium ion binding, which is key to LDLR class A repeat folding75 403 

through the conversion of negatively charged amino acids (D/E) to glycine (G), thereby disrupting ionic 404 

interactions with side-chain carboxylates and calcium ions (D94G, E101G, E179G, D307G) in LDLR class A 405 

repeats (Supplementary Fig. 22). We also found that L371P, a VUS, disrupts a calcium ion interaction in 406 

the EGF-like domain by breaking the coordinate covalent bond between the calcium ion and the 407 

carbonyl group within the L371 main chain due to backbone distortion. Finally, we found that F153P 408 

significantly interfered with hydrophobic interactions between the aromatic ring and the attached 409 

saccharide on Q182. 410 

We noticed that an appreciable number of deleterious variants that lack ClinVar pathogenic designation 411 

reside in the six LDLR class B repeats. The LDLR class B repeats, also known as YWTD repeats, form a 412 

propeller-like structure involved in the release of LDL following its endocytosis. To gain insights into 413 

unannotated variant impact, focusing on the LDLR class B repeats, we used the full wild-type LDLR 414 

structure from the AlphaFold Protein Structure Database76,77 and the MODELLER78-generated mutant 415 

structures to calculate changes in interatomic interactions using Arpeggio79. Additionally, we predicted 416 

the effects of variants on protein stability (ΔΔ𝐺, negative value indicates destabilization) with DDMut80 417 

(Supplementary Table 8). We found that the 26 significant LDLR class B variants induce more 418 

destabilizing effects, disrupt more hydrophobic interactions, have lower relative solvent accessibility81 419 

(0.041 of maximum residue solvent accessibility), and have higher wild-type residue depth as compared 420 
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to the other observed variants in this region (Fig. 6a-d, Supplementary Fig. 23). Collectively, these 421 

observations strongly indicate that these significant LDLR class B repeat variants are predominantly 422 

buried within the protein core where they engage in extensive hydrophobic interactions essential for 423 

protein folding. Moreover, we found a conserved interaction across repeat domains in which a tyrosine 424 

(aligned position 5 in Supplementary Fig. 18b) holds neighboring propeller blades together through 425 

interactions with a hydrophobic residue of the neighboring repeat (Fig. 6e-f). We identified five of these 426 

variant pairs (Y442C with V481A, Y442C with V468A, Y489H with M531T, Y532C with L568P, and Y576H 427 

with V618A), where all nine positions have at least one variant that weakens their hydrophobic 428 

interaction and has a significant BEAN z-score. Among the top-ranked unannotated or ClinVar VUS and 429 

conflicting variants within LDLR class B repeats, the six most significant variants (L426P, Y489H, M531T, 430 

I566T, S584P, and Y576H) all disrupt residues that hold the propeller blades together through 431 

hydrophobic interactions (Fig. 6g-i, Supplementary Fig. 24). Further supporting the importance of 432 

hydrophobic interactions, the base editing screen installed additional missense variants at positions 531, 433 

566, and 652 that conserve hydrophobicity. In all cases, mutation into hydrophobic residues has less 434 

severe impact from the base editing screen and DDMut-predicted destabilization than mutation into 435 

non-hydrophobic residues (Fig. 6j). For example, while we find M652T to be highly deleterious (BEAN z=-436 

2.65), we find no functional disruption from the hydrophobicity-conserving M652V variant (BEAN 437 

z=+2.06). This analysis is supported clinically, as M652V is designated in ClinVar as “Likely Benign,” and 438 

the average UKB carrier LDL-C is below average (106mg/dL). In summary, structural analysis of rare LDLR 439 

variants identified by BEAN provides a basis for the missense variant impact through affecting structural 440 

integrity of LDLR, highlighting a central role for hydrophobic interactions that hold together adjacent 441 

beta blades of the LDLR class B repeat domain. 442 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6. Deleterious variants in LDLR class B repeats weaken hydrophobic interactions. a-d) Boxplots of 26 

significant (z < -1.96) and the rest of 259 variants observed in LDLR class B repeats. P-values of two-sided Wilcoxon 

rank-sum test are denoted. WT; wild-type, Mut; mutated. e) Conserved interactions involving tyrosine of which 

mutation showed significant BEAN scores. Simplified interaction types and distance flags as annotated by Arpeggio 

are shown in the legend. f) BEAN z-scores of positions with conserved hydrophobic residues are shown along with 

the LDLR class B repeat PFAM HMM logo. g-i) Local atomic interaction in wild-type and mutated structure for 
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ClinVar conflicting variants or VUS L426P, M652T, and Y532C. Residues in the variant positions are colored by the 

reference amino acids. Residues that interact with the variant position are shown. Variant position and interacting 

residues are colored by elements (O: red, N: blue, S: yellow). j) Contour plot of BEAN z-score against ΔΔ𝐺 predicted 

by DDMut for 872 missense variants. Positions with distinct observed missense variants that disrupt and conserve 

hydrophobic sidechains are connected by dashed line. 

Discussion 443 

In this work, we develop a framework to improve variant effect quantification in base editing screens 444 

through accounting for variable genotypic outcomes estimated by gRNA efficiencies and chromatin 445 

accessibility. The activity-normalized approach is straightforward to apply, simply requiring synthesis of 446 

gRNA-reporter pairs, which can be cloned and screened using standard experimental procedures. This 447 

approach should prove particularly useful when employing new CRISPR enzymes and deaminases, as it 448 

allows for simultaneous characterization of editing preferences and phenotypic screening. We note that, 449 

while the screens described herein utilized flow cytometric phenotypic readouts, BEAN should also be 450 

suitable in dropout and enrichment paradigms by performing reporter analysis at an early timepoint 451 

prior to extensive phenotypic selection. We provide an open source implementation of BEAN in the 452 

comprehensive Python package bean with end-to-end functionality from base editing screen sequencing 453 

data to variant effect quantification at https://pypi.org/project/crispr-bean/.  454 

Our results show that careful Bayesian modeling of the data generation process can substantially 455 

improve analytical power. We show that incorporation of reporter editing outcomes (BEAN-Reporter) 456 

and accessibility (BEAN) improves classification over the minimal model (BEAN-Uniform). In our work, 457 

we take into account the dependence of editing on loci accessibility from measurements taken from 49 458 

gRNAs at four loci and use the relationship to improve our model (we provide a guide on fitting this 459 

relationship in Supplementary Note 2). Higher-throughput measurements and incorporation of 460 

additional epigenetic features influencing base editing could refine the inference of endogenous editing 461 
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efficiency. It's also worth noting that BEAN currently does not consider off-target editing, an omission 462 

that may affect the evaluation of phenotypic impacts for certain gRNAs.  463 

BEAN also makes certain assumptions regarding how data is distributed. It assumes that phenotypic 464 

readout follows a Gaussian distribution and that alleles with multiple variants show additive effects. We 465 

also present an approach to modeling multivariate gRNA and allele count data by employing a Dirichlet-466 

Multinomial distribution, building on the Negative Binomial modeling of counts used in prior 467 

methods82,83 (Supplementary Note 3). 468 

We show that BEAN outperforms existing analysis methods at classifying GWAS variants with phenotypic 469 

impacts. Applying BEAN to the LDL-C GWAS library screen, we found it superior to existing methods at 470 

distinguishing positive control splice-altering variants. Furthermore, BEAN enabled accurate inference of 471 

variant effects on LDL-C uptake that were recapitulated using individual lentiviral gRNA transduction. 472 

We used BEAN to uncover common variants that modulate LDL-C levels through altering liver cell 473 

expression/function of three previously unappreciated genes, OPRL1, VTN, and ZNF329. It is unclear why 474 

individuals with rare deleterious variants in these genes do not show altered LDL-C levels, but given that 475 

these genes have evidence of selective constraint84, we speculate that variants that are tolerated in the 476 

population may have weak functional and phenotypic effects85. The GWAS effect sizes for these variants 477 

are small, so they are unlikely to represent therapeutic targets; nonetheless, their elucidation 478 

contributes to understanding of the complex genetic underpinnings of lipid homeostasis. 479 

We additionally demonstrate that dense activity-normalized base editing screens can improve 480 

characterization of coding variants in LDLR. Prior coding sequence-targeted base editing screens have 481 

used more restrictive PAMs13,15–18,20–23,25–27, thus limiting their breadth. By combining ABE8e-SpRY, which 482 

we show to have robust activity across the vast majority of PAMs, with BEAN, which enables sharing of 483 

information across adjacent gRNAs to boost power, we obtain accurate phenotypic measurements for 484 
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an average of one variant per amino acid. This resolution is less than that of DMS, which can evaluate all 485 

possible missense variants at each position4,86. However, base editing is considerably less work-intensive 486 

and less expensive to perform and is far more scalable, allowing assessment of sets of genes in a single 487 

experiment. We provide pathogenicity assessment of 874 LDLR missense variants, most of which do not 488 

have prior clinical designation. Structural characterization of identified LDLR variants reveals distinct 489 

domain-specific characteristics of the most deleterious variants, including a central role of hydrophobic 490 

interactions gluing adjacent LDLR class B repeat domain’s beta blades.  491 

Past coding variant editing screens have focused on binary classification of pathogenic and benign 492 

variants, and BEAN effectively distinguishes these variant classes in LDLR, while also making predictions 493 

about dozens of variants of unknown significance and conflicting annotation. Notably, we also show that 494 

BEAN scores associate with quantitative serum LDL-C levels measured in patients with rare LDLR variants 495 

in the UKB. Functional assays are accepted as evidence of pathogenicity or benignity in clinical variant 496 

interpretation guidelines such as those published by the American College of Medical Genetics and the 497 

Association for Molecular Pathology87,88.  However, these frameworks have focused on classifying larger 498 

effect pathogenic and benign variants in a binary fashion, and these approaches have not been designed 499 

to offer risk predictions for quantitative traits. Given that CAD risk depends proportionally on the level 500 

of lifelong serum LDL-C exposure89,90, our ability to assign quantitative estimates of clinical risk to LDLR 501 

variants has strong clinical significance that, if replicable in other disease-associated genes, may merit 502 

adopting an assessment paradigm for clinical risk based on quantitative traits. We additionally show, 503 

albeit on a small cohort, that LDLR functional scores associate more closely with CAD incidence than 504 

LDL-C levels. This result is consistent with the residual CAD risk of FH patients even after LDL-reductive 505 

therapy91 and reinforces the value of LDLR pathogenicity analysis above and beyond LDL-C monitoring. 506 

We show that base editing-derived functional scores correlate moderately with evolutionary 507 

conservation (Pfam, PhyloP) as well as structural disruption (DDMut) analyses. We show preliminary 508 
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evidence that integrating BEAN and PhyloP scores improves prediction of LDL-C levels. Thus, functional 509 

screening offers at least partially orthogonal information to other forms of evidence that have been 510 

used to build computational pathogenicity predictors92–94. We anticipate that principled integration of 511 

distinct lines of evidence including MAVE data will improve pathogenicity prediction, since each 512 

evidence type is an imperfect surrogate for the effects of a variant over the lifespan of an individual. For 513 

example, our LDL-C uptake screening fails to measure how variants impact uptake of other lipoproteins 514 

by LDLR95, interaction with PCSK996, or expression or function across environmental conditions or cell 515 

types, and thus its accuracy may be improved by integrating orthogonal methods. In conclusion, activity-516 

normalized base editor reporter screening with BEAN markedly improves variant impact quantification 517 

from CRISPR base editing screens.  Given the importance of variants of weak effect in complex disease, 518 

this approach promises to accelerate the characterization of human disease-associated variants in their 519 

native genomic context. 520 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 

467–484 (2019). 

2. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 

203–209 (2018). 

3. Gasperini, M., Starita, L. & Shendure, J. The power of multiplexed functional analysis of genetic 

variants. Nat. Protoc. 11, 1782–1787 (2016). 

4. Araya, C. L. & Fowler, D. M. Deep mutational scanning: assessing protein function on a massive 

scale. Trends Biotechnol. 29, 435–442 (2011). 

5. Myers, R. M., Tilly, K. & Maniatis, T. Fine structure genetic analysis of a beta-globin promoter. 

Science 232, 613–618 (1986). 

6. Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Genomics 106, 

159–164 (2015). 

7. Bock, C. et al. High-content CRISPR screening. Nature Reviews Methods Primers 2, 1–23 (2022). 

8. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 

(2014). 

9. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-

Cas9 system. Science 343, 80–84 (2014). 

10. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base 

in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). 

11. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA 

cleavage. Nature 551, 464–471 (2017). 

12. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living 

cells. Nat. Rev. Genet. 19, 770–788 (2018). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 

184, 1064-1080.e20 (2021). 

14. Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR 

screens. Science 380, eadh7699 (2023). 

15. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human 

hematopoiesis. Cell 186, 2456-2474.e24 (2023). 

16. Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing 

screens. Cell 184, 1081-1097.e19 (2021). 

17. Pablo, J. L. B. et al. Scanning mutagenesis of the voltage-gated sodium channel NaV1.2 using base 

editing. Cell Rep. 42, 112563 (2023). 

18. Coelho, M. A. et al. Base editing screens map mutations affecting interferon-γ signaling in cancer. 

Cancer Cell 41, 288-303.e6 (2023). 

19. Cheng, L. et al. Single-nucleotide-level mapping of DNA regulatory elements that control fetal 

hemoglobin expression. Nat. Genet. 53, 869–880 (2021). 

20. Sánchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and 

functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. 1–12 (2022). 

21. Kim, Y. et al. High-throughput functional evaluation of human cancer-associated mutations using 

base editors. Nat. Biotechnol. (2022) doi:10.1038/s41587-022-01276-4. 

22. Kweon, J. et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 

variants. Oncogene 39, 30–35 (2020). 

23. Huang, C., Li, G., Wu, J., Liang, J. & Wang, X. Identification of pathogenic variants in cancer genes 

using base editing screens with editing efficiency correction. Genome Biol. 22, 80 (2021). 

24. Sangree, A. K. et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 

and BCL2. Nat. Commun. 13, 1318 (2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


25. Lue, N. Z. et al. Base editor scanning charts the DNMT3A activity landscape. Nat. Chem. Biol. 19, 

176–186 (2023). 

26. Després, P. C., Dubé, A. K., Seki, M., Yachie, N. & Landry, C. R. Perturbing proteomes at single 

residue resolution using base editing. Nat. Commun. 11, 1871 (2020). 

27. Garcia, E. M. et al. Base Editor Scanning Reveals Activating Mutations of DNMT3A. bioRxiv 

2023.04.12.536656 (2023) doi:10.1101/2023.04.12.536656. 

28. Lue, N. Z. & Liau, B. B. Base editor screens for in situ mutational scanning at scale. Mol. Cell 83, 

2167–2187 (2023). 

29. Arbab, M. et al. Determinants of Base Editing Outcomes from Target Library Analysis and Machine 

Learning. Cell 182, 463-480.e30 (07/2020). 

30. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. 

Nature 600, 675–679 (2021). 

31. Wang, R., Lin, D.-Y. & Jiang, Y. EPIC: Inferring relevant cell types for complex traits by integrating 

genome-wide association studies and single-cell RNA sequencing. PLoS Genet. 18, e1010251 (2022). 

32. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-

relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018). 

33. Bouhairie, V. E. & Goldberg, A. C. Familial hypercholesterolemia. Cardiol. Clin. 33, 169–179 (2015). 

34. Brown, M. S. & Goldstein, J. L. How LDL receptors influence cholesterol and atherosclerosis. Sci. 

Am. 251, 58–66 (1984). 

35. Mundal, L. J. et al. Impact of age on excess risk of coronary heart disease in patients with familial 

hypercholesterolaemia. Heart 104, 1600–1607 (2018). 

36. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human 

phenotype. Nucleic Acids Res. 42, D980-5 (2014). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


37. Hamilton, M. C. et al. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. 

Cell Genomics 3, 100304 (2023). 

38. Spady, D. K. Hepatic clearance of plasma low density lipoproteins. Semin. Liver Dis. 12, 373–385 

(1992). 

39. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain 

compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020). 

40. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting 

with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020). 

41. Shin, H. R. et al. Small-molecule inhibitors of histone deacetylase improve CRISPR-based adenine 

base editing. Nucleic Acids Res. 49, 2390–2399 (2021). 

42. Yang, C. et al. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nat. 

Commun. 14, 2430 (2023). 

43. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in 

regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 

1273–1300 (2020). 

44. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait 

heritability. Nat. Genet. 52, 1355–1363 (2020). 

45. Emmer, B. T. et al. Genome-scale CRISPR screening for modifiers of cellular LDL uptake. PLoS Genet. 

17, e1009285 (2021). 

46. Arbab, M. et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, 

eadg6518 (2023). 

47. Schep, R. et al. Impact of chromatin context on Cas9-induced DNA double-strand break repair 

pathway balance. Mol. Cell 81, 2216-2230.e10 (2021). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


48. Ding, X. et al. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-

Modulating Peptides. CRISPR J 2, 51–63 (2019). 

49. Liu, G., Yin, K., Zhang, Q., Gao, C. & Qiu, J.-L. Modulating chromatin accessibility by transactivation 

and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biol. 20, 145 

(2019). 

50. Klimentidis, Y. C. et al. Phenotypic and genetic characterization of lower LDL cholesterol and 

increased type 2 diabetes risk in the UK Biobank. Diabetes 69, 2194–2205 (2020). 

51. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale 

CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014). 

52. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. 

Genome Biol. 16, 281 (2015). 

53. Jeong, H.-H., Kim, S. Y., Rousseaux, M. W. C., Zoghbi, H. Y. & Liu, Z. Beta-binomial modeling of 

CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. 

Genome Res. 29, 999–1008 (2019). 

54. Daley, T. P. et al. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome 

Biol. 19, 159 (2018). 

55. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. 

Nature 482, 390–394 (2012). 

56. Currin, K. W. et al. Genetic effects on liver chromatin accessibility identify disease regulatory 

variants. Am. J. Hum. Genet. 108, 1169–1189 (2021). 

57. Yao, Q. et al. Motif-Raptor: a cell type-specific and transcription factor centric approach for post-

GWAS prioritization of causal regulators. Bioinformatics 37, 2103–2111 (2021). 

58. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence 

specificity. Cell 158, 1431–1443 (2014). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


59. Partridge, E. C. et al. Occupancy maps of 208 chromatin-associated proteins in one human cell type. 

Nature 583, 720–728 (2020). 

60. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. 

Nature 518, 337–343 (2015). 

61. Jing, Z., Liu, Y., Dong, M., Hu, S. & Huang, S. Identification of the DNA binding element of the human 

ZNF333 protein. J. Biochem. Mol. Biol. 37, 663–670 (2004). 

62. Witzgall, R., O’Leary, E., Leaf, A., Onaldi, D. & Bonventre, J. V. The Krüppel-associated box-A (KRAB-

A) domain of zinc finger proteins mediates transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 

91, 4514–4518 (1994). 

63. Fass, D., Blacklow, S., Kim, P. S. & Berger, J. M. Molecular basis of familial hypercholesterolaemia 

from structure of LDL receptor module. Nature 388, 691–693 (1997). 

64. Russell, D. W., Brown, M. S. & Goldstein, J. L. Different combinations of cysteine-rich repeats 

mediate binding of low density lipoprotein receptor to two different proteins. J. Biol. Chem. 264, 

21682–21688 (1989). 

65. Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein 

receptor. Annu. Rev. Biochem. 74, 535–562 (2005). 

66. Bateman, A. et al. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of 

proteins. Nucleic Acids Res. 27, 260–262 (1999). 

67. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013). 

68. Yu, T., Fife, J. D., Adzhubey, I., Sherwood, R. & Cassa, C. A. Joint estimation and imputation of 

variant functional effects using high throughput assay data. medRxiv (2023) 

doi:10.1101/2023.01.06.23284280. 

69. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv [cs.LG] (2016). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


70. Clarke, S. L. et al. Coronary artery disease risk of familial hypercholesterolemia genetic variants 

independent of clinically observed longitudinal cholesterol exposure. Circ. Genom. Precis. Med. 15, 

e003501 (2022). 

71. Oommen, D., Kizhakkedath, P., Jawabri, A. A., Varghese, D. S. & Ali, B. R. Proteostasis Regulation in 

the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic 

Management of Familial Hypercholesterolemia. Front. Genet. 11, 570355 (2020). 

72. Kim, M. K. & Kang, Y. K. Positional preference of proline in alpha-helices. Protein Sci. 8, 1492–1499 

(1999). 

73. Pavloušková, J., Réblová, K., Tichý, L., Freiberger, T. & Fajkusová, L. Functional analysis of the 

p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. 

Atherosclerosis 250, 9–14 (2016). 

74. von Heijne, G. Signal sequences. The limits of variation. J. Mol. Biol. 184, 99–105 (1985). 

75. Pena, F., Jansens, A., van Zadelhoff, G. & Braakman, I. Calcium as a crucial cofactor for low density 

lipoprotein receptor folding in the endoplasmic reticulum. J. Biol. Chem. 285, 8656–8664 (2010). 

76. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 

(2021). 

77. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural 

coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 

(2022). 

78. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein 

Sci. 86, 2.9.1-2.9.37 (2016). 

79. Jubb, H. C. et al. Arpeggio: A web server for calculating and visualising interatomic interactions in 

protein structures. J. Mol. Biol. 429, 365–371 (2017). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


80. Zhou, Y., Pan, Q., Pires, D. E. V., Rodrigues, C. H. M. & Ascher, D. B. DDMut: predicting effects of 

mutations on protein stability using deep learning. Nucleic Acids Res. 51, W122–W128 (2023). 

81. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. Hydrophobicity of amino acid 

residues in globular proteins. Science 229, 834–838 (1985). 

82. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, 

R106 (2010). 

83. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-

seq data with DESeq2. Genome Biol. 15, 550 (2014). 

84. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 

humans. Nature 581, 434–443 (2020). 

85. Cassa, C. A. et al. Estimating the selective effects of heterozygous protein-truncating variants from 

human exome data. Nat. Genet. 49, 806–810 (2017). 

86. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 

11, 801–807 (2014). 

87. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint 

consensus recommendation of the American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). 

88. Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion 

using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019). 

89. Domanski, M. J. et al. Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event 

Risk. J. Am. Coll. Cardiol. 76, 1507–1516 (2020). 

90. Duncan, M. S., Vasan, R. S. & Xanthakis, V. Trajectories of Blood Lipid Concentrations Over the 

Adult Life Course and Risk of Cardiovascular Disease and All-Cause Mortality: Observations From 

the Framingham Study Over 35 Years. J. Am. Heart Assoc. 8, e011433 (2019). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


91. Mundal, L. & Retterstøl, K. A systematic review of current studies in patients with familial 

hypercholesterolemia by use of national familial hypercholesterolemia registries. Curr. Opin. 

Lipidol. 27, 388–397 (2016). 

92. Gao, H. et al. The landscape of tolerated genetic variation in humans and primates. Science 380, 

eabn8153 (2023). 

93. Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 

1–5 (2021). 

94. Ioannidis, N. M. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare 

Missense Variants. Am. J. Hum. Genet. 99, 877–885 (2016). 

95. Go, G.-W. & Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol 

homeostasis. Yale J. Biol. Med. 85, 19–28 (2012). 

96. Lagace, T. A. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr. 

Opin. Lipidol. 25, 387–393 (2014). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Activity-normalized base editing screening pipeline. a) Schematic of activity-normalized base 521 

editing screening process and analysis by BEAN. A library of gRNAs, each paired with a reporter 522 

sequence encompassing its genomic target sequence, is cloned into a lentiviral base editor expression 523 

vector. Lentiviral transduction is performed in HepG2, followed by flow cytometric sorting of four 524 

populations based on fluorescent LDL-cholesterol (BODIPY-LDL) uptake. The gRNA and reporter 525 

sequences are read out by paired-end NGS to obtain gRNA counts and reporter editing outcomes in 526 

each flow cytometric bin. BEAN models the reporter editing frequency and allelic outcomes and gRNA 527 

enrichments among flow cytometric bins using BEAN to estimate variant phenotypic effect sizes. b) 528 

Adjacent nucleotide specificity of ABE8e-SpRY editing represented as a sequence logo from 7,320 529 

gRNAs; the height of each base represents the relative frequency of observing each base given an edit at 530 

position 0. c) Average editing efficiency of ABE8e-SpRY by protospacer position and PAM sequence d) 531 

Scatterplots comparing nucleotide-level editing efficiency between the reporter and endogenous target 532 

sites for a total of 49 gRNAs across four loci across 3 experimental replicates. The accessibility of the four 533 

loci as measured by ATAC-seq signal in HepG2 is shown in the top panel, and the scatterplot markers are 534 

colored by the accessibility of each nucleotide. Pearson correlation coefficients are shown as r. e) 535 

Schematic of the LDL-C variant library gRNA design for selected GWAS candidate variants with a 536 

Manhattan plot showing variant P-values from a recent GWAS study50. gRNAs tile the variant at five 537 

positions with maximal editing efficiency (protospacer positions 4-8). f) gRNA coverage of the LDLR tiling 538 

library across LDLR coding sequence along with 5’ and 3’ UTRs and several regulatory regions.  539 

Figure 2. BEAN models variant effects from activity-normalized base editing screens. Simplified 540 

schematic of BEAN Bayesian network that models input reporter editing outcomes and gRNA counts. 541 

The Bayesian network model recapitulates the data generation process starting from a variant-level 542 

phenotype Y! and models per-gRNA phenotypes as a Gaussian mixture distribution of edited and 543 

unedited (wild-type) allele phenotypes. The weights of the mixture components are modeled to 544 
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generate reporter editing outcomes. gRNA abundance in each sorting bin is then calculated by 545 

discretizing the gRNA phenotype based on the experimental design into the phenotypic quantiles, and is 546 

modeled to generate the observed gRNA counts using an overdispersed multivariate count distribution 547 

(see Methods). BEAN outputs the parameters of the posterior distribution of mean phenotypic shift as 548 

Gaussian distribution with mean 𝜇"# (effect size), along with negative-control adjusted z-score and 549 

credible interval (CI), where 𝒟 is the input data. 550 

Figure 3. BEAN improves variant impact estimation from the LDL-C GWAS library screen. a) Ridge plot 551 

of BEAN z-score distributions of positive controls, negative controls, and test variants. b) AUPRC of 552 

classifying LDLR and MYLIP splicing variants vs. negative controls. Metrics for all 5 replicates are shown 553 

as markers and metrics of 15 two-replicate subsamples among the 5 replicates are shown as box plots. 554 

c) Spearman correlation coefficient between BEAN effect size and log fold change of LDL-C uptake 555 

following individual testing of 26 gRNAs. Metrics for all 5 replicates are shown as marker and metrics of 556 

15 two-replicate subsamples among the 5 replicates are shown as box plots. d) Scatterplot of BEAN 557 

effect size and log fold change of LDL-C uptake following individual testing of 26 gRNAs. Spearman 558 

correlation coefficient is denoted as ρ. e) Scatterplot of variant effect size and significance estimated by 559 

BEAN. Labels show rsIDs of selected variants and dbSNP gene annotations and a manual annotation for 560 

APOB enhancer in the parenthesis. 561 

Figure 4. Functional characterization of LDL-C GWAS variants. a) Schematic of potential variant 562 

mechanisms and the figure panels showing data from each mechanistic experiment. b) Schematic of 563 

pooled ATAC-seq analysis to identify variants impacting accessibility. Differential representation of allele 564 

in gDNA and ATAC-seq reflects differential accessibility induced by the base edit or heterozygous 565 

reference allele. c) Change in ATAC-seq enrichment from the pooled ATAC-seq experiment. 95% 566 

confidence intervals are shown as the error bars. “Edited variant” denotes the enrichment by base edit 567 
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and “Allele” denotes the enrichment by either of the heterozygous alleles, when available, translated 568 

uniformly to major (Maj) to minor (Min) allele direction. Variants where the base edit is conducted from 569 

minor allele are denoted as red in the color bar. Family-wise error rate (FWER) with Benjamini-Hochberg 570 

multiple correction is shown for each enrichment value where FWER < 0.1. d) Genomic tracks for three 571 

selected variants. DNaseIHS; DNase 1 Hypersensitivity. Multiple transcript variants of RGS19 and OPRL1 572 

are shown in the middle panel. e) Fraction of ZNF329 minor (Min) allele haplotype reads in gDNA and 573 

cDNA from untreated HepG2 and HepG2 with rs35081008Min>Maj base editing.  f) Change in gene 574 

expression following base editing of three selected variants from minor (Min) to major (Maj) allele. P-575 

values of the one sample Student’s t-test of LFC vs. mean of 0 that are smaller than 0.05 are shown 576 

above each bar. g) Change in cellular LDL-C uptake following CRISPRa/i of proximal genes for three 577 

selected variants. P-values of the one sample Student’s t-test of LFC vs. mean of 0 that are smaller than 578 

0.05 are shown above each bar. h) Summary schematic of characterization results.   579 

Figure 5. Dissection of LDLR variant effects through BEAN modeling of a saturation tiled base editing 580 

screen. a) BEAN model for coding sequence tiling screens. Reporter editing efficiencies are calculated at 581 

the amino acid-level when the edited nucleotides are in coding region. Phenotypes of gRNAs with multi-582 

allelic outcomes are modeled as the Gaussian mixture of allelic phenotypes. If an allele consists of more 583 

than one variant, the phenotype of the allele is modeled as the sum of the component variants. A 584 

Bayesian network is used to model variant-level phenotypes, sharing phenotypic information from all 585 

available gRNAs. b) Ridge plot of BEAN z-score distributions of positive controls, negative controls, and 586 

variants. c) Ridge plot of BEAN z-score distributions of Clinvar variants annotated as pathogenic/likely 587 

pathogenic (P/LP), benign/likely benign (B/LB), conflicting interpretation of pathogenicity (conflicting), 588 

and Uncertain significance (VUS), and unannotated variants. d) AUPRC of classifying ClinVar 589 

pathogenic/likely pathogenic vs. benign/likely benign variants. The marker shows the metrics of each 590 

method run on 4 replicates with no failing samples. Boxplot shows the metrics of 6 2-replicate 591 
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combinations of the 4 replicates. e) LDLR domain structure adopted from Oommen et al71. f) BEAN z-592 

scores for variants in the 7 LDLR class A repeat domains aligned with the Pfam profile HMM logo. Highly 593 

conserved cysteines are highlighted in grey. g) Scatterplot of estimated variant effect sizes and z-scores. 594 

Labels of selected deleterious variants without ClinVar pathogenic/likely pathogenic annotations are 595 

shown. h) Scatterplot of LDLR class A repeat missense variant BEAN z-scores and ΔPfam profile HMM 596 

scores. Higher ΔPfam scores correspond to substitution from highly conserved to rarely observed amino 597 

acids. i) Comparison of mean statin-adjusted LDL-C level and BEAN z-score for variants observed in UKB 598 

and base editing. j) Comparison of mean statin-adjusted LDL-C level and BEAN-FUSE scores for variants 599 

observed in UKB and base editing. k) LDL-C levels of observed missense variants predicted by a 600 

regression model using BEAN-FUSE and PhyloP scores with 10-fold cross validation, compared with 601 

mean statin-adjusted LDL-C level in UKB. l) Boxplots of BEAN-FUSE functional scores for UKB individuals 602 

with variants observed in our base editing screen with or without CAD. m) Boxplots of statin-adjusted 603 

LDL-C levels of UKB invididuals with variants observed in our base editing screen with or without CAD. P-604 

value of two-sided Wilcoxon rank-sum test is denoted. r; Pearson correlation coefficient, 𝜌; Spearman 605 

correlation coefficient 606 

Figure 6. Deleterious variants in LDLR class B repeats weaken hydrophobic interactions. a-d) Boxplots 607 

of 26 significant (z < -1.96) and the rest of 259 variants observed in LDLR class B repeats. P-values of 608 

two-sided Wilcoxon rank-sum test are denoted. WT; wild-type, Mut; mutated. e) Conserved interactions 609 

involving tyrosine of which mutation showed significant BEAN scores. Simplified interaction types and 610 

distance flags as annotated by Arpeggio are shown in the legend. f) BEAN z-scores of positions with 611 

conserved hydrophobic residues are shown along with the LDLR class B repeat PFAM HMM logo. g-i) 612 

Local atomic interaction in wild-type and mutated structure for ClinVar conflicting variants or VUS 613 

L426P, M652T, and Y532C. Residues in the variant positions are colored by the reference amino acids. 614 

Residues that interact with the variant position are shown. Variant position and interacting residues are 615 
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colored by elements (O: red, N: blue, S: yellow). j) Contour plot of BEAN z-score against ΔΔ𝐺 predicted 616 

by DDMut for 872 missense variants. Positions with distinct observed missense variants that disrupt and 617 

conserve hydrophobic sidechains are connected by dashed line.  618 
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Methods 619 

Establishing Cell Lines 620 

HepG2 cells were obtained from American Type Culture Collection (ATCC). HepG2 cells were infected 621 

with lentiviral constitutive base editor vectors pLenti_ABE8e-SpRY-P2A-BFP_HygroR and pLenti_AID-622 

BE5-SpRY-P2A-BFP_HygroR. After Hygromycin selection, cells were sorted twice to enrich for BFP 623 

expression. 624 

Screen library design 625 

The LDL-C GWAS library was constructed to include gRNAs targeting variants associated with LDL-C 626 

levels from the UK Biobank GWAS cohort. Fine-mapped variants with posterior inclusion probability 627 

(PIP) > 0.25 from either the SUSIE or Polyfun fine-mapping pipelines (updated in December 2019, 628 

downloaded from https://www.finucanelab.org/data) were included, as well as variants with PIP > 0.1 629 

within 250 kb of any of 490 genes found to significantly alter LDL-C uptake from recent CRISPR-Cas9 630 

knockout screens1,2. All HepG2 haplotypes derived from the phased HepG2 genome sequence were 631 

targeted, and thus multiple allelic variants were targeted at certain genomic locations. Variants were 632 

assigned to ABE or CBE sub-libraries according to the identity of the affected nucleotide, and variants 633 

were included even in cases such as transversions and variable-length variants in which the edited 634 

variant would not exactly match the alternate allele identity. Five gRNAs that position the variant in 635 

protospacer positions 4-8 were included. gRNAs that contain TTTT stretches were removed from the 636 

library. Positive control gRNAs were designed to ablate all feasible splice donor and acceptor sites for 637 

ABE and to install 16 stop/gain variants for CBE, using five gRNAs per target site using the same logic as 638 

for variants. A total of 100 negative control non-targeting gRNAs were included in each sub-library, 639 

designed as 20 sets of five tiled gRNAs using the same logic as for variants. Paired reporter sequences 640 

were designed as the 32-nt genomic target sequence centered on the 20-nt gRNA. 641 
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The LDLR tiling library was constructed to include all gRNAs targeting coding regions (tiling density of 1) 642 

on both strands. The 26-nt intronic region surrounding each LDLR exon was tiled at ½ density (on both 643 

strands as in all subsequent cases), and the 24-nt distal to this region was tiled at 1/3 density. 5’ and 3’ 644 

UTR regions were tiled at 1/3 density. The two strongest LDLR intronic enhancers, both in intron 1, were 645 

also tiled at 1/3 density. In all cases, gRNAs were designed to match the HepG2 genomic sequence, and 646 

gRNAs were designed to target all HepG2 haplotypes when HepG2 is heterozygous at that sequence. 647 

gRNAs that contain TTTT stretches were removed from the library. 150 negative control non-targeting 648 

gRNAs were included. Paired reporter sequences were designed as the 32-nt genomic target sequence 649 

centered on the 20-nt gRNA. 650 

Libraries were designed in the following template: 651 

TGGAAAGGACGAAACACCG[19-20-nt gRNA] 652 

GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACC653 

GAGTCGGTGCTTTTTTT[32-nt target (6-nt upstream, 20-nt gRNA, 6-nt PAM)][4-nt barcode] 654 

AGATCGGAAGAGCACACGNNNNNNNNNNNNNN 655 

Where the final 14 N’s are a variable primer sequence enabling pooling of sublibraries into a single 656 

synthesis order. The gRNA libraries were ordered from Agilent. 657 

Base editing screening  658 

The gRNA libraries were cloned into either CRISPRv2FE-ABE8e-SpRY-BsrGI or CRISPRv2FE-AIDBE5-SpRY-659 

BsrGI. Libraries were amplified using NEBNext Ultra II Q5 mastermix, cloned using NEBuilder HiFi DNA 660 

Assembly mastermix, and electroporated into Endura competent cells (Biosearch Technologies) for 661 

propagation. Lentivirus was produced in HEK293T cells for each library using TransIT-Lenti transfection 662 

reagent, titered, and incubated with 6.25*10^6 ABE8e-SpRY stable HepG2 and AID-BE5-SpRY stable 663 

HepG2 cells respectively per replicate at an MOI of 0.3-0.5. Five or more biological replicate screens 664 

were performed for each library. After 24 hours, media containing the lentivirus was removed and fresh 665 
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DMEM media + 2mM VPA was added to allow for construct integration and promote base editing. After 666 

another 48 hours of media + VPA treatment, media with 1:20,000 Puromycin was added and cells 667 

underwent selection for the next 5-7 days and were split as needed.  668 

Following complete selection as defined by complete death of a concurrent untreated control, cells 669 

were started on the 2-day LDL uptake protocol: on day 0, library cells were split, counted, and replated 670 

onto 15-cm plates at 1*10^5 cells/cm2. On the evening of day 1, DMEM media was removed and 671 

replaced with Optimem to induce overnight serum starvation. On the morning of day 2, 1:400 BODIPY 672 

FL-LDL (Thermo Fisher Scientific) + Optimem was added and incubated with cells for 4-6 hours. After this 673 

incubation period, plates were trypsinized, stained with 50 ng/mL DAPI, and sorted based on BODIPY-674 

LDL fluorescence levels into 4 bins (top 20%, top 20-40%, bottom 20%, and bottom 20-40%). gDNA was 675 

then collected from each sorted population as well as an unsorted bulk population and prepared for 676 

next generation sequencing. 677 

Library preparation and next generation sequencing 678 

To prepare for next generation sequencing of samples, genomic DNA collected from each sorted 679 

population and an unsorted bulk population was used as the input for a PCR1 reaction aimed at 680 

amplifying the integrated construct spanning the gRNA, as well as adding different inline PE1 barcodes 681 

to specific samples for downstream analysis. The ideal total genomic DNA input per sample for PCR1 682 

was 20ug of DNA, but if less than 20ug of genomic DNA was collected for a specific sorting population, 683 

then the total genomic DNA yield was input into PCR1. NEBNext Ultra II Q5 mastermix was used. Please 684 

refer to Supplementary Table 9 for specific PCR1 primers used depending on the specific reporter and 685 

corresponding sub-experiment described above in the paper. Following PCR1, reactions were 686 

individually PCR purified using a standard QIAquick PCR Purification Kit. Next, a qPCR2 was performed 687 

from 0.25ul of each purified sample in a 15ul qPCR reaction to determine the optimum number of cycles 688 

for PCR2, and the products of qPCR2 were run on a gel to confirm lack of primer dimer and the 689 
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confidence of CT cycles from qPCR2. PCR2 cycle counts were chosen to be 2-3 cycles less than the qPCR2 690 

CT for the corresponding sample, with a minimum number of PCR2 cycles being 7. In order to set up 691 

PCR2, half of each sample’s purified PCR1 product was then used with NEBNext Ultra II Q5 mastermix 692 

(please refer to the Supplementary Table 9 for specific PCR2 primers used. It is important to note that, 693 

despite differences in primers between sub-experiments, NEBNext i7 primers were always used in PCR1, 694 

and NEBNext i5 primers were always used in PCR2. The unique combination of these two barcodes for 695 

each specific sample is what allows for downstream identification of reads post sequencing. Following 696 

PCR2, samples were again PCR purified with a QIAquick PCR Purification Kit, and then purified samples 697 

were run on a 2200 Agilent Tapestation to identify the quantity of product as well as any unwanted 698 

byproducts and primer dimers that might have occurred throughout NGS preparation. Samples were 699 

then pooled based on their molarity, and the pool was purified to remove unwanted products using 700 

SPRI-Select beads from Beckman Coulter. The SPRI bead: sample ratio for pool purification was chosen 701 

based on the quantity and size of unwanted byproducts relative to the desired product, and varied 702 

among 0.8-0.9 for all experiments. Following bead purification, the pooled sample was sequenced using 703 

Illumina Nextseq used paired-end sequencing with >50-nt read 1 and >36-nt read 2. 704 

Comparison of endogenous and reporter editing 705 

Endogenous sublibraries A-D targeting four distinct loci across LDLR (Supplementary Table 3) were 706 

cloned and run as the screens (see Screen Procedure above), but were run in six-well format with 707 

400,000 cells per sample six well being infected. Following the standard lentiviral infection protocol and 708 

puromycin selection process, samples were harvested at the end of selection as only editing data was 709 

desired. After gDNA isolation, a reporter-based library preparation for next generation sequencing was 710 

performed (see Library preparation for next generation sequencing protocol above), together with an 711 

additional library preparation for amplifying endogenous editing sites: PCR1 samples to determine 712 

endogenous editing were set up with Ultra II Q5 mastermix and 2.5ug of genomic DNA input and a 713 
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unique primer mix for each of the four LDLR endogenous libraries. These primer mixes contained three 714 

unique R1 forward primers and one common R2 reverse primer that would allow amplification segments 715 

from the endogenous LDLR containing all desired editing sites targeted within that library. Upon 716 

completion of PCR1, samples were PCR purified using a QIAquick PCR Purification Kit and prepared 717 

following the standard library preparation protocol above. For specific primers used, please see 718 

Supplementary Table 9). Following the preparation of these endogenous samples, both endogenous 719 

and reporter samples were run on an 2200 Agilent Tapestation and pooled + purified accordingly to 720 

prepare for next generation sequencing (see Library preparation and next generation sequencing 721 

section).  722 

Endogenous target site reads are mapped to the reference amplicon sequences using CRISPResso2 with 723 

base editing mode and custom mismatch score matrix that tolerates A to G mutation generated by 724 

`bean-count` command of bean software that implements all the computational functions of the 725 

proposed BEAN workflow as a Python package. Bean is available at https://pypi.org/project/crispr-726 

bean/. The paired gRNA and reporter library is mapped to the expected gRNA and reporter sequences 727 

using `bean-count` function of the bean package. Position-wise reporter base edits are tested for 728 

significance against control data without editing using the function 729 

`bean.annotate.filter_alleles.filter_alleles` from the bean package. This function conducts Fisher’s exact 730 

test and was used to filter for edits with Bonferroni-corrected P-value < 0.05 and odds ratio > 5.  731 

Read mapping 732 

FASTQ files are first demultiplexed by matching the corresponding 8nt pair-end index sequences (I2 733 

sequences “NNNNNNAG” are partially degenerative). Then, the FASTQ files are further demultiplexed by 734 

exact matching of the 3-6nt barcodes and the U6 hairpin stub (“GGAAAGGACGAAACACCG”). Paired end 735 

reads in the demultiplexed FASTQ files are mapped to gRNA sequences and read for the reporter editing 736 

outcome using the `bean-map-samples` command from bean. There, read pairs where either R1 or R2 737 
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with average quality Phred score lower than score 30 are discarded. Read pairs with good quality are 738 

mapped to the spacer sequence where the spacer positions in R1 perfectly match with any of the 739 

provided gRNA sequences while being masked for the editable positions to account for self-editing. As 740 

26%-54% of the reads are shown to have undergone R1-R2 recombination (Supplementary Fig. 25), we 741 

assign the read to two categories, where both R1 spacer sequence and R2 barcode sequence uniquely 742 

matches to a gRNA in the library and where on the R1 spacer sequence has the unique match to the 743 

gRNA sequence. For the reads that have the correct R1-R2 matching (barcode matched reads), we count 744 

the allele-level editing outcome by comparing the reference reporter sequence to the R2 reporter 745 

sequence by globally aligning two sequences using the modified `CRISPResso2Align.global_align` 746 

function of CRISPResso23 for base editing. The matched gRNA count, all gRNA count regardless of R1-R2 747 

matching, and per-guide reporter allele counts for the matched gRNAs are stored as the output per each 748 

sequencing sample.  749 

Quality control of reporter screen data 750 

To exclude failing samples and outlier guides, `bean-qc` from bean is run on the mapped gRNAs and 751 

edited allele counts. Specifically, samples with median Spearman correlation of gRNA count smaller than 752 

0.8, median log fold change of positive control guides (gRNAs targeting splicing sites for both LDL-C 753 

GWAS and LDLR tiling library) in top 20% and bottom 20% quantile smaller than -0.1, or median gRNA 754 

editing rate in reporter smaller than 0.1 are labeled as low-quality. The gRNA editing rate is calculated as 755 

the target variant cognate (A to G in ABE) editing rate in LDL-C GWAS library and mean cognate (A to G 756 

in ABE) editing rate in editable base (A for ABE) protospacer position 3-8. Outlier gRNAs and replicate 757 

pairs are defined as the gRNAs with a median absolute deviation larger than 5 and RPM (reads per 758 

million) ≥ 10000 among replicates. 759 

  760 
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Profiling and visualization of base editing preference 761 

LDLR tiling library editing outcome in bulk samples were analyzed to profile base editing preferences, 762 

and avoid bias in sequence context that comes from having A in designated position in LDL variant 763 

library. The heatmap of editing preference across spacer position and PAM was generated by the 764 

function `bean.pl.editing_patterns.plot_by_pos_pam` from bean. This considered the mean editing 765 

efficiency of A to G transitions within protospacer positions 1-20 for 7320 targeting gRNAs with more 766 

than 10 reads in any bulk sample. The average editing range per dinucleotide in the PAM was calculated 767 

as the maximal editing rate in protospacer positions 3-8, where the the relative editing rate is the 768 

highest. To quantify the context preference, the mean A to G editing efficiency of the –1 and +1 bases of 769 

the intended target base in protospacer position 3-8 was calculated. The context preference logo was 770 

generated from the normalized mean editing efficiency across replicates by the nucleotide in –1 and +1 771 

positions with the Logomaker package.  772 

Prediction of editing outcomes with BE-Hive 773 

We used the Python implementation of BE-Hive4 (https://github.com/maxwshen/be_predict_bystander) 774 

to predict editing outcomes of the LDLR tiling library. We initialized the model with “mES” as cell type 775 

and “ABE8” as the editor due to the lack of HepG2 cell type model. For each spacer, we extracted a 50nt 776 

long sequence around the starting position of the spacer in the hg38 genome, with 20nt before the 777 

spacer start and 30nt after,on the same strand. These 50nt sequences were used as the input to the BE-778 

Hive to predict likely editing outcomes. To calculate allele-level edit rates for each spacer, we summed 779 

up the probability of any editing outcomes with the same editing patterns in position 0-18 (0-based) 780 

relative to the start of the spacer. Similarly, to calculate base-level edit rate, we summed up the 781 

probability of any editing outcomes with identical base edits in position 3-8, relative to the start of the 782 

spacer. 783 

  784 
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BEAN models 785 

Variant and gRNA-level phenotypic modeling with reporter 786 

BEAN models the phenotype of cells with variant 𝑣,  𝑌# ,as Normal distribution, where the wild-type cells 787 

have standard normal phenotypic distribution 𝑌$ and the variant effects are quantified in a relative 788 

scale, using 𝑌$ as reference. For the cells with a gRNA, their phenotype is modeled as a mixture of allelic 789 

distributions produced by the gRNA, reflecting the heterogeneous outcome from a gRNA.  790 

For variant screens (LDL-C GWAS library), we aggregate alleles into two categories: alleles with or 791 

without observed edits at the target variant. The non-edited component in these models is fixed to have 792 

a wild-type phenotypic distribution. That is, the phenotype 𝑌% of cells with gRNA 𝑔 that induces variant 793 

𝑣 with editing rate 𝜋 is modeled as follows: 794 

𝑓&!(𝑦) = 31 − 𝜋%6𝑓&"(𝑦) + 𝜋%𝑓&#(𝑦) 795 

𝑌$~	𝒩(0, 1) 796 

𝜇#~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1) 797 

𝜎#~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.01) 798 

𝑌#~𝒩(𝜇# , 𝜎#) 799 

𝜇#~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1) 800 

𝜎#~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.01) 801 

, where 𝑓&	indicates the probability density function of 𝑌. The prior for 𝜇# and 𝜎# are set to be narrow 802 

based on the assumption that most variant would have close to wild-type effect size of mean 0 and 803 

standard deviation 1. 804 

For saturation tiling screen, as bystander edits are more likely to have phenotypic effect, BEAN accounts 805 

for more than one non-wild-type allele where each allele may include one or more variants. Here, we 806 

use the term “allele” to refer to the multiple editing outcome produced by base editing, and we 807 

aggregate multiple nucleotide-level variants that lead to the same coding sequence amino acid 808 
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mutations together. To account for splicing and noncoding region variants, variants that fall outside 809 

coding regions are not aggregated. 810 

We denote with 𝐴(𝑔) = {𝑎|𝐴𝑙𝑙𝑒𝑙𝑒	𝑎	𝑖𝑠	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑏𝑦	𝑔}  the set of alleles produced by gRNA 𝑔 that is 811 

robustly observed, here in at least 10% of the gRNA read counts across 30% of the samples after above-812 

mentioned aggregation. However, we note that users have the flexibility to set their own robustness 813 

thresholds in `bean-filter` of bean package. The phenotype of a given allele 𝑎 is defined as the sum of 814 

phenotypic effect of non-wild-type nucleotide and amino acid level variants. Finally, the phenotype of 815 

cells with gRNA 𝑔 is modeled again as the mixture distribution of allelic phenotype for the alleles it 816 

induces (𝑎 ∈ 𝐴(𝑔)) as follows: 817 

𝑓&!(𝑦) = 	 R 𝜋S'𝑓&$(𝑦)
'∈)(%)

 818 

𝑌' =	R𝑌#
#∈'

, 𝑌' = 𝑌$	𝑖𝑓	|𝑎| = 0 819 

, where 𝜋'T  is the endogenous editing rate, estimated from 𝜋', the reporter editing rate, of allele 𝑎. The 820 

non-edited allele phenotype and the priors for 𝜇# and 𝜎# are identical to the variant screen modeling.  821 

The identity of the alleles and their frequency in reporters are learned from per-gRNA reporter allele 822 

counts in pre-sort (bulk) sample. Within this modeling framework, the allelic editing frequency in the 823 

reporters is proportionately adjusted based on chromatin accessibility of the intended gRNA target locus 824 

to better estimate the endogenous allele frequency, while allowing for deviation from the scaled values. 825 

For each gRNA, allele editing rate 𝝅𝒈 = (𝜋%$, … , 𝜋%|)(%)|) and per-gRNA allele count 𝒁𝒈 =826 

3𝐴%$, … , 𝐴%|)(%)|6 are modeled as the Dirichlet and Multinomial distributions : 827 

𝜶𝒈𝝅T =
𝜶𝒈𝝅 + 𝜖
∑𝜶𝒈𝝅 + 𝜖

𝛼%/∘  828 

𝝅𝒈	~	𝐷𝑖𝑟(𝜶𝒈𝝅T ) 829 

𝒁𝒈	~	𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝝅𝒈) 830 
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Where 𝜶𝝅 is initialized as 𝟏aa⃗ , 𝜖 = 1𝑒12 and 𝛼%/∘  is the precision parameter that is fitted from the data 831 

(Supplementary Note 3). This approach partially follows DESeq25,6 approach of dispersion parameter 832 

estimation for the Negative Binomial distribution. The reporter editing rate 𝝅𝒈 is further scaled by 833 

accessibility to be used as the endogenous editing rate  𝝅𝒈T   through a function 𝑓. This function 𝑓 is 834 

learned a priori from the paired reporter and endogenous editing rate data while the deviation of 𝝅𝒈T  835 

from 𝑓3𝝅𝒈6 is fitted per gRNA. The deviation 𝜖/% below accounts for the incomplete correlation 836 

between endogenous and reporter editing rates.  837 

𝜋%3T =
𝑓(𝜋%4)

∑ 𝑓(𝜋%4)4∈{6,..,|)(%)|}
+	𝜖/ , 𝑓(𝜋) = 𝜋𝑒:𝑤' 838 

𝜖%/ = 𝑙𝑜𝑔𝑖𝑡163𝑙%/6, 𝑙%/	~	𝒩(0, 𝜎/) 839 

𝝅𝒈T = d1 − R 𝜋%3T
4∈{6,..,|)(%)|}

, 𝜋%6T , … , 	𝜋%;T e 840 

 𝑓(𝜋) is fitted from the data generated for comparison of endogenous and reporter editing based on the 841 

regression E glog k /%&'(
/)%*()+%)

lm = 𝑎𝑤 + 𝑏 where 𝑤 is 𝑙𝑜𝑔(𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦	𝑠𝑖𝑔𝑛𝑎𝑙 + 1) and the resulting 842 

coefficients 𝑎 = 0.2513 and 𝑏 = 	−1.9458  are used for the analyses presented in this paper. The 843 

residual of the regression is fitted as the Normal distribution, which is used as the prior for the logit-844 

scale deviation 𝑙/ (see full detail in Supplementary Note 2).  845 

In modeling base editing data screens with reporter data, we have built and evaluated two variants of 846 

the BEAN model that utilize less information than the original model. The first variant, BEAN-Uniform 847 

assumes a single component Normal distribution of cellular phenotype, reflecting the assumption that 848 

all gRNAs would have the same editing efficiency.  849 

𝐵𝐸𝐴𝑁 − 𝑈𝑛𝑖𝑓𝑜𝑟𝑚:						𝑌%~	𝒩(𝜇# , 𝜎#), 𝑔	𝑖𝑛𝑑𝑢𝑐𝑒𝑠	𝑣 850 
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While BEAN utilizes both reporter data and accessibility to estimate endogenous editing efficiency from 851 

the reporter data,	the second variant, BEAN-Reporter focuses only on the incorporation of the reporter 852 

data without accessibility information. That is, for BEAN-Reporter,		𝝅x = 𝝅.	853 

Sorting screen and gRNA count data modeling 854 

Sorting screens sorts the pool of cells with different gRNA and editing outcomes into distinct bins based 855 

on the phenotype they’re sorted on prior to sequencing. To model the sorting procedure, the proportion 856 

of cells that falls within sorting quantile bins for each gRNA is calculated analytically. This process allows 857 

for the determination of the relative fraction of cells with the gRNA that falls into each sorting bin, which 858 

is then used as the concentration parameter of Dirichlet-Multinomial distribution. Dirichlet-Multinomial 859 

distribution is chosen to model the gRNA read count across sorting bins that is over-dispersed 860 

multinomial count distribution, which we confirm from our data (see Supplementary Note 3). The gRNA 861 

read counts across sorting bins 𝑿𝒈𝒓 = (𝑋%=
($.$,$.>), 𝑋%=

($.>,$.?), 𝑋%=
($.@,$.A), 𝑋%=

($.A,6.$)) and the barcode-matched 862 

gRNA read count 𝑿𝒈𝒓𝒃 	for gRNA 𝑔 and replicate 𝑟 are modeled as following: 863 

𝑝%
(C,,C-) = 𝑃3𝑞D ≤ 𝑌% ≤ 𝑞E6 = 	RΦk

𝑞E − 𝜇'
𝜎'

l − Φk
𝑞D − 𝜇'
𝜎'

l
'

 864 

𝒑𝒈 = (𝑝%
($.$,$.>), 𝑝%

($.>,$.?), 𝑝%
($.@,$.A), 𝑝%

($.A,6.$)) 865 

𝒑𝒈T =	
𝒑𝒈
∑𝒑𝒈

𝑝%∘  866 

𝑿𝒈𝒓	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝒑𝒈T ⊙𝒔𝒓) 867 

𝑿𝒈𝒓𝒃 	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝒑𝒈𝒃� ⊙𝒔𝒓𝒃) 868 

,where ⊙ denotes element-wise multiplication. Here, 𝒑𝒈 is scaled as 𝜶𝝅 by the data-fitted precision 869 

parameter 𝑝%∘  (Supplementary Note 3) then scaled by the sample-specific size factor 𝒔𝒓 =870 

(𝑠=
($.$,$.>), 𝑠=

($.>,$.?), 𝑠=
($.@,$.A), 𝑠=

($.A,6.$))		, where the sample size factor is calculated as in DESeq25,6. For 871 

sample 𝑗, 𝑠4 = 𝑚𝑒𝑑𝑖𝑎𝑛%
F!.

G∏ F!./
#01 I1//

	and the same function is used to calculate size factor for barcode-872 
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matched read counts for sample 𝑗, 𝑠4: with 𝑋%4: .  We note that 𝑿𝒈𝒓𝒃  is not used in the inference when 873 

benchmarking against other methods to make sure we provide the same input. Samples marked as low-874 

quality and gRNA and replicate pair with ≤10 total reads, or identified as outliers are excluded from 875 

inference (see Quality control of reporter screen data).  876 

The parameters 𝜇%, 𝜎%, 𝛼/ , 𝑙/ of posterior distributions are fitted using stochastic variational inference 877 

(SVI) of Pyro using 2000 steps with decaying learning rate starting from 0.01 with variational distribution 878 

that mirrors the model. Specifically, the posterior phenotypic distribution of each variant is fitted as a 879 

Normal distribution with a posterior standard deviation parameter and mean parameter which has 880 

Normal posterior distribution: 881 

𝑃(𝑌#|𝒟) 	≈ 𝑄(𝑌�) 882 

𝑌�	~	𝒩(𝜇##,𝜎##) 883 

𝜇##	~	𝒩(𝜇"## ,𝜎"## ) 884 

Where 𝒟 is observed data for the model and 𝑄 is the variational distribution. Negative control variants 885 

are used to control the significance of variant effect, by fitting the shared phenotypic distribution of 886 

negative controls as a single normal distribution. Subsequently the results are scaled so that the fitted 887 

negative control distribution is transformed to a standard normal.  888 

𝑌JK=D�	~	𝒩(𝜇JK=D�,𝜎JK=D�) 889 

𝑌#
(LJ'DMN) =

𝑌#� −	𝜇JK=D�
𝜎JK=D�|𝒟

		~	𝒩(𝜇#
(LJ'DMN), 𝜎#

(LJ'DMN)) 890 

𝜇#
(LJ'DMN) =

𝜇"## − 𝜇JK=D�
𝜎JK=D�

		~	𝒩(𝜇"#
(LJ'DMN), 𝜎"#

(LJ'DMN)) 891 

In order to control for false discovery with negative control variants, the standard deviations of variants 892 

𝜎"#
(LJ'DMN) are scaled so that the standard deviation of 𝜇;, where 𝑛 are the negative control variants, is 893 

equal to 1. In the LDL-C variant screen, 20 negative control variants (each tiled by 5 gRNAs) are used and 894 

for LDLR tiling screen 175 synonymous variants are used as the negative control variants: 895 
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𝜎"#
('N4) =	𝜎"#

(LJ'DMN) 	 ∗ 𝜎;# 896 

Where 𝜎;# is fitted as the standard deviation estimate of 𝑧"&
(LJ'DMN) = 𝜇"&

(LJ'DMN)/𝜎"&
(LJ'DMN) with 897 

`stats.norm.fit` of Python’s SciPy package with setting location parameter to 0.  898 

The model's output includes various parameters relating to the phenotype of the variant, such as the 899 

mean and standard deviation of variant phenotype 𝜇#
(LJ'DMN), 𝜎#

(LJ'DMN) and scaled and significance-900 

adjusted phenotypic mean distribution parameters 𝜇"#
(LJ'DMN), 𝜎"#

(LJ'DMN), 𝜎#
('N4), 𝑧"#

('N4) where 𝑧"#
('N4) =901 

𝜇"#
(LJ'DMN)/	𝜎"#

('N4) are reported together with estimated endogenous editing efficiency for each variant. 902 

For `variant` mode, the mean targeting gRNA editing rate is reported and for `tiling` mode, effective 903 

editing efficiency is reported and calculated as ∑ ∑ /!$O
|'|'∈{%	Q;NRJML	','	E'L	#}%∈{%|%	Q;NRJML	#} . The model, 904 

variational distribution and inference procedure are available as the default options of `bean-run` 905 

command of bean software. Specifically, BEAN-Uniform is run with `--uniform-edit` and full BEAN model 906 

is run by specifying `--scale-by-acc` argument. 907 

Benchmarking of CRISPR Pooled Screen Analysis Methods 908 

We reviewed and selected several CRISPR pooled screen analysis methods for benchmarking against 909 

BEAN, based on their availability and applicability to our experimental design and sorting screens. 910 

BAGEL7 was not applicable as it required positive and negative control target genes as the input. ACE8 911 

was designed for gene essentiality screens.  Gscreend9 required a single unsorted population to be 912 

compared against the multiple treatment samples. Consequently, we chose MAGeCK-RRA10, three 913 

running modes of MAGeCK-MLE11, CRISPRBetaBinomial (CB2)12, and CRISPhieRmix13.  CRISPhieRmix is 914 

only used for benchmarking the LDLR tiling screen as it requires the negative control gRNAs as LDL-C 915 

GWAS library benchmarking uses negative control variant label to evaluate classification 916 

performance.Huang et al., (2021)14 didn't offer their method available as software, but we incorporated 917 

their efficiency correction concept as efficiency-corrected log fold change (EC-LFC). Log fold change of 918 
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variants calculated from MAGeCK-RRA was included as the baseline. We believe that these methods 919 

represent the state-of-the-art based on multiple recent benchmark studies.  920 

We used two modes of MAGeCK v0.5.9.4, MAGeCK-RRA10 and MAGeCK-MLE11. MAGeCK-RRA takes 921 

treatment and control samples and evaluates if the rank of log fold change of gRNA abundance is not 922 

uniformly distributed. We used the paired mode with bottom 20% and top 20% quantile bin samples of 923 

each replicate as the paired treatment and control.  924 

MAGeCK-MLE11 uses Negative Binomial generalized linear model with log link to output the coefficients, 925 

that can be interpreted as the log fold change of the gRNA abundance following the unit increase in the 926 

covariate that is provided in the input design matrix. MAGeCK-MLE is the only method that we 927 

benchmakred against that can use all 4 quantile bins of our sorting screens. We assigned 0, 1, 3, 4 to 0-928 

20%, 20-40%, 60-80%, 80-100% quantile bin samples as the input covariate values. We further 929 

benchmarked MAGeCK-MLE where it uses the gRNA activity (`---guide_efficiency_file`) or fits the gRNA 930 

activity (`--guide_efficiency_file --update-efficiency`). As MAGeCK-MLE assumes gRNA efficiency in 931 

guide_efficiency_file to scale from -1 to 0.25, the editing efficiency is normalized to the range. In case 932 

the gRNA has not enough reads and is not assigned of the editing rate, it is assigned to the editing rate 933 

of 0.5 before the scaling. All runs are ran both with (`--genes-varmodeling 1000`) or without (default) 934 

dispersion fitting. 935 

CB212 models the gRNA counts using the beta-binomial distribution in which the variance can be either 936 

large or smaller than the mean to quantify gRNA abundance for CRISPR pooled screen data analysis. It 937 

uses Fisher’s combined probability test to estimate the gene-level significance. We installed the CB2 938 

package (v1.3.4) and benchmarked the performance by comparing the bottom 20% and top 20% 939 

quantile bins. 940 

CRISPhieRmix13 is a hierarchical mixture model for analyzing CRISPR pooled screen data by assuming 941 

that the majority of genes does not impact phenotype. It builds a two-group mixture model to identify 942 
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the impactful target genes. Specifically, log 2 fold change between bottom and top 20% quantile bins is 943 

calculated from DESeq26 and used as the input to compare the bottom and top samples. 944 

EC-LFC was calculated by dividing the variant log fold change calculated by MAGeCK-RRA10 by the variant 945 

editing efficiency. For the LDL-C GWAS library, mean editing efficiency of the targeting gRNAs are used 946 

as the variant editing efficiency. For LDLR tiling library, effective editing efficiency was used as the 947 

variant editing efficiency.  948 

Benchmark on LDL-C GWAS and LDLR tiling library 949 

For both LDL-C GWAS library and LDLR tiling library, the classification performance AUPRC of 950 

distinguishing positive controls against negative controls are evaluated. For the benchmark, 6 biological 951 

replicates of LDL-C GWAS library and 4 LDLR tiling library with no failing samples are used, and barcode-952 

matched reads are ignored during inference in BEAN runs. For replicate subsample analysis, all possible 953 

2-replicate combinations are subset to be analyzed by each method. For LDL-C GWAS library, its positive 954 

control variants, which are the splice sites of the genes that changes the LDL-C uptake is used as the 955 

positive control variants and the 20 non-targeting negative control variants are used as the negative 956 

control variants. For LDLR tiling library, ClinVar “pathogenic” or “pathogenic/likely pathogenic” 957 

annotated variants are classified against ClinVar “benign” or “benign/likely benign” annotated variants. 958 

As each method has different strategy to assign gRNA to variant thus scores different set of variants, we 959 

evaluate the recall as how much of the all ABE-discoverable Pathogenic/Likely Pathogenic variants are 960 

identified as Pathogenic. 961 

Cloning and testing of individual gRNAs 962 

Base Edit 963 

Oligonucleotides including protospacer sequences were ordered in the following format: 964 

GGAAAGGACGAAACACCG [19-20-bp protospacer —remove initial G for any 20-bp protospacer with one 965 

natively] GTTTAAGAGCTATGCTGGAAAC (see Supplementary Table 9). Using NEBuilder HiFi DNA 966 
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assembly, ABE8e-Cas9NG designated oligonucleotides were cloned into CRISPRv2FE-ABE8e-Cas9NG, 967 

while ABE8e-SPRY designated oligonucleotides were cloned into CRISPRv2FE-ABE8e-SpRY-BsrGI. To 968 

make base edited cell lines, the gRNA constructs were packaged into lentivirus and transduced into 969 

HepG2 ABE8e-SPRY-BFP cells seeded at 4x104 cells/cm2 on 6-well plates in two replicates with 8 µg/ml 970 

polybrene. Two days post-transduction, cells were treated with 500 ng/ul puromycin and selected for 971 

approximately one week. HepG2 Base Edited cells were seeded 1:1 with HepG2-mcherry cells to achieve 972 

a total density of 1.08x105 cells/cm2 on a 96 well plate in at least two technical replicates of two 973 

biological replicates and incubated overnight. The next day, the media was replaced with optiMEM and 974 

cells were incubated overnight. Approximately 4-6 hours prior to flow cytometric analysis, cells were 975 

treated with 2.5 mg/mL BODIPY-LDL in optiMEM. Cells were trypsinized and analyzed for presence of 976 

mCherry and LDL uptake using a Beckman CytoFLEX flow cytometer. LDL uptake of each base edited cell 977 

line was normalized to the LDL uptake of the mCherry cells within the same well. Differential LDL uptake 978 

between base edited and control cells was further normalized using data from the ABE8e and SPRY 979 

sgCTRL lines. 980 

CRISPRi 981 

Oligonucleotides including protospacer sequences (Supplementary Table 9) were ordered in the 982 

following format: GGAAAGGACGAAACACCG [19-20-bp protospacer—remove initial G for any 20-bp 983 

protospacer with one natively] GTTTAAGAGCTATGCTGGAAAC were cloned into a pHR-U6-gRNAFE-Zim3-984 

dCas9-P2A-Hygro backbone through NEBuilder HiFi DNA assembly. To make CRISPRi cell lines, the gRNA 985 

constructs were packaged into lentivirus and transduced into HepG2 cells seeded at 4x104 cells/cm2 on 986 

48-well plates in two replicates with 8 µg/mL of polybrene. Two days post-transduction, cells were 987 

treated with 125 µg/ml Hygromycin B and were selected for approximately one week. LDL uptake 988 

experiments were performed as described above, seeding CRISPRi cell lines 1:1 with HepG2-tTA-BFP 989 

cells as the internal control. 990 
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CRISPRa 991 

Oligonucleotides including protospacer sequences (Supplementary Table 9) were ordered in the 992 

following format: GGAAAGGACGAAACACCG [19-20-bp protospacer —remove initial G for any 20-bp 993 

protospacer with one natively] GTTTAAGAGCTAGGCCAACATG. Using NEBuilder HiFi DNA assembly, 994 

oligonucleotides were cloned into a pLenti U6-2xMS2gRNA MCPp65 PuroR backbone. To make CRISPRa 995 

cell lines, the gRNA constructs were packaged into lentivirus and transduced into HepG2 dCas9-996 

10xGcn4-mChe + scFv-Sbno1-Nfe2l1-Krt40-BFP cells and seeded at 4x104 cells/cm2 on 6-well plates in 997 

two replicates with 8 µg/ml polybrene. Two days post-transduction, cells were treated with 500 ng/ml 998 

puromycin and selected for approximately one week. LDL uptake experiments were performed as 999 

described above, seeding CRISPRa cell lines 1:1 with HepG2 wt cells as the internal control. 1000 

Pooled ATAC-seq 1001 

A pool of 20 gRNAs was cloned into CRISPRv2FE-ABE8e-Cas9NG or CRISPRv2FE-ABE8e-SpRY-BsrGI (see 1002 

Cloning and testing of individual gRNAs), packaged into lentivirus and transduced into HepG2 ABE8e-1003 

SpRY-BFP cells seeded at 4x104 cells/cm2 on 6-well plates in three replicates with 8 µg/mL of polybrene. 1004 

Cells were treated with VPA and selected with Puromycin as in screens. Once selected, two sets of 1*106 1005 

cells for each of the three replicates as well as an unedited control replicate were seeded to 6-well 1006 

plates. The next day, one well per replicate was fed with DMEM + FBS and the other with optiMEM 1007 

(serum-starved). 24 hours later, the wells were trypsinized, and 1*105 cells were used for ATAC-seq 1008 

while the remaining cells were used for bulk genomic DNA isolation using the Purelink Genomic DNA 1009 

mini kit (Life Technologies). ATAC-seq was performed using the Active Motif ATAC-Seq kit according to 1010 

manufacturer’s instructions. 1011 

To obtain valid primers to amplify the loci surrounding the 20 target variants, Primer315 was used to 1012 

generate 5 candidate primer sets within +-150-nt from each variant. Primer-Dimer.com was used to 1013 

calculate a deltaG (dG) interaction matrix for all candidate primers. Primers with average dG <= -7 were 1014 
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removed. Then, recursive pairwise filtering was performed to iteratively remove the primer with the 1015 

worst dG interaction until no pairwise dG <= -7 remains. This recursive filtering was performed 300 1016 

times, and the run with the most primers remaining was used. The primer set for each variant with 1017 

highest minimum dG was selected. Primers were all ordered from IDT preceded by NNN to randomize 1018 

initial nucleotides in NGS. We provide the amplicon sequence of 20 loci in Supplementary Table 9.  1019 

Genomic DNA and ATAC-Seq products from 8 total samples (3 experimental and 1 control, both in serum 1020 

and starved conditions) were amplified using two primer pools, each composed of 10 primer sets to 1021 

synchronize annealing temperature. 2.5 ug of gDNA/half of ATAC-Seq product was used in 100 uL 1022 

reactions for 32 cycles (gDNA) or 35 cycles (ATAC-Seq). Tapestation was used to pool the two PCR 1023 

products for each sample, and these 16 pools were used as input to the NEBNext UltraII DNA Library 1024 

Prep to prepare NGS libraries. Libraries were sequenced using 150-nt single-end sequencing using 1025 

Illumina Nextseq.  1026 

Pooled ATAC-seq analysis 1027 

For each sample, the ATAC-seq reads were mapped to amplicon sequences (Supplementary Table 9) 1028 

from 20 loci via Bowtie216 (v2.5.1). `bowtie2-build` was used to build indices for the amplicon sequences 1029 

for each of 20 loci and reads are mapped onto the indices with default parameters. In-house Perl script 1030 

was used to parse the SAM output from Bowtie2 and to demultiplex the reads by the locus they mapped 1031 

to with default options. Demultiplexed reads are then profiled for the target base editing rate using 1032 

CRISPResso23 (v.2.2.9) using average read quality cutoff of Phred score 30 and assigned of base `N` if 1033 

per-base quality is lower than Phred score 20. For each variant, reads are assigned to the reference 1034 

allele or alternate allele based on the base identity at the target SNP position. In case there exists a 1035 

neighboring variant that allows phasing as HepG2 is heterozygous for the variant, the reads are counted 1036 

per phase based on the identity of the neighboring variant. We note that for two of the variants 1037 

examined (rs3767844 and rs4390169), whether the base is the result of editing or is the reference allele 1038 
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was ambiguous (that is, variants are heterozygous in HepG2 and two reference alleles of A and G, then 1039 

we cannot assign reads with G in the variant position to the edited reference A or unedited reference G). 1040 

For the variants, we simply compare two observed bases and treat the effect as caQTL. For 1041 

rs771555783, rs76895963, and rs116734477, edited reads are not detected due to insufficient 1042 

representation of the loci, and thus excluded from the enrichment analysis. 1043 

We first identified the variants with significant editing observed in treatment samples compared to the 1044 

control samples where base editors are not treated. This is done by assessing the significance of 1045 

coefficient for 𝑖𝑠_𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 in the following Binomial regression with `GLM` module of Python 1046 

statsmodels package17, where 𝐸𝑑𝑖𝑡𝑒𝑑4  and 𝑈𝑛𝑒𝑑𝑖𝑡𝑒𝑑4  is the read counts of edited and unedited 1047 

variants in sample 𝑗, and 𝑖𝑠_𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡4  is the indicator variable for the sample 𝑗 being treatment 1048 

sample. 1049 

𝐸𝑑𝑖𝑡𝑒𝑑4 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝4 , 𝐸𝑑𝑖𝑡𝑒𝑑4 + 𝑈𝑛𝑒𝑑𝑖𝑡𝑒𝑑4) 1050 

𝑙𝑜𝑔𝑖𝑡3𝑝46	~	1 + 	𝑖𝑠_𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡4  1051 

Significantly edited variants should show higher proportion of edited reads (𝑝4) in treatment samples 1052 

compared to the control samples. For all significance testing, Benjamini-Hochberg family-wise error rate 1053 

(FWER) value of 0.1 is used as the threshold, where multiple testing correction is performed with 1054 

`stats.multitest.multipletests` function of Python statsmodels package17. 1055 

For the variants with significant observed editing, we calculated the enrichment of the editing in ATAC-1056 

seq compared to the gDNA sample, which indicates the editing opened the chromatin at the variant loci 1057 

and increased its capture rate for ATAC-seq. The enrichment of edited allele is calculated as the Binomial 1058 

regression coefficient of edited and unedited read counts for each variant. The proportion of edited 1059 

read count is regressed on whether the sequencing sample 𝑗 is from ATAC-seq (𝑖𝑠_𝐴𝑇𝐴𝐶4 = 1) or gDNA 1060 

(𝑖𝑠_𝐴𝑇𝐴𝐶4 = 0), and the regression coefficient of 𝑖𝑠_𝐴𝑇𝐴𝐶4  is used as the accessibility enrichment of the 1061 

variant editing. We condition for replicate and condition specific effect, along with the interaction effect 1062 
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between condition and ATAC-seq sample to examine if the variant only alters accessibility under either 1063 

one of two conditions. 1064 

𝐸𝑑𝑖𝑡𝑒𝑑4 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝4 , 𝐸𝑑𝑖𝑡𝑒𝑑4 + 𝑈𝑛𝑒𝑑𝑖𝑡𝑒𝑑4) 1065 

𝑙𝑜𝑔𝑖𝑡3𝑝46	~	1 + 	𝑖𝑠_𝐴𝑇𝐴𝐶4 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4 ∗ 𝑖𝑠_𝐴𝑇𝐴𝐶4 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4 + 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒4 	 1066 

We also calculated the caQTL effect of the variants that are heterozygous in HepG2. Here, whether one 1067 

allele has higher enrichment in ATAC-seq sample is examined as the regression coefficient for 𝑖𝑠_𝐴𝑇𝐴𝐶4  1068 

of following regression, again conditioned on experimental condition and replicate. 1069 

𝐴𝑙𝑙𝑒𝑙𝑒04 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑞4 , 𝐴𝑙𝑙𝑒𝑙𝑒04 + 𝐴𝑙𝑙𝑒𝑙𝑒14) 1070 

𝑙𝑜𝑔𝑖𝑡3𝑞46	~	1 + 	𝑖𝑠_𝐴𝑇𝐴𝐶4 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4 ∗ 𝑖𝑠_𝐴𝑇𝐴𝐶4 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4 + 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒4  1071 

Here, 𝐴𝑙𝑙𝑒𝑙𝑒04  and 𝐴𝑙𝑙𝑒𝑙𝑒14  are the read counts of alleles 0 and 1. The regression coefficient for 1072 

𝑖𝑠_𝐴𝑇𝐴𝐶4  is used as the accessibility enrichment of allele 0. When the enrichment is shown uniformly in 1073 

major to minor allele, enrichment values and confidence intervals calculated for the opposite direction is 1074 

inverted of their sign. 1075 

MotifRaptor 1076 

We adapted  the MotifRaptor18 pipeline to investigate how prioritized genetic variants may influence 1077 

nearby genes involved in LDL-C uptake. For each variant, we retrieved genomic sequences spanning 61 1078 

bp centered around the SNP location, using the hg38 genome assembly as a reference. Each sequence 1079 

was mutated by substituting the major allele with the minor allele at the SNP position, yielding both a 1080 

reference and an alternative sequence for each variant.  1081 

Subsequently, to evaluate the potential for transcription factor (TF) binding, we employed all the human 1082 

TF position weight matrices (PWMs) from the CIS-BP database19 to scan each pair of reference and 1083 

alternative sequences. This motif scanning generated binding scores at each sequence position, serving 1084 

as predictive indicators of TF binding potential.  1085 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2023. ; https://doi.org/10.1101/2023.09.08.23295253doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.08.23295253
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then compared these scores for each TF across the reference and alternative alleles within every 1086 

sequence pair. This comparative step is crucial for determining a variant's impact on TF binding. 1087 

Specifically, higher binding scores for the alternative sequence indicate an increase in TF binding 1088 

potential, while lower scores suggest a decrease. To quantify these changes, we calculated a 'disruption 1089 

score' as follows:  1090 

𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛  =  𝑠𝑐𝑜𝑟𝑒(𝑠'DK)  −  𝑠𝑐𝑜𝑟𝑒3𝑠=MS6. 1091 

 This score helps capture the directional change each variant induces, where a negative value signifies 1092 

reduced TF binding potential and a positive value indicates an increase. 1093 

Pfam profile HMM scores 1094 

Pfam profile HMM files of PF00057, PF00058 and PF00008 for LDLR class A repeat, LDLR class B repeat, 1095 

and EGF-like domain, respectively, are downloaded from Pfam20 to generate sequence logo through 1096 

Skylign21. Match emission score from the profile HMMs is used to calculate Δ𝑃𝑓𝑎𝑚 score. Match 1097 

emission score is the negative log probability to observe the amino acid from multiple sequence 1098 

alignment for a given position, thus lower score corresponds to high conservation and lower 1099 

Δ𝑃𝑓𝑎𝑚(𝑟𝑒𝑓 − 𝑎𝑙𝑡) = −(𝑃𝑓𝑎𝑚'DK − 𝑃𝑓𝑎𝑚=MS) corresponds to higher reference amino acid 1100 

conservation and lower chance to observe alt amino acid. 1101 

LDLR repeat domain alignment 1102 

LDLR class A repeats is aligned as shown in a previous study to align for all Cysteine residues. Alignments 1103 

for LDLR class B repeats and EGF-like domain were obtained with Clustal Omega22–24 by aligning domain 1104 

sequences with seed alignments from Pfam PF00058 and PF00008. 1105 

UK Biobank data processing 1106 

Study participants 1107 

The UK Biobank25 is a prospective cohort of over 500,000 individuals recruited between 2006 and 2010 1108 

of ages 40-69. Drawing from 469,803 participants with whole exome sequencing (WES) data, we 1109 
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included 443,353 participants with available LDL cholesterol measurements in this study. Patients with 1110 

homozygous variants and participants with more than one rare variant across LDLR and with any rare 1111 

variant in APOB and PCSK9 were not considered for these analyses. 1112 

Variant inclusion and quality control 1113 

Exon coordinates were determined for LDLR, APOB, and PCSK9 using MANE transcripts26, with an 1114 

additional 5nt retained upstream and downstream of each coding region to capture splice-site variants. 1115 

Exome sequencing was performed for UKB participants as previously described. Analysis was conducted 1116 

on the Research Analysis Platform (ukbiobank.dnanexus.com). We extracted gene-level VCF files from 1117 

the WES joint-called pVCFs using bcftools27 (v1.15.1) using the Swiss Army Knife app, then normalized to 1118 

flatten multiallelic sites and align variants to the GRCh38 reference genome.  1119 

Variants in low complexity regions, segmental duplications, or other regions known to be challenging for 1120 

next generation sequencing alignment or calling were removed from analysis (National Institute of 1121 

Standards and Technology Genome in a Bottle Consortium28 difficult regions), as were variants with an 1122 

alternate allele frequency greater than 0.1% in the UK Biobank cohort. Further filtering removed 1123 

variants in which more than 10% of samples were missing genotype calls and variants that did not 1124 

appear in the UK Biobank cohort. To mitigate differences in sequencing coverage between individuals 1125 

who were sampled at different phases of the UK Biobank project, variants were only retained in the final 1126 

set if at least 90% of their called genotypes had a read depth of at least 10. 1127 

The canonical functional consequence of each variant was calculated using Variant Effect Predictor (VEP, 1128 

v99)29. Non-coding variants outside of essential splice sites were not considered in the analysis. 1129 

Computational scores are provided by VEP, including the PhastCons conservation score30 1130 

(PhastCons100way_vertebrate). When multiple PhastCons conservation scores are available for a coding 1131 

variant, the mean of the available scores was used. 1132 

  1133 
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Clinical endpoints and endophenotypic data 1134 

Coronary artery disease and myocardial infarction cases were aggregated from hospital records (primary 1135 

or secondary diagnosis), death registries (primary or secondary cause of death), and self-reported data. 1136 

Age of onset was estimated based on date of onset and birth date when not directly provided, and cases 1137 

with uncertain or unavailable onset data were excluded. 1138 

Patient-level LDL-C values were ascertained from the UK Biobank data files. Estimated untreated LDL-C 1139 

levels were obtained using adjustments for lipid-lowering therapies were used in analyses, as described 1140 

in the supplement of this manuscript.  1141 

ClinVar assertions 1142 

ClinVar clinical assessments were identified from the tab delimited version of ClinVar released on 1143 

04/04/2023. In this analysis, we use ‘pathogenic’, ‘likely pathogenic’, and ‘pathogenic/likely pathogenic’ 1144 

classifications as ‘P/LP’ collectively, and ‘benign’, ‘likely benign’, and ‘benign/likely benign’ classifications 1145 

as B/LB. 1146 

BEAN-FUSE scores 1147 

We make use of the FUSE (Functional Substitution Estimation) pipeline31 to improve the estimation of 1148 

variant functional effects and to impute effects of variants which have not been screened. FUSE makes 1149 

use of related measurements within and across experimental assays to jointly estimate variant impacts.  1150 

After functional scores have been estimated by the BEAN pipeline, the full set of scores are processed by 1151 

FUSE, which first collectively estimates the mean functional effect per amino acid residue position 1152 

within the assay, using shrinkage estimation. FUSE then makes estimates for individual allelic variants 1153 

within the amino acid residue position, based on a functional substitution matrix derived from deep 1154 

mutational scanning data across many genes. The result is a full set of estimated variant functional 1155 

effects for both: 1) the original variants screened in the assay, and 2) other possible variants which were 1156 

not screened but fall within amino acid residues which had variants covered in the screen. 1157 
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Prediction of UKB LDL-C level 1158 

UKB LDL-C level of variants observed in the base editing and had high confidence (𝜎" < 0.5) was 1159 

predicted using XGBoost32 Python package and with default option with 10-fold cross validation 1160 

implemented in scikit-learn33 `model_selection.cross_val_predict`. The LDL-C levels of UKB variants that 1161 

are unobserved or not observed with enough confidence (𝜎" > 0.5) was predicted by the XGBoost 1162 

model that is trained on the variants observed with 𝜎" < 0.5.  1163 

Structural analysis 1164 

The protein structures were visualized and the screenshots were generated using PyMOL34 (v2.5.2). 1165 

Relative solvent accessibility (RSA)35 and residue depth were calculated using the DSSP module in 1166 

BioPython (v1.79)36 to capture the local 3D accessibility of residues. The wild-type atomic interactions 1167 

between residues were calculated by Arpeggio using the LDLR AlphaFold2 structure (position 1-860) 1168 

from the AlphaFold Protein Structure Database37. Additionally, interactions with calcium ions and 1169 

saccharides were calculated using PDB structure 1N7D (position 65-714 after renumbering according to 1170 

Uniprot P01130). These interactions were also computed for mutant structures generated using 1171 

MODELLER38 10.3. Subsequently, the change in interactions was determined by subtracting the 1172 

interactions in the mutant from those in the wild-type. Within each of the LDLR class B, LDLR class A, and 1173 

EGF-like domains, two-sided Wilcoxon rank-sum tests were conducted to compare the features 1174 

calculated for deleterious variants (identified by BEAN z-scores below -1.96) against those of other 1175 

variants. DDMut39 is a deep learning model that predicts protein stability change induced by mutation, 1176 

ΔΔ𝐺, based on the local atomic environment and interactions in wild type and mutated residue. LDLR 1177 

Alphafold2 structure is used as the input to predict the ΔΔ𝐺 of variants observed in our LDLR tiling 1178 

screen. 1179 

Molecular interactions were visually represented using a color-coded scheme to differentiate between 1180 

interaction types. Hydrophobic interactions were depicted in 'Forest'; polar interactions were depicted 1181 
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in 'Orange'; Carbonyl interactions were depicted in 'Blue’; hydrogen bonds were depicted in 'Red'; 1182 

Aromatic ring interactions including Methionine Sulfur-π, Donor-π, Cation- π, and Amide-Ring 1183 

interactions, were depicted in 'Pale Green'; Undefined interactions were depicted in 'Cyan'; Coordinate 1184 

covalent bonds were depicted in 'Purple'; and Ionic interactions were depicted in 'Yellow'. Moreover, 1185 

line type specifies distance flag from Arpeggio output, where thin dashed dashed lines represent Van 1186 

der Waals (vdW) Clashes, where the vdW radii between two atoms cause steric clashes. When such 1187 

clashes co-occurred with other interactions mentioned earlier, they were portrayed with dashed lines, 1188 

using the color code corresponding to the additional interaction except for undefined interaction type. 1189 

Additionally, all ionic interactions and coordinate covalent bonds with ions were consistently 1190 

represented by yellow and purple dashed thick lines. Other interactions were all represented by solid 1191 

lines. 1192 
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