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ABSTRACT 27 

Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). 28 

Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward 29 

memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form 30 

perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain 31 

synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories 32 

in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people 33 

with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used 34 

postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic 35 

alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical 36 

labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for 37 

ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and 38 

CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix 39 

metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle 40 

associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with 41 

chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects 42 

with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings 43 

demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward 44 

memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for 45 

CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that 46 

targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, 47 

however comorbidity with MDD is a significant consideration. 48 

 49 

 50 

 51 
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INTRODUCTION 53 

Substance use disorders (SUD) are a group of psychiatric disorders with substantially 54 

increased risk of mortality and severe socioeconomic burden affecting approximately 7 % of 55 

people in the United States annually 1, 2. SUDs impose a substantial burden of morbidity and 56 

mortality, exacerbated by persistently high rates of relapse and treatment failure 3. Contextual 57 

cues associated with drug use are a critical factor contributing to relapse in individuals with SUD 58 

and highlight the strength of memory circuits associated with reward processing 3-7. A growing 59 

number of studies indicate a critical role of extracellular matrix molecules (ECM) in the regulation 60 

of reward memories 8-17 (for reviews see 18, 19). Recent gene expression profiling studies 61 

demonstrate altered expression of pathways involved in ECM regulation in the dorsolateral 62 

prefrontal cortex and nucleus accumbens of subjects with opioid use disorder (OUD) 12, 20 as well 63 

as in preclinical models of OUD 20. 64 

Preclinical studies of cocaine, alcohol or opioid use demonstrate that alteration of specialized 65 

ECM structures called perineuronal nets (PNN) represent a key feature underlying reward 66 

memory in SUDs 8, 9, 17, 21-24. PNNs are ECM structures that envelop populations of fast-firing 67 

inhibitory neurons, stabilizing synapses on those neurons and restricting synaptic plasticity 16, 22, 68 

25, 26. During acquisition of drug memories, endogenous proteases including matrix 69 

metalloproteases (MMPs) degrade PNN components to allow for formation of new synapses 70 

associated with reward memories. 11, 27-30. Chronic drug use resulting in prolonged re-activation of 71 

memory circuits results in enhancement of  PNN components in the prefrontal cortex and insular 72 

cortex, stronger than at baseline, which stabilizes reward-associated synapses 9, 23, 24, 31-33 and 73 

may contribute to context-induced relapse 11, 27-30. Evidence that intracerebral injection of a 74 

pharmacological MMP inhibitor significantly weakens cocaine reward memories provides further 75 

support for this hypothesis 10. The hippocampus is at the center of neurocircuitry involved in 76 

reward memory processing 34. Specifically, accumulating evidence suggests that hippocampal 77 
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sector CA1 is involved in integrating dopamine reward signaling with contextual memories and in 78 

regulating reward expectation and extinction 35-37. CA1 neurons receive dopaminergic projections 79 

from the ventral tegmental area and encode reward-associated spatial memories 37, 38. CA1 spatial 80 

maps are modified by reward expectation and by inhibitory control of excitatory neurons encoding 81 

these maps 37, 38. Inhibitory neurons in CA1 are often surround by PNNs, and alterations of 82 

hippocampal PNNs impact several neurotransmitter systems associated with reward processing. 83 

For example, PNN degradation alters firing rate of inhibitory parvalbumin (PVB) neurons 39, as 84 

well as NMDAR/AMPAR trafficking 40 and hippocampal dopamine transmission 41.  85 

Despite this evidence, there is a lack of information regarding PNNs in the hippocampus of 86 

subjects with SUD, limiting the translatability of preclinical findings and the development of ECM-87 

based therapies for context-induced relapse. Furthermore, subjects with SUD often have 88 

comorbid substance use and a high degree of comorbidity with major depressive disorder (MDD) 89 

42. These features are challenging to capture in preclinical models, potentially limiting 90 

translatability. We used a cohort of human postmortem samples from subjects with SUD with or 91 

without comorbid MDD to test the hypothesis that numerical density of PNNs is increased in sector 92 

CA1 of subjects with SUD, accompanied by altered expression of genes related to ECM 93 

degradation and biosynthesis, synaptic regulation, and PVB expression. This cohort includes 94 

retrospective clinical assessments, toxicology reports, history of substance use and medication 95 

history, allowing for testing of several of the features inherent in the population with SUD. Subjects 96 

with comorbid SUD and MDD, and subjects with MDD without SUD were included to examine the 97 

potential effects of comorbid MDD on ECM pathology in SUD. Furthermore, we used a collection 98 

of postmortem hippocampus samples from rhesus monkeys with or without chronic alcohol self-99 

administration to examine the direct cause and effect on PNNs of the most common drug of abuse 100 

present across all our subjects with SUD.   101 

 102 
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MATERIALS AND METHODS 103 

Postmortem brain samples 104 

Human subjects for brightfield microscopy and RNA studies 105 

Fresh frozen blocks containing the hippocampus from subjects with SUD (n=20), SUD and 106 

comorbid MDD (n=24), MDD (n=20), and psychiatrically normal controls (n=20) were provided by 107 

the UMMC Postmortem Brain Core (Table 1, Cohort A). Details are described in our previous 108 

report 43 and in the Supplemental Materials.  109 

Psychiatric control subjects for confocal imaging  110 

Paraformaldehyde fixed free-floating samples containing the hippocampus were obtained from a 111 

separate cohort of three control subjects from the Harvard Brain Tissue Resource Center (Table 112 

1, Cohort B), as fresh frozen tissue is not suitable for reliable immunohistochemical labeling for 113 

parvalbumin and synaptic markers. Two psychiatrists determined the absence of DSM-IV 114 

diagnoses based on the review of a questionnaire filled out by legal next of kin and a review of all 115 

available medical records. Control cases had sufficient information from legally-defined next of 116 

kin and medical records to rule out major medical, neurologic, and psychiatric conditions. All 117 

brains underwent a complete neuropathological exam and cases with histopathological 118 

abnormalities were excluded from this study. 119 

Rhesus macaque subjects 120 

Fresh frozen hippocampus samples from adult male rhesus macaques (Macaca mulatta) were 121 

obtained from the Monkey Alcohol Tissue Research Resource (MATRR) Cohort 5 (Table 1, 122 

Cohort C). Details regarding these subjects are available at www.matrr.com and described in the 123 

Supplemental Materials. Subjects were allowed to freely self-administer alcohol for 22 h daily for 124 

one year.  125 
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Tissue collection and processing 126 

Fresh frozen postmortem samples (Cohorts A&C) 127 

Coronal serial sections (14 m) were obtained from fresh frozen postmortem hippocampal blocks. 128 

Blocks were dissected and rapidly frozen in 2-methylbutane and on dry ice without fixation and 129 

kept in dry ice before permanent storage at -80 °C. Blocks were sectioned using a Leica CM3050S 130 

cryostat. 131 

Paraformaldehyde fixed control subjects (Cohort B) 132 

Tissue blocks containing the hippocampus were processed as described previously 44.  133 

Histochemical/immunocytochemical labeling, imaging, and quantification procedures 134 

Brightfield microscopy  135 

Fresh-frozen, slide-mounted medial hippocampal cryosections from human subjects and rhesus 136 

macaque subjects (3-5 sections per subject) were post-fixed for 30 minutes in 4% 137 

paraformaldehyde, followed by 1-hour incubation in 2% bovine serum albumin (BSA), and 138 

overnight incubation in biotinylated Wisteria floribunda agglutinin (WFA) lectin (1:500, catalog #B-139 

1355, Vector Labs). WFA binds to non-sulfated N-acetyl-D-galactosamine residues on the 140 

terminal ends of CSPGs 45. The following day, tissue was incubated in streptavidin horseradish 141 

peroxidase (1:5000 l, Zymed, San Francisco, CA) for four hours, followed by a 20-minute 142 

incubation in 3’3-diaminobenzidine with nickel sulfate hexahydrate and H2O2. Tissue was 143 

dehydrated through an ethanol and xylene series, followed by histological labeling with Methyl 144 

Green (catalog #H-3402, Vector Labs). Sections were coverslipped and coded for blinded 145 

quantitative analysis. All sections included in the study were processed simultaneously to avoid 146 

procedural differences. Quantification was performed using an Olympus BX61 microscope and 147 

WFA-labeled PNNs were distinguished from WFA+ glial cells based on morphology. Each 148 
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anatomical subdivision of the hippocampus was traced for an area measurement using a 20X 149 

objective, and WFA-labeled elements were quantified on 40X magnification using Stereo-150 

Investigator v11.  151 

Immunofluorescence and Imaging 152 

Immunofluorescence for VAMP2-PVB-WFA and for GFAP-WFA were conducted as described 153 

previously 46, 47 and in the Supplemental Materials. 154 

Quantitative polymerase chain reaction  155 

qPCR was conducted as described previously 43, 48 and in the Supplemental Materials. The 156 

primers used are listed in Supplemental Table 21.  157 

Statistical Analysis  158 

Numerical densities of microscopy measures were calculated as described in our previous studies 159 

49 46, 47. The goal of our study was to test for differences in PNN densities in CA1 and hippocampal 160 

gene expression of ECM and synaptic markers between diagnosis groups. Analysis of WFA-glial 161 

densities was focused on the DG and CA4 areas where these cells are primarily distributed in the 162 

hippocampus in our current study and our previous report 49. Diagnosis groups with comorbid 163 

SUD/MDD and MDD were included to test for potential effects of comorbid depression on findings 164 

in SUD. Exploratory analysis was conducted on microscopy measures of PNNs and WFA-glia on 165 

additional hippocampal sectors. Differences between groups relative to the main outcome 166 

measures were assessed for statistical significance using stepwise linear regression analysis of 167 

covariance (ANCOVA) using JMP Pro v16.1.0 (SAS Institute Inc., Cary, NC). Logarithmic 168 

transformation was applied to values when not normally distributed. Potential confounding 169 

variables (Table 1 and Supplementary Tables 5-20) were tested systematically for their effects on 170 

main outcome measures and included in the model if they significantly improved goodness-of-fit. 171 

Covariates found to significantly affect outcome measures are reported. Subjects with SUD, 172 
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subjects with SUD/MDD, and subjects with MDD were first compared separately with 173 

psychiatrically-normal controls. Subsequently, the four groups were considered together to test 174 

for differences between diagnostic groups and Bonferroni correction applied for multiple 175 

comparisons. 176 

RESULTS 177 

Altered PNN and WFA-glia densities in subjects with SUD, MDD, and comorbid SUD/MDD 178 

Numerical densities of PNNs were significantly increased in CA1 stratum oriens (SO) of subjects 179 

with SUD (p < 0.007; adjusted for significant effects of PMI and cocaine history). (Figure 1A-E), 180 

where the majority of PNNs were distributed in sector CA1 (Control CA1 SO: 3.5 PNNs/mm2; 181 

Control CA1 SP: 0.97 PNNs/mm2). Further analysis of additional hippocampal sectors revealed 182 

increased numerical densities of PNNs in CA2 SO (p < 0.03; adjusted for significant effects of 183 

age), CA2 SP (p < 0.0001; adjusted for significant effects of cocaine history), CA3 SO (p <0.01; 184 

adjusted for significant effects of cocaine history), and CA4 (p < 0.007; adjusted for significant 185 

effects of cocaine history) in subjects with SUD (Figure 1G, Table S1). History of cocaine use, 186 

which was a significant covariate across hippocampal subregions, was associated with decreased 187 

PNNs in each of these regions (Figure S4D). No significant differences were found in the dentate 188 

gyrus or the CA1 and CA3 SP layers. In subjects with MDD, we observed significantly decreased 189 

numerical densities of PNNs in CA1 SO (p < 0.05; adjusted for significant effects of sex and 190 

calcium channel blockers) and CA1 SP (p < 0.02), increased PNNs in CA4 (p < 0.01; adjusted for 191 

significant effects of anxiety disorder diagnoses), and no significant differences in other regions 192 

of the hippocampus. The duration of depression positively correlated with PNN density in CA1 193 

SO across subjects with SUD/MDD and MDD (Figure S1A). In subjects with comorbid SUD/MDD, 194 

we observed reduced numerical densities of PNNs in CA1 SP (p < 0.02; adjusted for significant 195 

effects of substance abuse history and duration of MDD, Figure S1B), increased densities of 196 

PNNs in CA2 SP (p < 0.01; adjusted for significant effects of SSRIs in the toxicology report and 197 
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ZT time). No significant differences were observed in the other hippocampal subregions. Table 198 

S1 contains information for each hippocampus subregion, including p-values, F-ratios, adjusted 199 

least squares means, standard error, and significant covariates. 200 

We observed WFA-labeled glial cells in addition to PNN labeling. WFA-glia in our current study 201 

were shown to co-express the astrocyte marker glial fibrillary acidic protein (GFAP) (Figure S5) 202 

and were morphologically similar to WFA-glia described our previous reports in the human medial 203 

temporal lobe 46, 47. WFA-glial cells were distributed primarily in the dentate gyrus and CA4 areas, 204 

with sparse expression in other hippocampal subregions (Figure 1H-K, N). In subjects with SUD, 205 

we observed significantly greater density of WFA-glia in CA4 (p < 0.002; adjusted for significant 206 

effect of cocaine history), and in the dentate gyrus (p < 0.02; adjusted for significant effect of 207 

cocaine history, Figure 1L). No other hippocampal subregions displayed statistically significant 208 

differences in subjects with SUD. In subjects with MDD, we observed significantly increased 209 

densities of WFA-glia in the dentate gyrus (p < 0.0001), CA3 SP (p < 0.0008; adjusted for a 210 

significant effect of antidepressants in last month of life), CA2 SP (p < 0.006; adjusted for a 211 

significant effect of antidepressants in last month of life), and CA2 SO (p < 0.02). All other 212 

hippocampal subregions lacked differences in subjects with MDD. In subjects with comorbid 213 

SUD/MDD, we observed significantly decreased numerical densities of WFA-glia in the dentate 214 

gyrus (p < 0.02; adjusted for significant effects of alcohol in the toxicology report and calcium 215 

channel blockers), CA4 (p < 0.02; adjusted for a significant effect of alcohol in the toxicology 216 

report), CA3 SP (p < 0.002; adjusted for significant effects of alcohol in the toxicology report and 217 

race), CA2 SP (p < 0.004; adjusted for a significant effect of race), CA1 SP (p < 0.02; adjusted 218 

for significant effects of antipsychotics and alcohol in the toxicology report), and CA1 SO (p < 219 

0.02; adjusted for a significant effect of race) when compared to psychiatric control subjects. Table 220 

S2 contains information for each hippocampus subregion. No differences in hippocampal area 221 
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measurements were detected between control subjects and any of the diagnosis groups 222 

(Supplementary Table S4). 223 

Gene expression of markers for cell populations associated with PNNs and WFA-glial cells 224 

Parvalbumin. Neurons expressing parvalbumin (Pvb) mRNA represent the majority of neurons 225 

surrounded by PNNs in the hippocampus 49-51. Subjects with SUD had significantly greater gene 226 

expression of Pvb compared to control subjects (Fig. 1F, Table S3; p <0.007; adjusted for a 227 

significant effect of cocaine history). Subjects in the SUD group with cocaine in the blood at death 228 

had significantly lower Pvb gene expression compared to subjects with SUD without cocaine in 229 

the blood at death (Supplemental Figure S4B). Pvb mRNA was also significantly greater in 230 

subjects with comorbid SUD/MDD (p < 0.008), and subjects with MDD (p < 0.005) compared to 231 

control subjects (Fig. 1F, Table S3).  232 

Glial fibrillary acidic protein. The astrocyte marker glial fibrillary acidic protein (Gfap) colocalized 233 

with astrocytes labeled by WFA (Figure S5), which is in line with previous reports from human 234 

postmortem studies 46, 52. Gfap gene expression was significantly lower in the hippocampus of 235 

subjects with comorbid SUD/MDD (p < 0.02; adjusted for significant effects of SSRIs in last month 236 

of life which increases Gfap) (Fig. 1M, Table S3). No changes were detected in the SUD or MDD 237 

groups. 238 

Altered expression of synaptic markers in the hippocampus of subjects with SUD  239 

Synaptobrevin and Synapsin 1. Synaptobrevin (VAMP2) is an excitatory synaptic marker that 240 

contributes to the SNARE complex, allowing for fusion of vesicles to the cell membrane to facilitate 241 

neurotransmitter exocytosis and receptor trafficking 53, 54. We examined VAMP2 as a step towards 242 

altered synaptic regulation in the hippocampus of subjects with SUD as suggested by extensive 243 

literature indicating altered synaptic regulation by chronic exposure to substances of abuse (for 244 

review see 55). We first tested whether VAMP2 protein is located on PVB neurons and in PNNs, 245 
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and observed VAMP2 protein on PVB neurons ensheathed by PNNs and enmeshed within the 246 

PNN (Figure 2B-E). In subjects with SUD, Vamp2 mRNA was significantly increased (p < 0.04; 247 

adjusted for a significant effect of sleep quality). An increase in Vamp2 transcription was also 248 

observed in subjects with MDD (p < 0.005; with significant effects of age, ZT time, and sleep 249 

disturbance). No changes in Vamp2 expression were detected in subjects with comorbid 250 

SUD/MDD. We conducted similar analysis for the inhibitory presynaptic marker, synapsin 1 251 

(Syn1). We observed spatial overlap of SYN1 protein with PVB interneurons coated by PNNs, 252 

including SYN1 within PNNs (Figure 2G-J). In contrast to Vamp2, no significant differences were 253 

observed for Syn1 gene expression in any of the diagnostic groups (Figure 2F).  254 

Altered expression of ECM molecules in the hippocampus of subjects with SUD  255 

Matrix metalloproteinase 9 (Mmp9) and Cathepsin S (Ctss). Significantly decreased expression 256 

of Mmp9 was observed in subjects with SUD (Figure 3A: p < 0.04). Furthermore, Ctss mRNA was 257 

significantly decreased in subjects with SUD (Figure 3B, S4: p < 0.03; with significant effects of 258 

cocaine in the toxicology report), and increased in subjects with MDD (p < 0.04; adjusted for 259 

significant effects of alcohol use severity and ZT time). No significant changes were observed in 260 

subjects with comorbid SUD/MDD (Figure 3A-B).  261 

Aggrecan and Chondroitin synthase 1. In subjects with SUD/MDD, we observed significantly 262 

increased aggrecan (Acan) (Figure 3C: p < 0.03), as well as chondroitin synthase 1 (Chsy1) 263 

mRNA (Figure 3D, S3B: p < 0.0001; with significant effects of duration of AUD and tissue pH). In 264 

subjects with SUD, a significant increase in Chsy1 expression was detected (Figure 3C, S3: p < 265 

0.04; with a significant effect of tissue pH), and no significant difference was observed for Acan 266 

(Figure 3D). No changes were observed in subjects with MDD for either Acan or Chsy1 (Figure 267 

3C&D).  268 
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Increased numerical densities of perineuronal nets in the hippocampus of monkeys with 269 

chronic alcohol self-administration 270 

We observed a significant increase of PNNs in the combined hippocampal subfields in rhesus 271 

monkeys with chronic alcohol self-administration (p < 0.03). Similar increases were observed in 272 

CA1 SO (Figure 4E; p < 0.04), CA3 SO (Figure 4E; p < 0.03), and CA3 SP (Figure 4E; p < 0.03). 273 

We also detected significantly increased numerical densities of WFA-labeled glia in the dentate 274 

gyrus granule cell layer (Fig. 4F; p < 0.04).  275 

DISCUSSION 276 

Our data represent, to our knowledge, the first evidence for increased PNN densities in 277 

subjects with SUD and rhesus macaques with chronic alcohol self-administration. These findings 278 

link over a decade of evidence from preclinical models demonstrating increased PNNs in animals 279 

with chronic drug use 9, 17, 23, 24, 32, 56-58 with evidence in subjects with SUD. Together with the 280 

observed increased expression of the synaptic marker Vamp2 and the CSPG synthesis molecule 281 

Chsy1, this suggests that enhanced PNN composition may aid in stabilizing contextual reward-282 

associated synapses in the CA1 hippocampus of individuals with SUD. CA1 hippocampal neurons 283 

receive dopaminergic projections from the ventral tegmental area and encode reward-related 284 

spatial memories 37, 38. These CA1 spatial maps are modulated by local inhibitory control of 285 

excitatory neurons that encode the spatial map 37, 38. Speculatively, increased PNNs in CA1 of 286 

subjects with SUD may contribute to selective inhibitory control of excitatory neurons to sustain 287 

spatial maps involved in drug reward memories. Contextual memory processing may differ 288 

between drugs of abuse, and preclinical studies report decreases or no change in PNN densities 289 

with some drug classes including chronic nicotine, cocaine or opioid exposure 17, 21, 31. Our findings 290 

represent hippocampal alterations in subjects with polysubstance use which consists of a 291 

significant population of people seeking treatment for SUDs. Similar findings in nonhuman 292 

primates with chronic alcohol use together with increased PNNs in preclinical models of cocaine 293 
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suggests that increased PNN densities may be a shared feature in people with polysubstance 294 

use disorder which often includes alcohol use disorder 9, 24, 32, 59, 60.  Furthermore, decreased 295 

expression of ECM proteolytic molecules indicates that changes in PNN densities are 296 

accompanied by decreased ECM remodeling in chronic SUD. Increased expression of 297 

parvalbumin, expressed by neurons that PNNs typically encapsulate, suggests increased 298 

feedforward inhibition of local excitatory pyramidal neurons by parvalbumin that may enhance 299 

coherence of drug-associated neuronal ensembles. In contrast, decreased densities of PNNs in 300 

subjects with MDD represent the first evidence for altered PNNs in the hippocampus of subjects 301 

with MDD. Taken together, our findings support the hypothesis that increased PNNs may stabilize 302 

contextual reward memories in subjects with SUD and thus may represent therapeutic targets for 303 

context-induced relapse. Furthermore, decreased densities of PNNs in subjects with MDD and 304 

lack of significant differences in subjects with comorbid SUD/MDD highlight the importance of 305 

considering comorbid conditions for the neuropathology of SUD.  306 

 307 

PNNs and ECM molecules in the Hippocampus of Subjects with Substance Use Disorder 308 

Our findings support an increasing number of preclinical studies demonstrating that PNNs 309 

stabilize reward memories 8, 9, 16, 17, 22-24, 33. Furthermore, PNNs are involved in a wide range of 310 

processes that can impact context-induced relapse including stabilization of synapses, receptor 311 

trafficking, and regulation of interneuron activity 25, 26, 39, 40, 61-67. Previous studies have implicated 312 

each of these processes in SUD. For example, chronic substance use has been shown to elicit 313 

downstream alteration of synapses and neurotransmitters including changes in dopamine 2 314 

receptors (D2R) 68 as well as glutamatergic and GABAergic systems 69, 70. SUDs are chronically 315 

relapsing disorders which rely heavily on memory salience (i.e., cue responsiveness). PNNs 316 

contribute to synaptic homeostasis through the stabilization of synapses and PVB interneuron-317 
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mediated excitatory/inhibitory balance 71. Thus, PNNs may stabilize synapses involved in drug 318 

reward processes that contribute to context-induced relapse 18.  319 

The association of PVB interneurons with PNNs has been demonstrated in several brain 320 

areas, including the hippocampus 49, 72-74. Hippocampal PVB neurons are predominantly located 321 

in the SO layers of the CA regions. PVB neurons are involved in modulating glutamatergic 322 

neurons and hippocampal output to brain regions involved in reward processing 75, 76.  Increased 323 

PVB expression is positively correlated with PNN labeling 77 and removal of PNNs with 324 

chondroitinase ABC or antidepressants decreases PVB interneuron activity 78. Increased 325 

parvalbumin (PVB) expression in SUD may induce feedforward inhibition of local excitatory 326 

neurons that enhances coherence of drug-specific neuronal ensembles 79. Enhanced PNN 327 

composition on PVB neurons may also contribute to increased PVB expression and downstream 328 

consequences on excitatory/inhibitory balance which can result in altered activity of reward 329 

circuits involved in reward prediction and impulsivity 80, 81. Importantly, Pvb expression was 330 

significantly decreased in subjects with cocaine in their toxicology reports (Supplementary Figure 331 

1G), suggesting that cocaine temporarily blunts PVB expression to disinhibit excitatory neurons 332 

57. Furthermore, decreased ECM proteolytic gene expression (Mmp9 and Ctss) in subjects with 333 

SUD is in line with increased PNN densities in these subjects and with preclinical models of 334 

hippocampal MMP9 expression in alcohol use 82, potentially suggesting hypofunction of PNN 335 

proteolytic systems in SUD 83. In our ANCOVA models, subjects with SUD who had cocaine in 336 

their toxicology reports had greater expression of Ctss (Supplementary Figure 1H). Speculatively, 337 

increased Ctss and decreased Pvb in subjects with cocaine in the toxicology report may indicate 338 

that cocaine temporally activates Ctss to temporarily degrade PNNs and decrease in Pvb 339 

expression. 340 

There is extensive evidence demonstrating a central role of the hippocampus for episodic 341 

memory processing 84. Furthermore, the hippocampus has bi-directional connections with the 342 
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amygdala that contribute to assigning emotional valence to contextual memories, which is crucial 343 

in the long-term retention of drug memories 85. Hippocampal connections with the ventral 344 

tegmental area (VTA) are involved in regulating memory salience and reward predictions. 345 

Hippocampal glutamatergic fibers from CA1 travel through the subiculum to basal forebrain 346 

structures, and synapse onto VTA neurons which feed back to the hippocampus to release 347 

dopamine 80, 81. Thus, increased PNNs in the hippocampus of subjects with SUD can impact this 348 

system and contribute to several aspects of reward memory circuits.  349 

Our studies represent first description of increased numerical densities of WFA-glial cells in 350 

individuals with SUD. Despite previous evidence that WFA-glia colocalize with the astrocytic 351 

marker GFAP 46, 47, we did not detect increased GFAP expression in subjects with SUD, 352 

suggesting that increases in WFA-glia do not reflect a broader astrogliosis process. Increased 353 

WFA-glia in the hippocampus may indicate increased CSPG production by glia contributing to 354 

increased PNNs in SUD. 355 

We used a proximal specie, Macaca mulatta, with or without chronic alcohol use to test for 356 

specific effects of the most common drug in our cohort without the covariates inherent to cross-357 

sectional human studies. Increased PNN densities and WFA-glia in rhesus monkeys with chronic 358 

alcohol use provides support for our findings in human subjects. Furthermore, the ability of chronic 359 

alcohol use alone to create these changes is intriguing and represents the first evidence for 360 

increased PNNs in the hippocampus of non-human primates in response to any drug of abuse. 361 

The present findings also represent the first observation of WFA-labeled glia in the non-human 362 

primate brain; to this point, they have only been reported in human subjects 46, 49, 73. These WFA-363 

glial cell increases may represent enhanced CSPG synthesis by astrocytes.  364 

PNNs and ECM molecules in the Hippocampus of Subjects with Comorbid Substance Use 365 

Disorder and Major Depressive Disorder 366 
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Subjects with comorbid SUD and MDD represent a significant population of people with SUD 367 

and a bi-directional disorder where dysphoria can fuel the inclination to self-medicate. 368 

Alternatively, chronic drug use can contribute to mood disturbances 86. Approximately one third 369 

of patients with MDD also experience SUD, and conversely a substantial proportion of individuals 370 

with SUD will experience MDD at some point during prognosis 42, 87. This bi-directional comorbidity 371 

contributes to a heightened risk of suicide and greater social and personal impairment 88.  Despite 372 

this relationship, co-occurrence of MDD and SUD is not typically examined in postmortem brain 373 

studies. Our results suggest MDD comorbidity is an important factor in studies of SUD. Inclusion 374 

of subjects with MDD may either mask or amplify changes present in each disorder. Most of our 375 

outcome measures displayed opposing directionality between subjects with SUD and MDD. For 376 

example, density of CA1 SO PNNs was significantly increased in SUD, decreased in MDD, and 377 

unaltered in subjects with comorbid SUD/MDD. In comparison, a comorbid diagnosis of MDD 378 

appeared to significantly amplify the existing increased expression of Chsy1 observed in subjects 379 

with SUD (Figure 3D).  380 

Increased expression of Chsy1 in SUD and subjects with SUD/MDD may suggest that 381 

increased biosynthesis of CSPGs by chronic drug use is enhanced by processes underlying MDD. 382 

Expression of the CSPG aggrecan, a major PNN component 89, was increased in subjects with 383 

comorbid SUD/MDD. This may represent alterations in PNN composition that are not detected by 384 

standard WFA labeling.  385 

PNNs and ECM molecules in the Hippocampus of Subjects with Major Depressive Disorder 386 

A strength of our cohort was the ability to cross-examine the incidence of MDD comorbid with 387 

SUD as well as subjects with MDD only. While densities of PNNs were decreased in subjects with 388 

MDD (Fig. 1C), the duration of MDD positively correlated with densities of PNNs in CA1 SO 389 

(Supplementary Figure 1A). This is in line with preclinical evidence demonstrating that animals 390 

exposed to chronic social defeat display increased PNNs in the hippocampus 90. Over time, 391 
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increased PNNs may alter E/I balance contributing to decreased hippocampal sharp wave ripple 392 

events that negatively affect mood and memory 91, 92. Increased expression of VAMP2 in subjects 393 

with MDD is in line with preclinical evidence for glucocorticoid-mediated calcium influx increases 394 

in hippocampal CA regions which perturbs plasticity, potentially resulting in poorer cognitive 395 

performance 93. Increased VAMP2 is also in agreement with evidence indicating altered synaptic 396 

markers in MDD 94. Decreases in PNNs may result in reduced stabilization of synapses and 397 

contribute to synaptic alterations, potentially resulting in memory impairment, memory 398 

generalization, and cognitive deficits observed in MDD 95. An extensive number of studies 399 

implicate glial cell alterations in the pathology of depression (for review see 96). In patients with 400 

SUD/MDD, we observed decreased expression of Gfap. A similar nonsignificant trend for 401 

decreased Gfap expression was observed in subjects with MDD. In our ANCOVA models, Gfap 402 

expression was significantly affected by history of SSRI exposure, which was positively 403 

associated with Gfap expression (Supplementary Figure 1B), suggesting that therapeutic effects 404 

of SSRIs may in part normalize Gfap levels. Our observed increase of Ctss gene expression may 405 

represent a heightened inflammatory state in the hippocampus of subjects with MDD, which has 406 

been extensively implicated in MDD 97, 98, including in the hippocampus in a cohort that largely 407 

overlaps with our cohort of subjects with MDD 99.  408 

TECHNICAL CONSIDERATIONS 409 

Several factors represent challenges in examining molecular pathology in the brain of subjects 410 

with SUD, including polysubstance use, comorbidity with MDD, and pharmacological treatments. 411 

However, considering that this is representative of the real-world population of SUD it is important 412 

to examine the molecular pathology when these factors are present in the same subjects when 413 

considering development of therapeutic treatment strategies for this population. Our cohort 414 

consists of extensive information including retrospective clinical assessments, history of specific 415 

drugs of abuse and presence or absence of drugs of abuse and psychiatric medications in the 416 
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blood at death from toxicology reports that can be accounted for using ANCOVA analyses, as 417 

conducted in our previous study using this same cohort 43. Furthermore, the inclusion of samples 418 

from rhesus monkeys with chronic alcohol use provides a valuable cause and effect comparison 419 

for the most common drug of abuse in our human subjects. The development of additional 420 

collections of NHP brain samples containing subjects self-administering specific drugs of abuse 421 

alone or in combination would further aide in interpreting human postmortem brain studies and 422 

guiding strategies for novel treatment development. For our microscopy studies, use of WFA lectin 423 

provides a standard view of a specific population of PNNs, as it binds to non-sulfated N-acetyl-D-424 

galactosamine 45. There are other populations of PNNs that can be detected with alternative 425 

labeling methods which may surround complementary populations of neurons 100. Future studies 426 

with additional markers for PNN core proteins and sulfation motifs will provide insight into the 427 

specific components of PNNs in SUD. Further, our fresh frozen postmortem tissue has inherent 428 

technical limitations including lack of ability to conduct PVB-immunolabeling as well as reliable 429 

immunolabeling of synaptic markers, therefore mRNA measures were used for these markers. 430 

Measurements of mRNA by qPCR do not identify the cell-types responsible for synthesis or 431 

functional activity of any of the genes measured.  432 

CONCLUSIONS 433 

In summary, our findings represent the first evidence for increased numerical densities of 434 

PNNs in the hippocampus of human subjects with SUD. Increased densities of hippocampal 435 

PNNs, together with decreased expression of ECM proteolytic genes and altered synaptic 436 

markers supports preclinical studies that suggest that PNNs may stabilize reward memories. 437 

Thus, PNNs and ECM molecules may represent promising targets for addressing cue-induced 438 

relapse in SUD. In comparison, subjects with MDD displayed generally opposite effects for many 439 

of the main outcome measures and subjects with SUD with a comorbid diagnosis of MDD 440 
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suggesting that ECM changes in MDD oppose changes in SUD. These findings highlight the 441 

importance of considering comorbidities regarding SUD pathology and treatment strategies.  442 
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 840 

Table 1. Basic cohort demographic information for both human and rhesus macaque subjects. 841 
Abbreviations: SUD, substance use disorder; MDD, major depressive disorder; PFA: 842 
Paraformaldehyde; PMI, postmortem interval, BAC, blood alcohol concentration, 12-month 843 
average. Values represent mean ± SEM. 844 

 845 

 846 

Cohort A: Human subjects for SUD, SUD/MDD, and MDD 
analyses 

 

SUD  
n=20 

SUD/MDD 
n=24 

MDD 
n=20 

Control 
n=20 

Age, Years 34.8±9.0 43.9±11.1 47±11.4 43.2±11.42 

Sex     

Male 17 16 14 13 

Female 3 8 6 7 

Race     

White 13 20 17 11 

Black 7 4 3 9 

Brain pH 6.57±0.23 6.54±0.27 6.5±0.32 6.5±0.25 

PMI, Hours 18.58±8.5 20.2±7.6 23.7±5.9 21.2±6.8 

Cohort B: PFA fixed samples from control subjects for labeling 
of synaptic markers and PVB neurons 

Age 43.0±25.2 

Sex 2 Male, 1 Female 

Hemisphere 2 Right, 1 Left 

Cohort C: Rhesus macaque subjects 

 
Alcohol drinkers 

n=7 
Control 

n=5 

Age, Years 7.20±0.04 6.90±0.49 

Sex Male (n=7) Male (n=5) 

BAC, mg pct  101.46±12.76 NA 
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 847 

Figure 1. Altered PNNs in SUD and MDD. (A and B) Representative low-magnification 848 
photomicrographs of CA1 SO PNNs labeled by WFA, scalebars = 0.5 mm. (C and D) High-849 
magnification photomicrographs of WFA-labeled CA1 SO PNNs, scalebars = 50 µm. (E) 850 

Diagnostic group comparisons of PNN densities in CA1 stratum oriens. Subjects with SUD had 851 
significantly increased densities of PNNs (p < 0.007; adjusted for significant effects of cocaine 852 
history and PMI) whereas subjects with MDD displayed significantly reduced PNN densities (p < 853 
0.05; adjusted for significant effects of sex and calcium channel blockers). No significant effects 854 
were found in the comorbid SUD and MDD group. (F) Diagnostic group comparisons of 855 
normalized hippocampal Pvb gene expression, with a gradient increase between SUD (p < 0.007; 856 
adjusted for significant effects of cocaine in the toxicology report), SUD/MDD (p < 0.008; adjusted 857 
for significant effects of MDD duration), and MDD (p < 0.005). (G) Representative PNN 858 
quantification overlays of hippocampi from subjects within diagnostic groups. (H and I) 859 
Representative low-magnification photomicrographs of CA4 WFA-labeled glia, scalebars = 0.5 860 
mm. (J and K) Representative high-magnification WFA-labeled glia, scalebars = 80 50 µm. (L) 861 
Numerical density measurements of CA4 WFA-labeled glial cells in subjects with SUD, MDD, and  862 

SUD/MDD. (M) Normalized gene expression of Gfap was significantly decreased in subjects with 863 
comorbid SUD and MDD (p < 0.02; adjusted for significant effects of antidepressant history), but 864 
unaffected in either isolated disorder. (N) Representative WFA+ glia quantification overlays of 865 
hippocampi from subjects within diagnostic groups. Error bars are mean ± SEM. 866 

 867 

 868 

 869 
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 870 

Figure 2. Gene expression of the excitatory synaptic marker Vamp2 is altered in SUD and MDD. 871 
(A) Gene expression of the presynaptic vesicle marker Vamp2 is increased in both SUD and 872 
MDD, but not in the comorbid condition. (B-E) Multiplex immunofluorescent imaging of VAMP2 873 
immunoreactive puncta within a PNN and on the surface of a PVB interneuron. (B) WFA-labeled 874 
PNN (green), (C) PVB interneuron (blue) and VAMP2 synaptic puncta (red) and spatial overlap 875 
(yellow) (arrows indicate overlap). (D) Composite z-projection of WFA, PVB, and VAMP2. (E) 876 

Zoomed inset of 1D, with arrows denoting spatial overlap of VAMP2 with WFA (yellow puncta). 877 
(F) There were no significant changes in transcription of the synaptic marker Syn1 in any of the 878 
diagnostic groups. (G-J) Multiplex immunofluorescent imaging depicting SYN1 labeling within a 879 
PNN surrounding a PVB interneuron. (G) WFA-labeled PNN (green), (H) PVB neuron (blue) and 880 
SYN1 (red), (I) composite z-projection of all three channels. (J) Zoomed inset depicts spatial 881 
overlap with of SYN1 puncta with WFA labeling (arrows to yellow puncta). All scalebars are 10 882 
µm. Error bars are mean ± SEM. 883 
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 885 

Figure 3. Gene expression of ECM biosynthetic and regulatory molecules in SUD and MDD. (A) 886 
Gene expression of the ECM proteolytic molecule Mmp9 was significantly decreased in subjects 887 
with SUD compared to controls (p < 0.05), but no significant differences were detected in the 888 
other two diagnostic groups. (B) Analysis of covariance uncovered significantly decreased mRNA 889 
levels of cathepsin S in subjects with SUD (p < 0.03; adjusted for significant effects of cocaine in 890 
the toxicology report). Subjects with MDD had significantly increased expression of cathepsin S 891 
compared to controls (p < 0.03; adjusted for significant effects of alcohol history and ZT time of 892 
death). (C) Gene expression of the CSPG aggrecan was significantly increased in subjects with 893 
comorbid SUD and MDD (p < 0.03) but was unaffected in either condition separately. (D) Gene 894 
expression of the CSPG biosynthetic molecule Chsy1 was significantly increased in subjects with 895 
SUD (p < 0.05; adjusted for significant effects of tissue pH) and in subjects with comorbid SUD 896 
and MDD (p < 0.0001; adjusted for significant effects of tissue pH and duration of AUD), while 897 

patients with MDD did not meet significance in any direction. Error bars are mean ± SEM. 898 
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 900 

Figure 4. Chronic alcohol self-administration increases PNN densities throughout the 901 
hippocampus of rhesus monkeys. Abbreviations: DG GCL, granule cell layer of the dentate gyrus; 902 
SLM, stratum lacunosum moleculare; SGZ, subgranular zone; CA, cornu ammonis; SO, stratum 903 
oriens; SP, stratum pyramidale. (A) Representative microscopy of PNNs labeled with WFA in CA1 904 
SO, scalebar = 50 µm. (B) Inset of Figure 4A at high-magnification, scalebar = 30 µm. (C) 905 
Representative microscopy of a WFA-labeled glial cell proximal to the DG GCL, scalebar = 50 906 
µm. (D) Inset of Figure 4C at 40× magnification, scalebar = 50 µm. (E) Comparisons of PNN 907 
densities throughout the hippocampus between control (white bars) and monkeys with chronic 908 
alcohol self-administration (red bars). (F) Comparison of WFA-glia densities in the DG GCL and 909 
DG SLM between control and monkeys with chronic alcohol self-administration. (G) Comparison 910 
of WFA-glia densities in the SGZ and CA nuclei of the hippocampus between control and monkeys 911 

with chronic alcohol self-administration. 912 
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 918 

Figure 5. Summary diagram of proposed ECM and synaptic alterations in the hippocampus of 919 
subjects with SUD with or without comorbid MDD. Panels providing visual depictions of 920 
pathological observations from the present study. Numbers of arrows describe the intensity of 921 
changes compared to the other diagnostic groups, and a key is provided within the control panel 922 
to characterize the graphics used within the figure. Created with BioRender.com. 923 
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