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 2 

Abstract 9 

Background: Current single nucleotide variants (SNVs) pathogenicity prediction tools assess 10 
various properties of genetic variants and provide a likelihood of causing a disease. This information 11 
aids in variant prioritization – the process of narrowing down the list of potential pathogenic variants, 12 
and, therefore, facilitating diagnostics. Assessing the effectiveness of SNV pathogenicity tools using 13 
ClinVar data is a widely adopted practice. Our findings demonstrate that this conventional method 14 
tends to overstate performance estimates. 15 

Methods: We introduce SNPred, an ensemble model specifically designed for predicting the 16 
pathogenicity of nonsynonymous single nucleotide variants (nsSNVs). To evaluate its performance, 17 
we conducted assessments using six distinct validation datasets derived from ClinVar and BRCA1 18 
Saturation Genome Editing (SGE) data. 19 

Results: Across all validation scenarios, SNPred consistently outperformed other state-of-the-art 20 
tools, particularly in the case of rare and cancer-related variants, as well as variants that are 21 
classified with low confidence by most in silico tools. To ensure convenience, we provide 22 
precalculated scores for all possible nsSNVs. 23 

We proved that the exceptionally high accuracy scores of the best models achieved for ClinVar 24 
variants are only attainable if the models learn to replicate misclassifications found in ClinVar. 25 
Additionally, we conducted a comparison of predictor performance on two distinct sets of BRCA1 26 
variants that did not overlap: one sourced from ClinVar and the other from the SGE study. Across 27 
all in silico predictors, we observed a significant trend where ClinVar variants were classified with 28 
notably higher accuracy. 29 

Conclusions: We provide a powerful variant pathogenicity predictor that enhances the quality of 30 
clinical variant interpretation and highlights important challenges of using ClinVar for SNV 31 
pathogenicity predictors evaluation.  32 
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 3 

Introduction 33 

With the availability of low-cost whole genome sequencing, it is now possible to 34 
comprehensively investigate the genetic variation in a patient in a single experiment. Yet every 35 
individual harbors thousands of sequence variants in the coding DNA region, only a fraction of which 36 
are expected to be deleterious. Identifying the small proportion of variants that may contribute to 37 
disease risk remains a significant challenge in human genetics. While it is not practically feasible at 38 
this time to measure the functional impact of all variants found in a particular patient experimentally, 39 
dozens of computational tools have been developed to aid the process of variant pathogenicity 40 
identification.  41 

Current SNV pathogenicity prediction tools assess various properties of genetic variants and 42 
provide a likelihood of causing a disease1–10. This information aids in variant prioritization – the 43 
process of narrowing down the list of potential pathogenic variants, and, therefore, facilitating 44 
diagnostics11. Variant pathogenicity prediction tools often utilize evolutionary conservation7, protein-45 
level features2, and biochemical properties of amino acids6 to computationally predict the impact of 46 
a sequence change on protein structure and/or function. More recently, ensemble models have been 47 
developed, which combine pathogenicity scores from multiple models to generate a collective 48 
prediction3–5,9,12. 49 

To assess the performance of SNV pathogenicity prediction tools, datasets of clinically 50 
classified variants, such as ClinVar13 and HGMD14, are commonly employed. These datasets 51 
contain large numbers of clinically relevant variants, making them indispensable in the development 52 
and validation of gene prioritization models. Despite that, previous benchmark studies showed that 53 
validation on such data yields an inflated performance estimate, that is not practically achieved for 54 
the variants not yet observed in ClinVar15,16.  55 

In our study, we developed SNPred - an ensemble gradient boosting-based SNP 56 
pathogenicity prediction model. SNPred incorporates 33 pathogenicity prediction scores and 7 57 
conservation scores. To train the model, we used a large dataset consisting of 229,336 variants 58 
obtained from ClinVar. SNPred was evaluated on the six different datasets comprising variants from 59 
saturation genome editing (SGE) study and ClinVar. It demonstrated superior performance 60 
compared to 32 other state-of-the-art SNV pathogenicity predictors, such as REVEL3, and 61 
BayesDel9, which were previously shown to outperform other meta-predictors on clinical data17. 62 

During the validation process, we discovered several challenges that are inherent to 63 
validation of SNP pathogenicity predictors using ClinVar and may lead to inflated performance 64 
estimates. Firstly, we show that ClinVar variants on average tend to be more accurately classified 65 
than variants from a non-overlapping set obtained from SGE, as tested for BRCA118. Secondly, we 66 
prove that the exceptionally high accuracy scores achieved by certain models on ClinVar are only 67 
attainable if the models overtrain by learning to misclassify variants that are already misclassified in 68 
ClinVar. 69 

Methods 70 

SNV pathogenicity prediction model 71 

  Figure 1 illustrates the outline of the final pipeline. To characterize each variant, we utilized 72 
33 pathogenicity prediction scores, 7 conservation scores, and 42 gnomAD and EXaC allele 73 
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frequencies from dbNSFP as features. For a comprehensive list of features and their corresponding 74 
importance, please refer to Supplementary Table 1. To efficiently gather this data, we employed 75 
the myvariant (v1.0.0) library in Python (v3.9.0). Subsequently, a gradient-boosting model was 76 
trained using these features. We considered three popular Python implementations, namely 77 
CatBoost, XGBoost, and LightGBM. To evaluate their performance, we employed six validation 78 
datasets, which consisted of five subsets of ClinVar and one BRCA1 SGE study dataset (Figure 79 
1B). CatBoost achieved the highest performance among all models in four ClinVar datasets while 80 
securing the second-highest position in the remaining two datasets (Figure S1 A-B). As such, 81 
CatBoost v1.2 was used for the final ensemble model.  82 

 We employed random search to investigate the model's responsiveness to variations in 83 
hyperparameters from their default settings. These hyperparameters include the number and depth 84 
of trees, learning rate, L2 regularization, and the random strength (which determines the fraction of 85 
columns used when building each tree). For 100 combinations of hyperparameters for each dataset, 86 
we tested the resulting ROC AUC for two validation sets – variants from the BRCA1 SGE study and 87 
all ClinVar variants that were added after January 2022, and have at least 1 star in assertion criteria. 88 
To avoid overtraining, our aim was not to select the best-performing parameters directly but rather 89 
to identify trends that consistently and robustly improved performance across the two different 90 
datasets. Among the various hyperparameters, the only change that consistently yielded better 91 
performance was an increase in L2 regularization (Figure S1 C-F). This finding is reasonable 92 
considering the utilization of highly correlated features, such as different pathogenicity prediction 93 
scores, allele frequencies in different populations, and various conservation scores. 94 

 95 

Usage of variants recently added to Clinvar to minimize overlap in training and validation 96 

 A validation dataset serves the purpose of evaluating a model's performance on new and 97 
unseen data, providing an unbiased estimation of its ability to generalize. When the same data is 98 
used for both training and validation, the model may have already been exposed to and learned 99 
from that data during training, resulting in an inflated validation performance. This concern requires 100 
particular attention in the case of ensemble models, as the validation sets should have minimal 101 
overlap with the training sets of each base model used in the final ensemble. 102 

 While it is practically difficult to collect each base model’s training dataset, we can simply use 103 
only recently annotated variants found in databases. We looked at the changelog of dbNSFP to see 104 
that since April 6, 2021, there have been no changes to the pathogenicity prediction scores. As 105 
such, variants that were added to public databases after that point likely have not been used for 106 
training of any SNP pathogenicity prediction models. Because of that, for validation set assembly 107 
we used variants that are present in the latest versions of ClinVar (April 2023) but are absent in the 108 
older version (January 2022). 109 

  110 

Validation data 111 

  Six different validation datasets were used to assess the performance in different settings. 112 
The first five were taken from ClinVar (April 2023 version), where only variants with at least 1 ClinVar 113 
star that were added after January 2022 were considered. In the first dataset, no additional filtering 114 
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was applied. In the second one, only variants that were classified as “Pathogenic” or “Benign” were 115 
used. The third dataset consisted of variants with AF < 0.00001. The fourth dataset contained 116 
variants in cancer driver genes from the Network of Cancer Genes19.  117 

  For the fifth dataset, we collected the variants from the SGE study of BRCA1. Variants that 118 
were classified as “intermediate” were filtered out – only “Functional” and “Non-functional” were 119 
used. 120 

 The sixth dataset comprised variants that lacked confident classification by the majority of 121 
tools. Specifically, we identified variants where only a percentage P of tools had a score higher than 122 
the Q quantile for pathogenic variants or lower than the (1-Q) quantile for benign variants. To ensure 123 
the reliability of these ambiguous variants in ClinVar, we included only those with at least two ClinVar 124 
stars in our selection. For the final validation set, we used P = 20% and Q = 0.8. However, we also 125 
examined the sensitivity of validation results by varying Q from 0.8 to 0.95 and P from 10% to 30% 126 
(Figure S2). 127 

  128 

Training data 129 

  For our analysis, we utilized variants classified as "Benign" (B), "Likely benign" (LB), "Benign 130 
/ Likely benign," "Pathogenic" (P), "Likely pathogenic" (LP), and "Pathogenic / Likely pathogenic" 131 
from the ClinVar database (as of April 2023). To ensure consistency, we only considered variants 132 
that were added to ClinVar before January 2022, which were obtained from the archived version of 133 
ClinVar from January 2022. Moreover, we specifically included variants with at least 1 review status 134 
star for training purposes. 135 

 136 

Results 137 

Performance comparison of SNPred to other predictors 138 

 To evaluate the performance of SNP pathogenicity models, we employed six validation 139 
datasets: five subsets of ClinVar and one BRCA1 SGE study dataset (Figure 1B). The performance 140 
of SNPred was compared to 32 other variant pathogenicity predictors, for which the scores were 141 
taken from dbNSFP. For each validation set, we measured areas under the ROC and precision-142 
recall curves (AUC ROC and AUC PR) to assess the quality of predictions, and Brier score20 to test 143 
the calibration of models (Supplementary Tables 2-7). 144 

 In all validations, SNPred showed superior performance in terms of AUC ROC (Figure 2 A). 145 
The particularly impressive marginal improvement over the second-best predictor was achieved for 146 
rare variants, variants in cancer-driver genes and variants non-confidently classified by most tools, 147 
where the difference in AUC ROC was 0.013, 0.015, and 0.033 respectively. The average gain in 148 
AUC ROC across all datasets over the second-best predictor, BayesDel, was 0.017. We also show 149 
that SNPred shows superior results for all levels of strictness when filtering ClinVar variants by 150 
assertion criteria stars (Figure S3). 151 

 The baseline area under the precision-recall curve is influenced by the class priors, making 152 
it difficult to compare the absolute values of AUC PR across different validation sets. However, it is 153 
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possible to evaluate and compare the relative performance of models in terms of AUC PR for the 154 
same dataset. In this context, SNPred exhibited superior performance compared to other predictors 155 
across all six validation sets (Figure 2B). The difference in performance was particularly notable for 156 
the variants from the BRCA1 SGE study, where SNPred achieved an AUC PR of 0.794, while the 157 
second-best predictor, BayesDel, attained an AUC PR of 0.731. 158 

The Brier score can be used as a metric to evaluate the accuracy and calibration of 159 
probabilistic predictions. It measures the mean squared difference between predicted probabilities 160 
and the actual outcomes. The lower the Brier score, the better the model's calibration and predictive 161 
accuracy. For all validation sets derived from ClinVar, SNPred showed the lowest Brier scores, 162 
which on average (geometric mean) were 1.9 times lower than that of the second-best predictor, 163 
BayesDel (Figure 2 C). However, for variants from the BRCA1 SGE study, all predictors performed 164 
poorly in terms of Brier score. In this specific context, SNPred did not demonstrate the best results 165 
– among the top-7 best performing predictors, ClinPred4 and Vest410 showed lower Brier scores. 166 
The very poor Brier score of all models can be explained by the generally high pathogenicity scores 167 
assigned to the benign variants from the BRCA1 SGE study (Figure S4 A,B). This poor calibration 168 
of models also poses a challenge in choosing a threshold that discriminates benign and pathogenic 169 
variants, because the same threshold corresponds to vastly different precision values for ClinVar 170 
and SGE variants (Figure S4 C,D). 171 

 172 

BRCA1 variants from ClinVar are classified significantly better than those from SGE 173 

In several published benchmarking studies, it was noticed that performance metrics 174 
estimated using ClinVar are higher than those on variants that are not yet observed in ClinVar15,16. 175 
However, these studies often employ datasets that significantly differ from each other, making it 176 
challenging to attribute the performance discrepancy solely to an inherent issue with ClinVar. Other 177 
factors such as variations in the diseases of interest, distribution of occurrences of altered genes, 178 
and other dataset characteristics may also contribute to the observed differences in performance 179 
estimation.  180 

Here, we aimed to check whether the performance estimate on ClinVar would still be inflated 181 
if the discussed above confounding factors were controlled for. To do that, we gathered two non-182 
intersecting datasets: (i) all BRCA1 variants with at least 1 review status star that were added to 183 
ClinVar after January 2022, and (ii) variants from the BRCA1 SGE study that are not in ClinVar. 184 
Then, we took 12 well-performing predictors, that have AUC ROC of at least 0.8 for both datasets 185 
and compared their AUC ROC on these two datasets. 12 out of 12 predictors showed higher 186 
performance on ClinVar variants (Figure 3 A), and on average all predictors showed an increase in 187 
AUC ROC of 0.056 in ClinVar compared to SGE data. 188 

This finding corroborates the hypothesis that ClinVar variants in general are easier to classify 189 
using computational tools. One explanation for this is that easily classified variants are discovered 190 
and submitted to ClinVar more frequently, making them overrepresented in the database. 191 

 192 

SNP pathogenicity prediction models tend to replicate ClinVar misclassifications 193 
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Genetic analysts typically determine whether a variant is (likely) pathogenic or benign using 194 
standardized criteria such as those defined by the American College of Medical Genetics21. 195 
Information from variant annotations, genetic variation databases, computational tools, and other 196 
sources is collectively evaluated as evidence for or against pathogenicity. The ultimate classification 197 
of a variant under such criteria may be submitted to public databases such as ClinVar to further 198 
inform future classifications of the same variant or variants in the same gene. 199 

The ACMG guidelines acknowledge the potential for mistakes. For instance, terms like "likely 200 
pathogenic" or "likely benign" indicate a confidence level of over 90% that a variant causes a disease 201 
or is benign21. ClinVar also has a lot of old classifications, such as those pulled in from the OMIM 202 
database which can be years or decades out of date. Many variants are later reclassified downward 203 
based on experimental or population allele frequency information which was not available to the 204 
genetic analyst at the time they interpreted the variant. This means that errors in classification are 205 
to be expected in databases like ClinVar. However, when a dataset containing inaccuracies is used 206 
for evaluation, predictive models can only achieve the highest possible performance scores if they 207 
replicate those incorrect classifications. 208 

Formally, a model learns to replicate misclassifications if !(#!"#$%	|	#&'($, #)%*+,-') is not 209 

equal to !(#!"#$%	|	#&'($). In this context, we investigated whether the top-performing models' 210 
high accuracy scores on ClinVar can be achieved without imitating ClinVar's misclassifications. This 211 

essentially means examining if the condition !(#!"#$%	|	#&'($, #)%*+,-') = 	!(#!"#$%	|	#&'($) is 212 
satisfied. Equivalently, it means that  213 

!(#!"#$% , #)%*+,-'|	#&'($) = !(#!"#$%	|	#&'($)!(#)%*+,-'	|	#&'($) 214 

Under the assumption of conditional independence, the accuracy can be computed from 215 
the True Positive Rate (TPR) and True Negative Rate (TNR) of the SNP pathogenicity prediction 216 
model and ClinVar by the formula: 217 

 	218 

)**+,-*.!"#$% = (1 − 123!"#$%) ∙ (1 − 123)%*+,-') ∙ !(#&'($ = 0) + 219 

1!3!"#$% ∙ 1!3)%*+,-' ∙ !(#&'($ = 1) + 220 

123!"#$% ∙ 123)%*+,-' ∙ !(#&'($ = 0) + 221 

(1 − 1!3!"#$%) ∙ (1 − 1!3)%*+,-') ∙ !(#&'($ = 1) 222 

 223 

A more detailed proof of the formula is provided in the Supplementary Materials. Several 224 
implications follow from the formula. The observed accuracy of SNPred on the recently added 225 
ClinVar variants, 65% of which are Classified as “Likely pathogenic” or “Likely benign”, is 0.968. If 226 
we assume that the model is not more accurate than ClinVar, to get the observed SNPred accuracy 227 
of 0.968 (when using all variants added to ClinVar after January 2022) the TPR and TNR of both 228 
ClinVar and the model must be higher than 98.4%. For a perfect model to achieve such observed 229 
accuracy, the accuracy of ClinVar itself should be at least 96.8%. 230 

Equivalently, if a model has a misclassification rate that is the same as or higher than 231 
ClinVar's misclassification rate, and it manages to reach the observed accuracy of 0.968, then 232 
ClinVar's own misclassification rate must be lower than 1.6%. Furthermore, even if we were to 233 
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consider a perfectly accurate model, ClinVar's misclassification rate would still need to be under 234 
3.2% to attain the same level of observed accuracy. 235 

While it is hard to accurately calculate the rate of variant misclassification in ClinVar, it is 236 
possible to roughly estimate it. One study that focused on reclassification of variants in ClinVar found 237 
that around 20% of “Likely pathogenic” and around 7% of “Likely benign” variants were downgraded 238 
after reclassification22. Another reanalysis of variants with AF > 0.005 in at least one gnomAD 239 
ancestry that are classified as pathogenic in ClinVar, found that 40% of variants should be 240 
downgraded to “Benign” / “Likely benign” / “Unknown significance”23. Another study concluded that 241 
of all the variants classified as P/LP that were reclassified from 2014 to 2020, 8% were 242 
downgraded24. Analysis of concordance between different submitters has found that only 89.3% of 243 
variants had a majority (> 66%) agreement about pathogenicity status25. For the BRCA1 gene, 244 
95.9% of variants classified as pathogenic and 95.5% of variants classified as benign in ClinVar 245 
were successfully replicated using SGE18 . Out of 1352 P/LP ClinVar variants found in Deciphering 246 
Developmental Disorder (DDD) study probands, 106 were found to be benign – TPR = 1246/1352 247 
= 92.1%26.  248 

Therefore, according to the existing literature, the assumptions we made in our analysis – 249 
using ClinVar’s misclassification rates of at least 1.6% or 3.2% – can be considered conservative. 250 
Consequently, it can be inferred that the advanced models currently available cannot attain the 251 
observed accuracy of 0.968 or higher without emulating the misclassifications identified in ClinVar. 252 

 253 

Predictors that are trained on ClinVar have higher relative performance on ClinVar compared to 254 
SGE 255 

 We hypothesized that models that use ClinVar in their training data may be excessively 256 
overtrained to ClinVar. In such case, these models should also better replicate the incorrect 257 
classifications present in ClinVar data. As a result, this could potentially cause additional inflation in 258 
performance estimates when these models are evaluated on ClinVar data. 259 

We compared SNV pathogenicity predictors using both ClinVar and SGE data. Only 260 
predictors that had AUC ROC of at least 0.8 for both ClinVar and SGE data were used, and only 261 
variants added to ClinVar after January 2022 were selected to ensure they did not overlap with 262 
ClinVar data used for model training. We then compared how predictors were ranked on each of the 263 
two datasets (Figure 3 B). Every model that used ClinVar for training was ranked the same or higher 264 
in validation involving ClinVar data compared to SGE data. The difference in relative performance 265 
was more significant (Mann-Whitney U-test p-value = 0.037) for models that were trained using 266 
ClinVar than for those that were not. 267 

It's important to note that further investigation with more diverse sets of data is necessary to 268 
establish a definitive conclusion. However, our findings strongly indicate that using ClinVar for 269 
performance estimation could potentially lead to inflated performance assessments for models 270 
trained on ClinVar, even if the ClinVar data used for training and validation do not overlap. 271 

 272 

Discussion 273 
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We developed SNPred, an ensemble gradient boosting model for predicting the pathogenicity 274 
of nonsynonymous single nucleotide variants (nsSNVs). SNPred uses 7 conservation scores, 33 275 
pathogenicity prediction scores, and allele frequencies from ExAC and gnomAD to create an 276 
aggregate pathogenicity score. The resulting scores were precalculated for all possible nsSNVs and 277 
were provided for public use.  278 

One of the main strengths of the SNPred is the utilization of a higher number of pathogenicity 279 
scores. While such models as BayesDel9, REVEL3, MetaRNN5, and ClinPred4 only use 7-18 280 
pathogenicity scores as features, SNPred utilizes 33 scores. Additionally, SNPred was trained on 281 
more recent ClinVar variants, which tend to be classified more accurately than the older ones 24. 282 

SNPred's performance was assessed using six distinct validation datasets obtained from 283 
ClinVar and BRCA1 saturation genome editing data. It consistently outperformed other state-of-the-284 
art tools, including REVEL, ClinPred, BayesDel, and MetaRNN, particularly excelling with rare and 285 
cancer-related variants. Importantly, this performance difference remained consistent regardless of 286 
the assertion criteria filtering options applied to ClinVar. This finding indicates that the disparity in 287 
performance is unlikely to be attributed to false positive data in ClinVar16 but rather to the genuinely 288 
improved capabilities of SNPred. 289 

However, in these validations, a few other predictors besides SNPred, such as BayesDel and 290 
MetaRNN, performed relatively well, even if they were inferior to SNPred. Thus, to compare the 291 
tools on variants that specifically pose a significant challenge to computational predictors, we 292 
assembled a dataset of variants that are not confidently classified by the majority of tools but are 293 
reliably classified in ClinVar. For these variants, SNPred showed by far the best performance, 294 
outperforming the next four leading predictors by a margin of 0.03 to 0.08. This shows that SNPred 295 
can confidently classify variants that were ambiguously classified by the previously available 296 
computational tools. 297 

During the validation process, we discovered several challenges that are inherent to 298 
validation of SNP pathogenicity predictors using ClinVar. These challenges could potentially result 299 
in inaccurate assessments of performance. 300 

First, by making specific assumptions about the misclassification rate in ClinVar, we 301 
demonstrate that the remarkably high accuracy scores obtained by certain models on ClinVar can 302 
only be achieved through overtraining, wherein the models learn to misclassify variants that are 303 
already misclassified in ClinVar. To validate these assumptions, we conducted a thorough analysis 304 
of the literature on misclassification rates and found that the misclassification rate in ClinVar 305 
consistently surpasses the lower bound assumed in our analysis. Because models learn to replicate 306 
misclassification in ClinVar, the comparison of performance using ClinVar data may not be adequate 307 
for predictors with very high accuracy, because it is hard to distinguish between a predictor that 308 
genuinely classifies variants more accurately and a predictor that is able to replicate 309 
misclassifications more effectively. To alleviate this problem, it might be useful to apply stricter 310 
filtering on the assertion criteria, thus decreasing the number of false positive data points. 311 

Next, we sought to empirically examine the hypothesis that variants that are accurately 312 
classified using computational tools appear in ClinVar more frequently, making them 313 
overrepresented in the database. To that end, we considered a set of BRCA1 variants from ClinVar 314 
and a non-intersecting set of BRCA1 variants from an SGE study. We tested how 12 top-performing 315 
predictors would perform on these two datasets. Confirming our hypothesis, all of the predictors 316 
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 10 

classified ClinVar variants more accurately, with the mean difference in AUC ROC of 0.056 between 317 
the two datasets. This problem is much harder to get around through filtering and is inherent to 318 
databases such as ClinVar. It indicates that validation of any pathogenicity prediction algorithm 319 
using ClinVar data may result in inflated performance estimates. Therefore, to ensure reliable 320 
validation, we recommend using ClinVar variants that have good assertion criteria, as well as other 321 
sources of data, such as SGE studies18,27,28. 322 

 323 

Data availability 324 

 SNPred pathogenicity scores for all possible non-synonymous changes in the human 325 
genome can be found at https://www.synapse.org/#!Synapse:syn52137034/files/ .  The source 326 
code to run SNPred is available at: https://github.com/ArtomovLab/SNPred 327 
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 402 

Figure 1. Training and validation of SNPred 403 

A: Details of the process of training and validation of SNPred 404 

B: Descriptions of six datasets used for validation of SNPred 405 

  406 

• Variants from ClinVar
• Added prior to 2022/01
• Have at least 1 star in review status

• Annotations from dbNSFP
• 7 conservation and 33 pathogenicity scores
• Allele frequencies from gnomAD and ExAC

• Gradient boosting model
• CatBoost v1.2 python implementation

Feature extraction

Model training

Model validation

# pathogenic # benign Source Descrip�on of valida�on set

63781 71690 ClinVar All variants

31837 12631 ClinVar Variants classified as “Pathogenic” or “Benign”

60029 24091 ClinVar Variants with allele frequency < 0.00001

10922 10377 ClinVar Variants in cancer-driver genes

776 65 ClinVar Variants non-confidently classified by most
tools

426 1485 SGE study Variants in BRCA1 gene

A

B

Training data

• ClinVar and BRCA1 SGE study
• ClinVar variants have at least 1 star
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407 
Figure 2. Comparison of SNPred’s performance to state-of-the-art SNP pathogenicity prediction 408 
tools.  409 

A: AUC ROC scores for the top-7 models across six validation datasets 410 

B: AUC PR scores for the top-7 models across six validation datasets 411 

C: Brier scores for the top-7 models across six validation datasets 412 
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 414 

Figure 3. Comparison of SNP pathogenicity predictors’ performance on ClinVar and SGE variants 415 

A: Scatter plot of AUC ROC scores for 12 predictions on BRCA1 variants from ClinVar and 416 
BRCA1 SGE study 417 

B: Relative performance of predictors on ClinVar and BRCA1 SGE variants 418 

A B
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