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Abstract: 22 

Background: Acute myocardial infarction (AMI) has two clinical characteristics: high missed 23 

diagnosis and dysfunction of leukocytes. Transcriptional RNA on leukocytes is closely related to 24 

the course evolution of AMI patients. We hypothesized that transcriptional RNA in leukocytes 25 

might provide potential diagnostic value for AMI. Integration machine learning (IML) was first 26 

used to explore AMI discrimination genes. The following clinical study was performed to validate 27 

the results. 28 

Methods: A total of four AMI microarrays (derived from the Gene Expression Omnibus) were 29 

included in this study (220 sample size), and the controls were identified as patients with stable 30 

coronary artery disease (SCAD). At a ratio of 5:2, GSE59867 was included in the training set, 31 

while GSE60993, GSE62646, and GSE48060 were included in the testing set. IML was explicitly 32 

proposed in this research, which is composed of six machine learning algorithms, including 33 

support vector machine (SVM), neural network (NN), random forest (RF), gradient boosting 34 

machine (GBM), decision trees (DT), and least absolute shrinkage and selection operator 35 

(LASSO). IML had two functions in this research: filtered optimized variables and predicted the 36 

categorized value. Furthermore, 40 individuals were recruited, and the results were verified. 37 

Results: Thirty-nine differentially expressed genes (DEGs) were identified between controls and 38 

AMI individuals from the training sets. Among the thirty-nine DEGs, IML was used to process 39 

the predicted classification model and identify potential candidate genes with overall normalized 40 

weights >1. Finally, Two genes (AQP9 and SOCS3) show their diagnosis value with the area 41 

under the curve (AUC) > 0.9 in both the training and testing sets. The clinical study verified the 42 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.07.23295181doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.07.23295181


 

3 

 

significance of AQP9 and SOCS3. Notably, more stenotic coronary arteries or severe Killip 43 

classification indicated higher levels of these two genes, especially SOCS3. These two genes 44 

correlated with two immune cell types, monocytes and neutrophils. 45 

Conclusion: AQP9 and SOCS3 in leukocytes may be conducive to identifying AMI patients with 46 

SCAD patients. AQP9 and SOCS3 are closely associated with monocytes and neutrophils, which 47 

might contribute to advancing AMI diagnosis and shed light on novel genetic markers. Multiple 48 

clinical characteristics, multicenter, and large-sample relevant trials are still needed to confirm its 49 

clinical value. 50 

Keywords: Acute Myocardial Infarction, Diagnostic Gene Identification, Machine Learning, 51 

AQP9, SOCS3, Immune Cell Correlation 52 
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1 Introduction 64 

Acute myocardial infarction (AMI), the most severe form of cardiovascular disease, is associated 65 

with [1, 2] millions of deaths annually around the world [3, 4]. Generally, the diagnosis of AMI 66 

includes clinical syndrome, electrocardiogram, and serum changes in enzyme levels [5]. However, 67 

AMI is easily misdiagnosed because of the following three aspects: nonclassic clinical symptoms 68 

[6, 7], atypical underappreciation [8], and an untimely serum peak. Because of the above three 69 

problems, a previous study [9] reported that the missed diagnosis rate of AMI is higher than 0.9%. 70 

The diagnosis and treatment of AMI must be prompt; otherwise, it may trigger irreversible results. 71 

Therefore, exploring new markers of AMI to decrease missed diagnoses is essential and urgent. 72 

 73 

Leukocytes play an important and varied role in the entire evolution of AMI. During the acute 74 

injury phase of AMI, leukocytes promote a severe inflammatory cascade response through the 75 

polarization of M1 macrophages [10]. During the repair phase of AMI, M2 macrophages in 76 

leukocytes suppress inflammation and mediate the repair of injured myocardium [11]. 77 

Furthermore, leukocyte alteration positively correlates with AMI severity and, inversely, with 78 

patient survival [12, 13].  79 

 80 

RNAs are involved in the evolution of AMI. For example, miR-155 correlated positively with the 81 

concentration of inflammatory cytokines - IL-6 and TNF-α [14] in AMI. Neutrophil-derived 82 

S100A8/A9 amplify granulopoiesis and cardiac injury in AMI mice [15]. Conversely, M2 83 

macrophage-derived exosomes carry miR-1271-5p [16] to alleviate AMI-related cardiac injury. In 84 
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conclusion, RNA on leukocytes plays a different role in the evolution of AMI, possibly related to 85 

different leukocyte subtypes. However, numerous studies have focused on integrating target 86 

interventions [12, 17] and leukocyte complications [17, 18]. Few studies have focused on the 87 

diagnostic value of leukocytes' RNA. Because the leukocytes' RNA is involved in the evolution of 88 

AMI, these RNA might have diagnosing value for AMI patients. The diagnosis value might be 89 

related to various leukocyte subtypes. 90 

 91 

Machine learning (ML) helps humans learn patterns from complex data to predict future 92 

behavioural outcomes and trends. ML was widely utilized in variable filtering. A previous study 93 

used a single ML algorithm or two integrated ML algorithms (e.g., support vector machine [18] or 94 

least absolute shrinkage and selection operator [19]) to optimize variables. Still, these approaches 95 

may have missed potential genes [20]. Compared with a single ML algorithm, the integrated ML 96 

(IML) approach [21-23] we developed is more advantageous in variable screening and model 97 

building. IML helps identify potential genes mistakenly deleted by a single ML  and find more 98 

meaningful variables [21]. IML integrates the advantages of a single ML, and its predictive 99 

classification value is better [23]. Based on a favourable filtration value in transcriptomics of IML, 100 

IML might be used to comprehensively explore the diagnostic value in AMI patients.  101 

 102 

In summary, we aim to explore the potential diagnostic value of transcriptome within leukocytes 103 

for identifying AMI patients. Because of IML's good variable screening and excellent predictive 104 

value, IML was first used to mine diagnostic genes in AMI leukocytes with multiple microarrays. 105 
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Single microarray data might have inherent biases in capturing the entire transcriptomic landscape, 106 

so multiple microarrays are integrated after resolving batch effects to reduce bias and validate 107 

each other. And clinical validation was added to confirm the result. The relationship between 108 

transcriptome and leukocyte subtypes was unclear, so the correlation between immune cells and 109 

target transcriptome was subsequently accomplished. We expect to explore the functional roles of 110 

the identified genes in AMI pathophysiology, investigating their potential as therapeutic targets. 111 

 112 

2 Methods 113 

2.1 Data acquisition 114 

The raw data were obtained from the Gene Expression Omnibus (GEO, March 27, 2022). AMI 115 

patients have similar symptoms to SCAD patients, which were set as the controls. An increasing 116 

leukocyte may influence the result of other cardiovascular diseases (e.g., stroke [24, 25] and 117 

heart failure [26]), to be excluded. AMI is easily misdiagnosed as SCAD. Leukocytes are also 118 

altered in other cardiovascular diseases. Based on the above, the following inclusion and 119 

exclusion criteria were set: I) inclusion criteria—(i) diagnosed as AMI patients on admission; (ii) 120 

transcriptome was obtained from leukocytes in blood; (iii) initial data were free and accessible; 121 

and (iv) the control individuals were diagnosed with stable coronary artery disease (SCAD); and 122 

II) exclusion criteria—(i) other cardiovascular diseases suspected and (ii) blood were taken more 123 

than one day after hospitalization.  124 

 125 

2.2 Data processing 126 
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To ensure the reliability of the data, the R package sva (version 3.46.0) was applied to data 127 

integration to minimize the branch effects with the ComBat function and parametric adjustments. 128 

Regarding the distribution ratio of previous literature (1.64:1 [27] to 5:1 [28]) and to minimize the 129 

branching effect, this research was distributed in the training or testing sets at a ratio of 5:2. 130 

GSE59867 was included in the training set. In contrast, GSE60993, GSE62646, and GSE48060 131 

were included in the testing set. In brief, the training set was applied to explore candidate 132 

diagnostic genes, and the testing set was used for validation. Based on the differential DEGs, 133 

three functional enrichment analyses were developed via the Kyoto Encyclopedia of Genes and 134 

Genomes Gene Set Enrichment Analysis (KEGG-GSEA), Gene Ontology (GO), and Disease 135 

Ontology (DO). In addition, the GO terms included three branches: molecular function (MF), 136 

biological process (BP), and cellular components (CC). Notably, the novel IML served two 137 

functions: developing classification ML and exploring the candidate variable. Finally, the above 138 

candidate genes were verified in the testing group and clinical study, and an immune analysis 139 

among the candidate genes was performed. CIBERSORT was processed for immune correlation 140 

analysis in the corrplot R package (version 0.92). And the primary code was link with 141 

https://github.com/Linzhang-BiuBiuBiu/ML-for-diagnosis-genes..git. 142 

 143 

2.3 Searching for DEGs 144 

Because the same gene may have multiple sequences, the transcriptome will appear to have 145 

several expression data for the same genes. For the same genes, limma (version 3.54.0) was 146 

employed to identify the DEGs with the average gene expression. According to the Benjamini and 147 
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Hochberg method, two thresholds were established: an absolute value of fold change 148 

(|logFC|) >0.7 (previous studies were 0.5 [29]-1 [23]) and a false discovery rate [30] <0.05. 149 

 150 

2.4 IML of six ML algorithms 151 

Classification models of IML, composed of six ML algorithms, were processed, covering support 152 

vector machine (SVM), neural network (NN), random forest (RF), gradient boosting machine 153 

(GBM), decision trees (DT), and least absolute shrinkage and selection operator (LASSO). In 154 

brief, IML was used to identify candidate genes with the overall normalized weights. The six ML 155 

algorithms were developed to optimize parameter settings, model development in the training sets, 156 

and validation in the testing sets. For stability, all ML algorithms were tenfold cross-validated. 157 

Notably, an accuracy value was applied to evaluate the predictive classification value, and a 158 

higher accuracy value showed a better classification value of the six ML algorithms. 159 

 160 

LASSO [31] minimizes the sum of squares of the residuals when the sum of the absolute values 161 

of the regression coefficients is less than a constant, producing specific regression coefficients 162 

equal to 0 and filtering variables. LASSO was processed with the glmnet (version 4.1-6) R 163 

package. cv.glmnet was utilized to majorize lambda. For the parameters, the scale of "lambda" 164 

was set between 0 and 100 with "binomial" and "class".Based on the minimum lambda, glmnet 165 

was processed to the LASSO with alpha and a "binomial" method in training sets. 166 

 167 

SVM aim to find the separating hyperplane [32] that divides the dataset correctly with the largest 168 
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geometric interval. SVM was developed with the e1071 R package (version 1.7–12). tune.svm 169 

was adopted to optimize the settings parameter with the kernel of "linear", and the cost between 1 170 

and 20.  171 

 172 

DT [33] is based on a tree structure that judges (one or more) sample attributes sequentially, from 173 

top to bottom, up to the leaf nodes of the decision tree and derives the final result. DT was 174 

processed with rpart (version 4.1.19) and rpart.plot (version 3.1.1). Based on the "class" method 175 

and a cp value of 0.001, the rpart function was adopted for the DT model. 176 

 177 

RF use a " bagging " technique [34] to construct complete decision trees in parallel by randomly 178 

self-sampling dataset samples and features. RF was completed with the R package randomForest 179 

(version 4.7-1.1). First, the tuneRF function was adopted to optimize 0-700 trees with one step 180 

size. RF was developed based on the minimum error rate to optimize the number of trees. 181 

 182 

NN outputs model [35] by inputting multiple nonlinear models and weighted interconnections 183 

between various models. NN was processed with neuralnet (version 1.44.2) with neuralnet 184 

function, five layers (an input, an output, and three hidden layers), err.fct of "sse", and the linear. 185 

 186 

GBM serially generates a series of weak learners [36], which are directly used to form the final 187 

model by combining them. Compared with the other 5 ML algorithms, GBM processed more 188 

steps and was prone to making mistakes. The GMB was developed with h2o (version 3.38.0.1). 189 
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First, the Java operating environment was installed, which is the virtual environment of GBM. 190 

Essential for running the memory setting in h2o.init, the model memory of GBM was adjusted to 191 

8G. The h2o data type in GBM was inevitable, and the as.h2o function was utilized to transform 192 

the data format. Next, h2o.gbm tuned the parameters and developed the model with the 193 

"Bernoulli" distribution, 200 trees, a learning rate of 0.001, and a sample rate of 90%. 194 

 195 

Furthermore, with the weights of the above six ML algorithms in DEGs, the normalized sum 196 

weight of IML was calculated as follows: overall weights = abs(RF)/abs(RFmax) + 197 

abs(SVM)/abs(SVMmax) + abs(LASSO)/abs(LASSOmax) + abs(NN)/abs(NNmax) + 198 

abs(GBM)/abs(GBMmax) + abs(DT)/abs(DTmax). For instance, if the weight of interleukin-6 in 199 

six ML algorithms was 30, -22, 20, -2, 320, and -8, the maximum absolute value weights in the 200 

six ML algorithms were 60, 88, 80, 8, 640, and 16. Therefore, the overall weight of interleukin-6 201 

was |30|/60+|-22|/88+|20|/80+ |-2|/8+|320|/640+|-8|/16=2.25. With normalized overall weights >1, 202 

the candidate genes were estimated by the area under the curve (AUC). 203 

 204 

2.5 Clinical validation 205 

 206 

The clinical trial was performed according to the Declaration of Helsinki guidelines. All AMI and 207 

SCAD patients provided individual written informed consent from October 10 2022, to December 208 

31 2022, and the Ethics Review Committee of Jinghai District Hospital approved the study. There 209 

was no increase in the cost of treatment for the patients, no addition of other intervention in the 210 
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treatment, and the blood samples used were taken from the discarded blood of the patients after 211 

their routine blood tests on the same day. If the patient did not have a routine blood test on that 212 

day, then the patient was excluded. All AMI patients underwent coronary angiography, and blood 213 

samples were collected in anticoagulant tubes on admission. Density gradient centrifugation [37, 214 

38] was performed for leukocyte isolation. In brief, 8 mL of Ficoll solution was added to 8 mL of 215 

anticoagulated blood, and the upper plasma layer was discarded after centrifugation. The white 216 

cell layer at the isolate's junction was aspirated, added to 10mL of saline, and centrifuged; the 217 

bottom layer was the leukocytes. RNA, isolated from leukocytes, was synthesized with reverse 218 

transcription kits (Takara, Shiga, Japan). Quantitative reverse transcription PCR was executed on 219 

an ABI7900HI (Thermo Fisher Scientific). According to previous literature, the relative content of 220 

the candidate genes was scaled to the reference gene (GAPDH [39]), and Table 1 lists the primer 221 

sequences. 222 

Table 1 List of primers for real-time PCR analysis in GAPDH, AQP9, and SOCS3.  223 

3 Results 224 

3.1 Included datasets 225 

A total of 4 datasets (Table 2) (220 sample sizes), namely, GSE59867, GSE60993, GSE62646, 226 

and GSE48060, were integrated for this study. The training set was obtained from GSE59867 (46 227 

controls and 111 AMI patients) based on a raw ratio of 5:2. Furthermore, the testing set was 228 

integrated with the other three datasets (28 controls and 35 AMI patients), namely, GSE60993, 229 

GSE62646, and GSE48060. The following analysis is presented in Fig 1. 230 

 231 
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Table 2 Fundamental information in the four datasets.  232 

 233 

Fig. 1 The workflow of this study contains four parts: GEO datasets for training and testing sets, machine 234 

learnings for classification and variable filtration, diagnosis value verification, and immune correlation.   235 

3.2 DEG identification 236 

Thirty-nine DEGs were identified (Table S1) in a training set from 17,049 RNAs. Compared to 237 

the control group (SCAD), 28 genes were upregulated (SOCS3, HP, ECRP, AQP9, FAM20A, 238 

CES1, STAB1, NRG1.1, NRG1, DYSF, RNASE1, RNASE2, ASGR2, CYP1B1, MERTK, 239 

FCGR1A.2, MIR21, FCGR1A.1, TCN2, VSIG4, PPARG, FCGR1A, SLED1, S100A9, FMN1.1, 240 

CD163, TMEM176A, and SERPINB2) and 11 genes were downregulated (KLRC3, KLRD1, 241 

KLRA1P, DTHD1, KLRC4, MYBL1, CLC, KLRC2, KLRC4-KLRK1, SNORD20, and 242 

SNORD45B) in AMI individuals (Fig. 2). 243 

 244 

Fig. 2 Heatmap and volcano plot of 39 DEGs in the AMI and control groups. A Red in the heat map indicates high 245 

expression, and a blue indicates low expression. B Green in the volcano map suggests lower expression, and red 246 

indicates high expression. 247 

3.3 Functional analysis 248 

Based on the above DEGs, 45 GSEA terms (Table S2) were identified, and the top 5 are shown in 249 

Fig. 3A-B; 160 GO terms (Table S3) were identified, and the top 5 are shown in Fig. 3C; and the 250 

top 10 of 57 DO terms (Table S4) are shown in Fig. 3D. In GSEA-KEGG of AMI, the top 3 were 251 

Fc gamma R-mediated phagocytosis, Huntington disease, and Leishmania infection. In GO, the 252 
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top 3 in BP were the stimulatory C-type lectin receptor signalling pathway, response to lectin, and 253 

cellular response to lectin. In DO terms, the top 3 were atherosclerosis, arteriosclerotic 254 

cardiovascular disease, and arteriosclerosis. 255 

 256 

 257 

Fig. 3 Functional analysis of GSEA, GO, and DO terms. A The top 5 GSEA-KEGG pathways in controls. B The 258 

top 5 GSEA-KEGG pathways in AMI patients. C The top 5 GO terms in BP, CC, and MF. D The top 15 DO terms. 259 

 260 

3.4 IML of six ML algorithms 261 

Six ML algorithms (Fig. 4) and their accuracies (Table 3) were assessed. Eight genes were 262 

identified in LASSO (Fig. 4A), and the training and testing sets' accuracy value was 70.70% 263 

(Table 3). In SVM, 13 genes were filtered (Fig. 4B), and the accuracies were 88.46% and 91.84%, 264 

respectively. The error rate of RF (Fig. 4C) decreased with an increasing number of trees. Until 265 

161 trees, the error rate of RF was minimized, and the accuracy of the two sets was 98.09% and 266 

100%. In DT (Fig. 4D), the gene expression of 9.8 in AQP9 could discriminate the control and 267 

AMI groups, while the accuracies were unstable, 94.27%, and 75.52%. In GBM (Fig. 4E), 6-fold 268 

methods were established to optimize the diagnosis genes, but unstable accuracies, such as the 269 

above ML algorithms, were 93.30% and 85.71%. In the NN (Fig. 4F), although sufficient for 270 

discriminating the controls and AMI patients with three hidden layers, the accuracy was either 271 

83.74% or 71.43%. Among the above ML algorithms, the raw weights of 39 DEGs were 272 

identified (Table S5). Interestingly, RF had the highest and most stable accuracy value among all 273 
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ML algorithms. The normalized overall weights (Table 4) were calculated to filter the candidate 274 

variables. Twenty-six genes (ASGR2, SOCS3, AQP9, PPARG, RNASE1, DYSF, S100A9, 275 

FCGR1A, VSIG4, STAB1, MYBL1, KLRD1, ECRP, TCN2, FAM20A, MERTK, HP, RNASE2, 276 

DTHD1, CLC, SNORD20, CD163, NRG1, SNORD45B, CYP1B1, and KLRC2) were identified 277 

because of overall weights >1 (Table 4). 278 

 279 

Table 3 Accuracy of six MLs based on 39 DEGs in the training and test sets. 280 

 281 

Fig.4 Six ML algorithms for classification with 39 DEGs. A LASSO for eight candidate genes and the error bars 282 

mean the fluctuation range of Binomial Deviance; B SVM for 13 candidate genes. C RF discriminated between 283 

the control and AMI groups. And The red, black, and green lines represent the Con, out-of-bag (OOB), and AMI 284 

groups respectively. D DT discriminated between the control and AMI groups. E A 6-fold GBM submodel was 285 

constructed. The heat map illustrates the importance of genes in each respective submodel. The intensity of the 286 

color corresponds to the significance of the gene in the particular submodel. F NN discriminated between the 287 

control and AMI groups. All 39 DEGs were involved in modeling in NN, and there are ten because of space 288 

limitations. If an edge is colored red, it indicates a positive correlation, meaning that the current feature positively 289 

affects the classification result. Conversely, if the edge is gray, it implies a negative correlation. Furthermore, the 290 

thickness of the edge signifies the weight's magnitude. 291 

 292 

Table 4 Overall weights of six classification models were constructed to optimize the candidate diagnostic genes. 293 

 294 
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With the basis of overall normalized weights >1, 26 candidate genes were filtered for subsequent 295 

diagnosis in AMI and control groups in the training and testing sets. Among the 26 genes, 10 were 296 

excluded because of no differentiation in the testing set. Sixteen genes were significant in the two 297 

sets (Fig. 5). 298 

 299 

Fig. 5 The 16 DEGs also differed in the testing set. 300 

 301 

3.5 Diagnosis value of candidate genes 302 

Sixteen candidate genes were included in the following ROC analysis. The AUC values of 303 

SOCS3, AQP9, and ASGR2 were greater than 0.85 in both the training and testing sets. In 304 

particular, 2 genes, SOCS3 and AQP9, were greater than 0.9 (Fig. 6). The AUC value of the two 305 

genes indicated a potential diagnostic value in AMI. 306 

 307 

Fig. 6 ROC curves for AQP9, SOCS3, and ASGR2 in the training and testing sets. 308 

 309 

3.6 Correlation analysis 310 

Immune correlation was performed with the 220 samples (Fig. 7). The infiltration landscape (Fig. 311 

7A) showed 22 immune distributions in the control and AMI groups. Nine types of immune cells 312 

(CD8 T cells, naive CD4 T cells, regulatory T cells (Tregs), resting NK cells, monocytes, M0 313 

macrophages, M2 macrophages, eosinophils, and neutrophils) infiltrated significantly between the 314 

control and AMI groups (Fig. S1). Moreover, the correlations between 22 immunized cells and 315 
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the two diagnostic genes, AQP9 and SOCS3, based on Spearman analysis (Fig. 7B-C) showed 316 

significant correlations with 9 immune cells (monocytes, neutrophils, CD8 T cells, resting NK 317 

cells, naive CD4 T cells, eosinophils, M2 macrophages, activated dendritic cells, and memory B 318 

cells). More importantly, two immune cell types (monocytes and neutrophils) possessed a higher 319 

correlation coefficient (Fig. 7B-C) than the other 7 immune cell types (Fig. S2-S3). In particular, 320 

the correlation coefficients of monocytes (Fig. 7B-C) were highest for the two genes (0.56 for 321 

SOCS3 and 0.76 for AQP9). 322 

 323 

Fig. 7 Immune correlation analysis of AQP9 and SOCS3 between the control and AMI groups. A The stacked 324 

column graph between the control and AMI groups. B The violin plot showed 7 immune cell types infiltrated 325 

differently between the control and AMI groups. C The lollipop map of the different immune cell types in AQP9 326 

and SOCS3. * mean <0.05, ** mean <0.01, ***mean<0.001. 327 

 328 

3.7 Clinical validation 329 

Finally, 40 individuals (20 SCAD and 20 AMI patients) were recruited. The general information of these 330 

individuals was shown in Table 5. Among 39 clinical characteristics were summarized, and 13 had significance 331 

between the SCAD and AMI patients, including WBC, NeP, MonP, Lym, GAT, D-dimer, CRP, SOCS3, AQP9, 332 

LDH, cTnT, CK-MB, and Albumin. 333 

Table 5 The general characteristics of the 40 patients. 334 

The relative RNA levels (Fig. 8A) of AQP9 and SOCS3 were both significant. The SOCS3 content of coronary 335 

arteries differed by the number of lesions (Fig. 8B): three lesions showed significantly higher SOCS3 than two 336 
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and one (Fig. 8B). Patients with III-IV Killip classification had higher SOCS3 compared to those with I-II (Fig. 337 

8C). Although more stenotic coronary arteries were associated with higher levels of AQP9, the difference was 338 

less significant than for SOCS3 (Fig. 8B). In addition, different Killip classifications associated with AQP9 339 

possessed no significant differences (Fig. 8C). Furthermore, the 9 significant clinical features were analysised 340 

with Pearson correlation test (Fig. S4). And SOCS3 had a positive correlation with AQP9. Both genes had a 341 

negative correlation with Albumin.  342 

 343 

Fig. 8 Relative RNA levels of AQP9 and SOCS3 in AMI patients and SCAD controls. A The relative content of 344 

SOCS3 and AQP9 in AMI patients and SCAD controls. B The comparison of AQP9 and SOCS3 in the number of 345 

coronary arteries with different stenoses in AMI. C The comparison of AQP9 and SOCS3 in various Killip 346 

classifications in AMI. * mean <0.05, ** mean <0.01, *** mean<0.001, ns mean no significance. 347 

 348 

4 Discussion 349 

 350 

To our knowledge, our work is the first to filter AMI diagnosis genes based on the overall 351 

normalized weights of IML. Four microarrays with 220 samples were adopted for data analysis, 352 

and further clinical studies were performed to validate the results. Two genes, AQP9 and SOCS3, 353 

showed an AUC >0.9 in both the training set and testing set (Fig. 6). Both genes showed a typical 354 

and highest correlation coefficient (Fig. S2-3) in monocytes. The clinical study verified the 355 

significance between AMI patients and healthy controls, indicating a potential diagnostic value of 356 

AQP9 and SOCS3. Compared with previous studies, we reached similar conclusions that AQP9 357 
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presented diagnostic value for AMI [40, 41], and we further explored the immune correlation of 358 

AQP9. Additionally, Prof. Zhu [42] identified SOCS3 as an immune-related gene in AMI, and we 359 

expanded it to have diagnostic value. More importantly, this study is the first to reveal the RNA 360 

correlation of AQP9 and SOCS3, especially SOCS3, between the number of stenotic coronary 361 

arteries and the Killip classification. 362 

 363 

AQP9, a cell membrane protein, transports water down the concentration gradient. ERK1/2 can 364 

be reversed in AMI rats by silencing AQP9, attenuating cardiomyocytes' inflammatory response 365 

and apoptosis and upregulating cardiac function [43]. The above research indicated the crucial 366 

role of AQP9 in the pathogenesis of AMI. In human polymorphonuclear leukocytes, AQP9-367 

related inflammation may result from the NK-κB [44] and F-actin polymerization [45]. In our 368 

work, the ROC curve of AQP9 was > 0.9. Therefore, AQP9 might be a potential genetic marker 369 

for diagnosing AMI with SCAD. 370 

 371 

SOCS3 is increased in AMI mice [29] and regulates the T-cell repertoire with STAT3/SOCS3 372 

signalling [46]. More importantly, cardiac-specific silencing of SOCS3 triggers sustained STAT3 373 

and decreases myocardial apoptosis [47]. Therefore, SOCS3 is the dominant negative modulator 374 

[48] of Th17 via STAT3 [49]. Apoptosis regulates the pathophysiological evaluation of AMI [50]. 375 

In vitro, SOCS3 can trigger the apoptosis of mammary cells [51], and knocking out SOCS3 376 

regulates the expression of apoptosis in 3T3-L1 preadipocytes [52]. The above research 377 

emphasized the immune regulation of SOCS3 and the regulation of apoptosis with STAT3. In our 378 
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work, the ROC curve of SOCS3 was > 0.9. Therefore, SOCS3 might be an effective genetic 379 

marker for diagnosing AMI. 380 

 381 

Additionally, the CIBERSORT algorithm showed that the proportion of neutrophils and 382 

monocytes in the AMI group was higher than in the control group. The progression of AMI is 383 

correlated with immune disorder. For example, the white blood cell count correlates highly with 384 

in-hospital mortality after AMI [53]. Neutrophils are increased in peripheral blood, and 385 

researchers have emphasized that neutrophils-lymphocytes [54, 55] and monocytes/macrophages 386 

[56] can be easily acquired factors for the prognosis of AMI. Macrophages were dominant in 387 

infarcted myocardium, especially over the first week of AMI [57]. However, NK cells have 388 

diminished cytotoxic function [58], and the targeted regulation of NK cells may indicate a 389 

dominant role in the cure of AMI. At the beginning of AMI, inflammation deteriorates with 390 

increased neutrophils and monocytes [59], and inflammation decreases over time with the reduced 391 

function of NK cells. Innate immunity is a vital regulatory factor in the inflammatory, 392 

proliferative, and maturation phases [3, 60, 61]. AMI leads to a deteriorated inflammatory process. 393 

Currently, novel therapeutic interventions targeting the immune system may regulate slant 394 

inflammation, which is conducive to resolving pathological conditions. In a previous clinical trial 395 

of 182 NSTEMI patients (a subtype of AMI), the patient's intake of IL-1 blockers decreased acute 396 

inflammation [62]. Another immune study showed that short-term blockade of S100A9 397 

downregulates inflammation [63] in permanent coronary ischaemia mice. However, the above 398 

immune interventions are still experimental and not in the clinic. In summary, regulating immune 399 
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cells along with the progression of AMI and immune intervention in AMI might be a potential 400 

target. 401 

AQP9 expression was highest in human polymorphonuclear leukocytes [45] compared with the 402 

spleen and liver, suggesting a possible correlation between AQP9 and immunity or inflammation. 403 

AQP9 regulates water flow on leukocytes [64], which regulates cellular morphology and motility, 404 

a change that facilitates the migration of leukocytes to inflammatory sites. Similar to our result, 405 

Hawang [65]  indicated the correlation between AQP9 and neutrophile granulocytes. Research [29, 406 

60, 61] emphasizes the correlation between SOCS3 and neutrophils in inflammation. In our 407 

research, both genes had a higher correlation with two immune cells, neutrophils and monocytes. 408 

The immune cell correlation indicated that the targeted gene therapy of immune cells may benefit 409 

the course of AMI—potential feasibility of using AQP9 and SOCS3 as therapeutic targets or 410 

predictors of treatment response. 411 

ML algorithms are widely performed for various cardiovascular diseases, such as optimizing 412 

variables, classification, and congression. For variable filtration, numerous studies take only 413 

single or double ML algorithms (e.g., weighted gene coexpression network analysis [66], LASSO, 414 

and SVM). However, only the single or double ML algorithms might unconsciously delete the 415 

potential genes. For example, AQP9 will be ignored if we only take DT because the weights of 416 

AQP9 were zero in DT (Table 4). Taking only a single ML might miss some potential genes. For 417 

example, although LASSO can detect candidate genes with big data when highly correlated 418 

features exist, the LASSO regression method tends to select one of them and ignore all the other 419 

features, leading to the instability of the results [67]. In pigmented skin lesions [68], SVM and 420 
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NN displayed their talent classification value. In preoperative postsurgical mortality [69], GBM is 421 

optimized rather than DT, RF, and SVM. Various ML algorithms may show different weights even 422 

in the same variable (Table 4). Necessarily, the overall normalized weights of IML were taken to 423 

filter genes. Surprisingly, IML explores two potential, unreported diagnostic genes in AMI. In our 424 

study, IML has good value in both variable screening and model prediction. 425 

 426 

Inevitably, three limitations exist in this work, although the best efforts were taken to eliminate 427 

them. Primarily, small sample size verification might possess some bias. So, multicentre 428 

collaborations or leveraging larger external datasets is crutial for further verification. Although 429 

testing sets and clinical validation were developed to assess the stability of the diagnostic value, 430 

the bias of single-centre validation might exist. More confirmation, clinical trials and animal 431 

experiments are indispensable for solid verification. Next, the ML algorithms contained 432 

limitations (e.g., the black box phenomenon [70]), especially NN, which has numerous layers [71]. 433 

The set of operations an ML performs in making a prediction is unknown, even if a human knows 434 

precisely what the model is doing at each step of the decision-making process. The operations 435 

performed cannot be described in terms of human-understandable semantics. And the 436 

Interpretability techniques for ML models always catch the eye of developers, which enhances the 437 

transparency and reliability of the ML. Finally, limited clinical features were obtained (e.g., age 438 

[72], ethnicity, and race [73]). Clinical features could potentially enhance the predictive accuracy 439 

of the diagnostic model and provide a more comprehensive understanding of AMI. For example, 440 

various combinations (e.g., sex, smoking or not, and laboratory indicators ) of clinical variables 441 
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[74] are calibrated to analyze the relationship between the target variable and the outcome.  442 

 443 

5 Conclusion 444 

 445 

Based on the overall normalized weights of IML, the research successfully merges four 446 

microarrays and uncovers hidden diagnostic genes AQP9 and SOCS3 for leukocytes of AMI 447 

patients. AQP9 and SOCS3 are closely associated with monocytes and neutrophils, which might 448 

contribute to advancing AMI diagnosis and shedding light on novel genetic markers, including 449 

AMI pathogenesis, targeted therapies, and potential precision medicine. Although clinical 450 

validation copies the result again. Multiple clinical characteristics, multicenter, and large-sample 451 

relevant trials are still needed to confirm its clinical value. 452 

 453 

Supplementary Materials: 454 

Table S1. The 39 DEGs in healthy controls and AMI patients. 455 

Table S2. GSEA enrichment of 45 terms. 456 

Table S3. GO enrichment of 160 terms. 457 

Table S4. DO enrichment of 41 terms. 458 

Table S5. Primary weight of DEGs in the six classification ML algorithms. 459 

Fig. S1 Difference between the 22 immune cells. 460 

Fig. S2. Correlation analysis of SOCS3 in 7 immune cell types. 461 

Fig. S3. Correlation analysis of AQP9 in 7 immune cell types. 462 
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 723 

Table 1 List of primers for real-time PCR analysis in GAPDH, AQP9, and SOCS3. 724 

Gene Primer sequences 

GAPDH F: TGTGGGCATCAATGGATTTGG R: ACACCATGTATTCCGGGTCAAT 

AQP9 F: GCCATCGGCCTCCTGATTAT R: GCCCACTACAGGAATCCACC 

SOCS3 F: TCCAAACAGGGGACACTTCG R: GGGGGTGTGACCATTTCCTT 

Table 2 Fundamental information in the 4 datasets. 725 

ID Public 
time Institution Plat 

form 
Count
ry 

C
o
n  

A
M
I 

Microarray/RNA-seq 
method 

GSE5
9867 

21-
May-
15 

Institute of 
Biochemistry and 
Biophysics 

GPL
6244 

Poland 46 
11

1 
Affymetrix GCS 3000 
GeneArray Scanner 

GSE6
0993 

23-
May-
15 

Ajou University of 
Korea 

GPL
6884 

South 
Korea 

7 7 HumanHT-12 v3 
Expression BeadChip 

GSE6
2646 

23-
Oct-14 

Institute of 
Biochemistry and 
Biophysics 

GPL
6244 

Poland 0 28 Affymetrix GCS 3000 
GeneArray Scanner 

GSE4
8060 

28-
Feb-
14 

Mayo Clinic 
GPL
570 

USA 21 0 
GeneChip Scanner 3000 
7G 

 726 

Table 3 Accuracy of six MLs based on 39 DEGs in the training and test sets. 727 

MLs Training sets (%) Testing sets (%) 

LASSO 70.7 70.7 

SVM 88.46 91.84 

RF 98.09 100 

DT 94.27 75.52 

GBM 93.3 85.71 

NN 83.74 71.43 

Table 4 Overall weights of six classification models were constructed to optimize the candidate diagnostic genes. 728 
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ID SVM RF NN GBM DT LASSO Overall weights 

ASGR2 1 1 0.97 0.21 1 0.61 4.79 

SOCS3 0.98 0.34 0.52 0.24 0.59 0.61 3.28 

AQP9 0.61 0.1 0.68 1 0 0.52 2.91 

PPARG 0.76 0.15 1 0.25 0 0.5 2.66 

RNASE1 0.74 0.22 0.24 0.1 0.41 0.74 2.45 

DYSF 0.2 0.68 0.01 0.57 0 0.72 2.18 

S100A9 0.53 0.09 0.01 0.74 0 0.63 2 

FCGR1A 0.17 0.51 0 0.57 0 0.68 1.93 

VSIG4 0.44 0.3 0.1 0.19 0.01 0.86 1.9 

STAB1 0.47 0.58 0.05 0.14 0 0.61 1.85 

MYBL1 0.68 0.15 0.2 0 0.26 0.52 1.81 

KLRD1 0.26 0.65 0.01 0.05 0 0.73 1.7 

ECRP 0.44 0.24 0.11 0 0.34 0.54 1.67 

TCN2 0.46 0.27 0.07 0 0 0.78 1.58 

FAM20A 0.31 0.08 0.15 0 0 1 1.54 

MERTK 0.19 0.21 0.01 0.1 0.14 0.71 1.36 

HP 0.09 0.78 0 0 0 0.45 1.32 

RNASE2 0.16 0.42 0.01 0 0 0.7 1.29 

DTHD1 0.13 0.45 0.05 0 0 0.66 1.29 

CLC 0.11 0.72 0.02 0 0 0.36 1.21 

SNORD20 0.14 0.24 0.01 0.13 0.1 0.5 1.12 

CD163 0.15 0.29 0 0.11 0 0.57 1.12 

NRG1 0.2 0.25 0.02 0 0 0.63 1.1 

SNORD45B 0.12 0.64 0.01 0 0 0.33 1.1 

CYP1B1 0.14 0.25 0 0 0 0.66 1.05 

KLRC2 0.07 0.51 0 0 0 0.46 1.04 
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TMEM176A 0.08 0.67 0 0 0 0.24 0.99 

SLED1 0.09 0.24 0.02 0.05 0 0.49 0.89 

FCGR1A.2 0.23 0 0 0.62 0 0 0.85 

SERPINB2 0.08 0.21 0 0 0 0.54 0.83 

FCGR1A.1 0.18 0 0 0.62 0 0 0.8 

KLRC4 0.13 0.21 0 0 0 0.43 0.77 

KLRA1P 0.1 0.07 0 0.08 0 0.51 0.76 

MIR21 0.08 0.09 0.01 0 0 0.5 0.68 

CES1 0.12 0.05 0.03 0 0 0.47 0.67 

KLRC4-KLRK1 0.07 0 0 0.08 0 0.43 0.58 

KLRC3 0.07 0.1 0 0 0 0.39 0.56 

NRG1.1 0.13 0 0 0 0 0 0.13 

FMN1.1 0.07 0 0.01 0 0 0 0.08 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

Table 5 The general characteristics of the 40 patients. 738 

Characteristic SCAD (n= 20)  AMI (n= 20) P-value 

Hypertension, % 16.00(80) 16.00(80) >0.05 
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Diabetes mellitus, % 6.00(30) 7.00(35) >0.05 
Stroke, % 4.00(20) 4.00(20) >0.05 
Hyperlipemia, % 4.00(20) 6.00(30) >0.05 
Age, year 66 (63, 72) 70 (58, 77) >0.05 
Sex (Male), % 10.00(50.00) 12.00(60.00) >0.05 
RBC, million cells/μL 4.37 (3.80, 4.49) 4.03 (3.55, 4.35) >0.05 
WBC, 1000 cells/μL 6.02 (4.85, 6.84) 8.33 (6.84, 11.24) <0.001 
NeP, % 69 (58, 74) 80 (75, 86) <0.001 

MonP, % 8.00 (6.15, 9.23) 5.55 (3.98, 7.68) <0.05 

Mon, 1000 cells/μL 0.44 (0.35, 0.48) 0.42 (0.19, 0.73) >0.05 
Lym, 1000 cells/μL 1.37 (1.06, 1.77) 0.96 (0.62, 1.42) <0.05 
RDW, % 13.00 (12.55, 13.30) 13.55 (12.88, 14.98) >0.05 
PDW, % 11.85 (10.48, 13.90) 13.25 (11.68, 16.15) >0.05 
Pla, 1000 cells/μL 214 (163, 245) 219 (173, 244) >0.05 
MCHC, g/L 334 (329, 342) 329 (319, 338) >0.05 
Hg, g/L 131 (113, 140) 119 (109, 134) >0.05 
GAT, U/L 16 (14, 21) 28 (17, 51) <0.05 
D-dimer, mg/L 0.46 (0.27, 0.69) 1.01 (0.62, 2.70) <0.01 
CRP, mg/L 1 (1, 2) 12 (7, 26) <0.001 
SOCS3 1.57 (1.22, 1.76) 1.97 (1.86, 2.20) <0.001 
AQP9 0.90 (0.85, 1.03) 1.44 (1.16, 1.66) <0.001 
LDH, U/L 152 (141, 194) 260 (228, 303) <0.001 
cTnT, μg/mL 12 (9, 18) 140 (92, 264) <0.001 
CK-MB, U/L 2 (1, 4) 19 (9, 33) <0.001 
LDL, mmol/L 1.83 (1.57, 2.68) 2.38 (1.74, 3.62) >0.05 
HDL, mmol/L 1.04 (0.96, 1.16) 1.11 (0.96, 1.34) >0.05 
TC, mmol/L 3.59 (2.87, 4.52) 4.15 (3.27, 5.80) >0.05 
TG, mmol/L 1.13 (0.71, 1.58) 0.98 (0.89, 1.22) >0.05 
Glucose, mg/L 5.36 (4.73, 5.81) 6.05 (5.12, 9.15) >0.05 
Cys,μmol/L 11.7 (10.1, 16.4) 14.2 (8.7, 22.1) >0.05 
Albumin, g/L 41.8 (38.9, 43.3) 38.6 (34.9, 40.3) <0.01 
Total protein, g/L 65 (63, 67) 65 (60, 67) >0.05 
GGT, U/L 13 (11, 22) 17 (12, 33) >0.05 
IBIL, μmol/L 3.65 (2.50, 6.03) 4.95 (3.50, 7.30) >0.05 
DBIL,μmol/L 4.00 (2.58, 4.78) 4.30 (2.85, 7.75) >0.05 
IBIL,μmol/L 7.8 (5.2, 10.7) 10.0 (6.3, 17.4) >0.05 
Globulin, g/L 24.7 (21.2, 25.8) 25.6 (23.5, 26.9) >0.05 
ALP, U/L 72 (61, 87) 87 (72, 108) >0.05 

RBC; red blood cell count, WBC; white blood cell count, NeP; neutrophils percentage, 
MonP; monocyte percentage, Mon; monocyte count, Lym; lymphocyte count, RDW; red 
blood cell distribution width, PDW; platelet distribution width, Pla; platelet count, MCHC; 
mean corpuscular haemoglobin concentration, Hg; haemoglobin, GAT; glutamic 
transaminase, CRP; c-reactive protein, LDH; lactate dehydrogenase, cTnT; cardiac 
troponin t, CK-MB; creatine kinase isoenzymes, LDL; low-density lipoprotein, HDL; 
high-density lipoprotein, TC; total cholesterol, TG; total triglycerides, Cys; homocysteine, 
GGT; gammaglutaminase, IBIL; indirect bilirubin, DBIL; direct bilirubin, IBIL; total bile 
acid, ALP; alkaline phosphatase. 
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