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Abstract 138 

Background and Aims:  139 

 Outpatient clinical notes are a rich source of information regarding drug safety. However, data 140 

in these notes are currently underutilized for pharmacovigilance due to methodological limitations in 141 

text mining. Large language models (LLM) like BERT have shown progress in a range of natural language 142 

processing tasks but have not yet been evaluated on adverse event detection. 143 

Methods: 144 

We adapted a new clinical LLM, UCSF BERT, to identify serious adverse events (SAEs) occurring 145 

after treatment with a non-steroid immunosuppressant for inflammatory bowel disease (IBD). We 146 

compared this model to other language models that have previously been applied to AE detection. 147 

Results: 148 

 We annotated 928 outpatient IBD notes corresponding to 928 individual IBD patients for all SAE-149 

associated hospitalizations occurring after treatment with a non-steroid immunosuppressant. These 150 

notes contained 703 SAEs in total, the most common of which was failure of intended efficacy. Out of 8 151 

candidate models, UCSF BERT achieved the highest numerical performance on identifying drug-SAE pairs 152 

from this corpus (accuracy 88-92%, macro F1 61-68%), with 5-10% greater accuracy than previously 153 

published models. UCSF BERT was significantly superior at identifying hospitalization events emergent to 154 

medication use (p < 0.01).     155 

Conclusions: 156 

LLMs like UCSF BERT achieve numerically superior accuracy on the challenging task of SAE detection 157 

from clinical notes compared to prior methods. Future work is needed to adapt this methodology to 158 

improve model performance and evaluation using multi-center data and newer architectures like GPT. 159 

Our findings support the potential value of using large language models to enhance pharmacovigilance. 160 
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Introduction 182 

The accurate detection of treatment-emergent adverse events (AEs) is critical to ensure that 183 

clinicians and patients can make well-informed treatment decisions that balance risks with benefits. This 184 

is particularly true of non-steroid immunosuppressants which are commonly needed long-term for the 185 

treatment of inflammatory bowel diseases (IBD).  186 

Existing approaches for AE surveillance may involve prospective registry studies, spontaneous 187 

postmarketing reporting (e.g., the Food and Drug Administration’s AE Reporting System [FAERS])1, 188 

literature searches, and/or analyses of the structured data from claims and electronic health records 189 

databases2,3. These approaches have provided important data on the postmarket safety of medications 190 

but are limited by expense, small numbers, under/over-reporting4,5, missing data, limitations in inferring 191 

causality, and suboptimal sensitivity and specificity. Clinical notes are a rich source of AE data because 192 

treating clinicians often document actions in response to potential AEs, including treatment 193 

discontinuation and hospitalization. However, these notes have been underutilized for surveillance due 194 

to methodological limitations in effective text mining.  195 

Recent years have seen impressive advances in natural language processing following the release of 196 

the large language model known as BERT (Bidirectional Encoder Representations from Transformers)6. 197 

However, its adaptation to domain-specific arenas like medical language has been limited, in part due to 198 

the unavailability of safe platforms for processing this protected health information until recently. In 199 

prior work, our group of academic researchers has developed a new BERT model specifically designed to 200 

interpret clinical text as typically documented in electronic health records (EHR) systems7. This model, 201 

UCSF BERT, was trained on 75 million clinical notes documented across a range of specialties over the 202 

last 10 years at the University of California, San Francisco (UCSF). Evaluations of UCSF BERT on several 203 

general benchmarks show that it performs as well as or better than other comparable BERT models not 204 

specifically trained from scratch using a diverse corpus of notes derived from EHRs7. However, these 205 
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prior evaluations were general tasks and are limited by the quality of currently available, publicly 206 

benchmarked tasks.  207 

An open question motivating this study was whether the BERT model could help automate specific 208 

tasks of established clinical importance, particularly one as challenging as AE detection. Many aspects 209 

make the task of AE detection from clinical notes particularly difficult. These include the length of typical 210 

clinical notes, the need to infer relationships between medications and documented AEs, to encode AEs 211 

in a standardized way, and to overcome inherent vagueness in the documentation of clinical notes. 212 

Some current examples of automated AE detection come from the National Natural Language 213 

Processing Clinical Challenges  (N2C2)8 adverse event detection challenge, a nationwide clinical data 214 

science competition that was held in 2018. Models from this competition were evaluated on highly 215 

simplified benchmark tasks that do not reflect the typical patterns of clinical documentation such as 216 

short snippets of notes rather than full length notes. Notably, none of the candidate models from the 217 

competition were large language models as it was held prior to the wide-spread adoption of large 218 

language models. 219 

We hypothesized that adaptations of the UCSF BERT, a large language model, would outperform 220 

previously published methods on multiple tasks related to AE detection, due in large part to its prior 221 

training on a large volume of EHR notes. In this pilot study, we trained UCSF BERT to identify 222 

hospitalization-associated serious adverse events (SAEs) from notes written in the outpatient IBD clinic, 223 

and we compared its performance to a range of baselines including previously published models. 224 

 225 

Methods 226 

Ethics 227 

This single-center study of natural language processing algorithms for adverse event detection 228 

was approved by the UCSF Institutional Review Board (#18-24588). 229 
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Target of prediction 230 

The target of prediction was treatment-emergent, outpatient SAEs requiring hospitalization with 231 

exposure to non-steroid immunosuppressant drugs for IBD, as documented in the outpatient 232 

gastroenterology clinic notes at UCSF. The candidate list of drugs included all biologics and small-233 

molecule medications, except steroids, that were approved by the FDA for the treatment of ulcerative 234 

colitis or Crohn’s disease as of 2020, as well as off-label medications that are occasionally used to treat 235 

these conditions. A complete list of included medications can be found in the supplemental materials. 236 

Although the FDA’s definition of SAEs includes multiple categories9, we limited our scope to only SAEs 237 

associated with a hospitalization event, as these are more likely to be well-documented in clinical notes 238 

due to their clinical importance. We defined treatment-emergent as an SAE that occurred while the 239 

patient was actively receiving scheduled doses of a given medication, having been absent pre-240 

treatment. For example, if a patient was hospitalized for pneumonia 6 weeks after receiving an infusion 241 

that was prescribed to be given every 8 weeks, the hospitalization event would be considered a 242 

treatment-emergent SAE. Once the clinical decision to discontinue a given treatment plan was 243 

documented, subsequent hospitalization events were no longer considered treatment-emergent SAEs. 244 

Worsening of previously existing conditions that prompted hospitalization were included in line with 245 

internationally used guidelines on AE reporting10. A definitive assessment of potentially causal 246 

relationships between treatments and SAEs was beyond the planned scope of this analysis.  247 

Document identification strategy 248 

To identify the target notes for this study, we used a deidentified research database consisting 249 

of structured EHR data at UCSF as well as clinical notes that had been subjected to automated redaction 250 

of protected health information11. We queried the database to identify all notes associated with the 251 

gastroenterology department and an IBD diagnosis code (ICD-9 555/556; ICD-10 K50/K51). We selected 252 

notes written between 1/1/2018 and 12/31/2020 and utilized the most recent note for each patient 253 
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who was at least 18 years old during this period. We selected this timeframe to maximize the capture of 254 

a wide range of FDA-approved treatments. We used the most recent note per patient to avoid double 255 

counting SAEs mentioned in multiple notes, and to take advantage of the fact the documented histories 256 

tend to be inclusive of prior events. All included notes were written by a gastroenterology physician or 257 

advanced practice provider in the IBD outpatient clinic.  258 

Document Preprocessing 259 

The history of present illness (HPI) section of the notes was extracted using rule-based approaches 260 

developed specifically for this project (supplemental methods). The HPI section of the note was the only 261 

portion of the note utilized for downstream analysis as this section of the note often contains a 262 

cumulative source of information on treatment exposures and outcomes, particularly out-of-system 263 

events (i.e., hospitalizations and SAEs that occurred outside of UCSF but were relayed to the 264 

gastroenterology provider at the time of routine follow-up). The HPI was pre-labeled with medications 265 

of interest, hospitalization and signs and symptoms using, named entity recognition functions, from the 266 

clinical natural language processing software cTAKES
12, as well as regular expressions (i.e., the ability to 267 

locate pre-defined key-words). To minimize downstream algorithmic confusion in learning medication 268 

names, the medication brand names were replaced with the generic name using the RxNorm 269 

Application Program Interfaces (APIs) in Unified Medical Language System (UMLS)13. 270 

Note Annotation 271 

All notes that met the above inclusion criteria were annotated to fine-tune UCSF BERT on a 272 

variety of AE detection-related tasks and to evaluate its performance against comparator models. A 273 

team of five annotators, consisting of gastroenterologists, pharmacists, pharmacovigilance experts, and 274 

patients carried out all annotation related tasks. These included the development and finalization of an 275 

annotation protocol, participation in interrater reliability assessments, and annotation of all target 276 

notes. The annotation protocol was collectively developed and refined over the course of weekly team 277 
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meetings utilizing an initial subset of notes. Using LabelStudio14, an open-source annotation platform, 278 

annotators marked up the prelabelled HPI section of candidate notes according to triplets of medication 279 

mentions, hospitalization mentions, and SAE mentions, if they corresponded to a hospitalization as per 280 

the protocol (supplemental methods) (Figure 1). These annotations became the basis of the subsequent 281 

efforts to train UCSF BERT and other models to automate this process. 282 

All five annotators participated in an interrater reliability assessment on a sample of 19 notes. The 283 

results of these assessments were reviewed in weekly meetings to improve the protocol as well as 284 

annotator compliance to it. We computed a Fleiss’ kappa statistic to characterize the interrater 285 

reliability on the final round of assessments. Following this training and assessment phase, the protocol 286 

was locked, and the remainder of the corpus was annotated. 287 

 288 
Modeling 289 

We defined several prediction tasks, asking the model to classify whole HPIs according to the 290 

occurrence of: (task 1) all candidate medication mentions given prior to a hospitalization (task 2) 291 

adverse event (AE) as reason for hospitalization and (task 3) the combination of task 1 and task 2 the 292 

medication-hospitalization-AE triple (Figure 1). We trained models of different architectures to 293 

determine which were best suited for the task of AE detection. We used scikit-learn15 to train several 294 

baseline Bag of Words (BoW) models such as Logistic Regression, K-Nearest Neighbors, Decision Trees, 295 

Random Forest, and XGBoost (supplemental methods). We used AutoGluon16 to train the automated 296 

machine learning models. The annotated notes were split into 80% training, 10% validation and 10% 297 

testing. These served as a baseline to compare the performance of our UCSF BERT model. We adapted 298 

deep learning models architectures such as Convolutional Neural Network (CNN17,18), Bidirectional Long 299 

Short Term Memory Network (Bi-LSTM19) and Bi-LSTM with attention. These are deep learning models 300 

adapted from the top performing entries in the N2C28 adverse event detection challenge. All BERT 301 

results are from the median performance of Macro F1 score over 5 runs of the model with different 302 
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seeds. Comparative model performance significance was evaluated using Fisher’s exact test and chi 303 

square with Yates’s correlation when values were large enough to require it. 304 

Note Length Handling 305 

To include the entire HPI section, which was often longer than the typical maximum input length 306 

used by other BERT models, we developed a hierarchical version of the UCSF-BERT20 model (H-UCSF-307 

BERT). This model learns to process text using input sequences of 512 tokens (roughly equivalent to 308 

words), in the same manner as a typical BERT model would. It then combines them into a longer-309 

sequence representation by integrating an additional transformer layer on top of these chunk 310 

representations.  We encoded sequences up to 2560 tokens, which is 5 times the usual processing limit 311 

of a BERT model. We used the Mann-Whitney test to evaluate the possible association between note 312 

length and the presence of SAEs. 313 

Handling of Class Imbalance 314 

SAEs were seen in 44% of notes in our corpus, however SAEs were uncommon once the notes 315 

were subdivided into chunks that were ingestible by H-UCSF-BERT, creating a potential problem for 316 

training models to learn to positively identify these SAEs when they do occur. To optimize learning in the 317 

face of this imbalance in the dataset, the training data examples without AEs were randomly 318 

undersampled. We explored a range of sampling ratios and identified the ratio of 1:4 positive to 319 

negative examples as being best for model performance. This was applied to the training dataset for all 320 

downstream tasks. We also explored additional strategies such as weighting the optimization loss based 321 

on class distributions, as well as learning these weights dynamically21. However, we obtained the most 322 

promising result by undersampling the majority dataset. 323 

MedDRA 324 

All SAEs were manually coded using the Medical Dictionary for Regulatory Activities (MedDRA) 325 

version 23.022. 326 
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Results 327 

Source Corpus, Patient Population, and SAE Dataset 328 

From a deidentified dataset of 110 million machine redacted clinical notes at UCSF, we 329 

identified a total of 928 notes corresponding to 928 adults with IBD who were seen during the 2018-330 

2020 period. The patients in our study were 53% female with an average age of 45 years old (Table 1). 331 

The most common race of patients was white. We annotated all 928 notes and performed interrater 332 

reliability testing on a set of 19 notes to characterize the quality of the annotated dataset. The mean 333 

observed agreement among the five annotators was 93-99% across all annotation categories 334 

(Supplemental Table 1).  335 

We identified a total of 703 SAEs in the 928 annotated notes from 928 patients with IBD. All 336 

SAEs were associated with hospitalization as defined by the annotation protocol. Out of the 928 337 

annotated notes, 411 documented at least one SAE (Table 2 and Supplemental Table 3). Importantly, 338 

some notes included more than one SAE due to multiple distinct hospitalizations in the note. The notes 339 

documenting an SAE tended to be longer than those without an SAE (p<0.001). Over 60% of SAEs in our 340 

corpus were associated with anti-tumor necrosis factor agents (anti-TNF). Infliximab was associated with 341 

179 SAEs, the most of any drug, followed closely by adalimumab (136 SAEs; Table 3). This finding was 342 

expected given that infliximab was the first biologic to be approved for IBD, and more patients have 343 

been exposed to this medication than any other due to its longer availability. Additionally, given the 344 

relative absence of alternative treatments in the early 2000s, it is likely that patients remained on 345 

infliximab and other anti-TNFs for a longer period (even after experiencing SAEs), compared to the 346 

current era with multiple approved medications. The most common SAE was failure of intended efficacy 347 

(N=299), followed by infections (N=94) (Figure 2 and Table 4). However, SAEs were found for every 348 

organ system and every non-steroid immunosuppressant. Our corpus contained only one episode of 349 

cancer, sarcoma, which occurred in a patient receiving an anti-TNF drug. The complete list of SAEs 350 
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mapped by clinical note terms and MedDRA terms can be found in the supplemental materials 351 

(Supplemental Table 3). However, to enable a more user-friendly exploration of trends in the data, we 352 

have developed an interactive web application (see https://ibd-ade.streamlit.app/).  353 

Performance of UCSF-BERT on the Task of SAE Detection 354 

We established three targets of prediction for all downstream models: (task 1) identify all 355 

candidate medication mentions given prior to a hospitalization, (task 2) identify adverse event as reason 356 

for hospitalization and (task 3) the combination of task 1 and task 2 the medication-hospitalization-AE 357 

triple (Figure 1). The annotated data was transformed and then split into training, validation, and testing 358 

datasets for each of these binary classification tasks (Table 2 and Supplemental Table 2). We developed 359 

and trained several variations of the UCSF-BERT model to address each of these targets. We then 360 

evaluated its performance against several other comparator models, including several of the top entries 361 

from the 2018 N2C2 adverse event detection challenge (supplemental methods).  362 

On the task of medication prior to hospitalization, H-UCSF-BERT was the most performant model 363 

with a Macro F1 of 62% (Table 5). It was significantly more accurate than the next-best model by a 364 

margin of 11% (p < 0.01). Similarly, H-UCSF-BERT was the best model at the task of identifying 365 

hospitalization relations to AEs with an accuracy of 96% and Macro F1 of 62%. We hypothesized that 366 

long distances between mentions of a hospitalization and the associated SAEs could be reducing model 367 

accuracy. Indeed, we found that restricting the input to SAEs mentioned within a two-sentence span of 368 

the hospitalization, Macro F1 increased to 68% from 62% (p < 0.01). However, when compared to the 369 

next performant model, BiLSTM, UCSF BERT was not significantly superior (p = 0.40). The ultimate goal 370 

was to have our model accurately detect triples which include the mention of a non-steroid 371 

immunosuppressant prior to a hospitalization plus the hospitalization plus the associated SAEs. For the 372 

triples task, H-UCSF-BERT was again the best performer with a Macro F1 of 61%, however again this was 373 

not significantly different than BiLSTM (p= 0.40).  374 
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Discussion 375 

We adapted an EHR-specific clinical language model, UCSF BERT, to multiple tasks pertaining to 376 

the detection of treatment-emergent serious adverse events. We have evaluated its performance in the 377 

context of a specific use case: the use of non-steroid immunosuppressants for the treatment of IBD. We 378 

have generated a gold standard corpus of 928 clinical notes as the basis of training and evaluating this 379 

model against several baselines. Inter-rater reliability testing indicates good to excellent concordance 380 

across annotators. UCSF BERT performed well in a range of tasks pertaining to SAE detection from 381 

clinical notes. It achieves macro F1 scores ranging from 61-68% and accuracies from 88-92%, This model 382 

numerically outperforms existing models for SAE detection associated with the N2C2 Challenge8 as well 383 

as a range of strong baseline models, including several trained using automated machine learning. On 384 

the task of accurately determining a medication of interest mentioned prior to a hospitalization, UCSF 385 

BERT was significantly superior to all other models. 386 

We found that the most common errors made by the models involved chains of reasoning 387 

across many events. For example, instances where the reason of hospitalization is not explicitly 388 

mentioned but merely implied from the clinical context. In addition, the model struggled in the setting 389 

of both long-distance dependency where there were many sentences between entities of interest and 390 

long chronology of events where several medication changes occurred over many sentences. Lastly, 391 

when there were both non-specific adverse events such as pain or vomiting as well as more specific 392 

terms such as small bowel obstruction or ulcerative colitis flare the combination was challenging for the 393 

model to handle.  394 

The last few decades have seen a significant expansion in FDA-approved therapies for IBD. In the 395 

current era of IBD treatment with numerous agents available, continued monitoring for new safety 396 

information on these agents is helpful to inform optimal treatment selection.  The most frequent SAE 397 

found in our corpus of outpatient IBD clinical notes at a tertiary referral center was failure of intended 398 
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efficacy followed by infections. This is in line with previously published data, especially in the setting of 399 

more than 60% of the SAEs in our corpus associated with anti-tumor necrosis factor agents23. We did not 400 

account for concurrent use of steroids which are known to increase the risk of infection. However, our 401 

corpus includes SAEs from every organ system. Of note, the non-steroid medications of interest are not 402 

being prescribed with equal frequency; thus, prescribing practices are likely to influence the frequency 403 

of events as well as frequencies of possible AEs associated with the medication. The strength of 404 

association with SAEs and classes of non-steroid immunosuppressants can be explored using our 405 

interactive web application (see https://ibd-ade.streamlit.app/). The goal of developing text-based 406 

automation tools like this is to enable more precise characterizations of adverse events in the context of 407 

routine clinical care to help validate known safety profiles of these drugs as well as identify previously 408 

unrecognized SAEs which can point to areas of inquiry. For instance, our dataset included a patient 409 

receiving an anti-TNF who was hospitalized for a new diagnosis of sarcoma. Sarcomas have previously 410 

been reported in the context of children with IBD using anti-TNFs24, although multiple long-term 411 

observational studies have not consistently found a link between anti-TNF use and an increased risk of 412 

cancer in adults25,26. Future directions of this work include external validation using data from additional 413 

centers, expansion to additional disease states outside of IBD, and downstream studies designed to 414 

identify new drug-SAEs associations more rigorously using aggregated data. 415 

Our work has many notable strengths. We have used transparent methods for developing the 416 

training corpus and assessing its quality, including interrater reliability. Because our models have been 417 

trained on de-identified clinical data, we intend to make them publicly available for others to reproduce 418 

and enhance multiple aspects of this work. Of note, the N2C2 national challenge which produced 419 

models for detection of treatment-emergent adverse events from clinical notes prior to our work was 420 

before the release of BERT. We suspect that the underlying architecture of BERT in addition to our pre-421 
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training from scratch on a sizeable clinical corpus are driving our improved performance compared to 422 

prior models. 423 

Some limitations of our work, outside of those common to retrospective research, include 424 

imperfect accuracy of the model, which on certain tasks did not perform statistically significantly 425 

superior to other models. We suspect this largely the result of long-distance dependance and long 426 

chains of reasoning across many events in a clinical note. In addition, we have not yet assessed the 427 

generalizability of our model across other diseases, treatments, or health systems. As well, our 428 

interrater agreement is potentially optimistic as it was calculated iteratively on the same 19 notes. 429 

However, there are no universally accepted standards of the Fleiss’ kappa statistic27 for good 430 

agreement. Future work aimed at improving upon our current model includes annotating a lager corpus 431 

at an outside health system to evaluate generalizability and over-sampling for SAEs to have more 432 

positive examples for the model to learn from. Overall, our approach, utilizing novel methods from the 433 

field of artificial intelligence, has the potential to address unmet needs in drug safety surveillance, an 434 

area of central importance to regulatory agencies across the globe and to public health in general. 435 

Conclusion 436 

We have successfully adapted a new clinical language model, UCSF BERT, to the task of mining 437 

outpatient clinic notes for SAEs occurring in patients with IBD administered non-steroid 438 

immunosuppressants. This model performs well on the tasks of SAE detection, especially identifying 439 

target medications prior to hospitalizations. The success of this model appears to stem from its 440 

pretraining on a large and diverse corpus of notes derived from real-world clinical care and use of 441 

hierarchical modeling which allows for long sequence document classification tasks. These results 442 

suggest the feasibility of adapting artificial intelligence methods to address important unmet needs in 443 

the field of pharmacovigilance, with the potential to substantially reduce the manual efforts needed to 444 

review notes and identify events of concern. Our work is a step closer to a future of automated drug 445 
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surveillance algorithms embedded within EHR systems which can facilitate pharmacovigilance activities 446 

ranging from health system reporting of SAEs to large-scale safety evaluations across multiple EHR 447 

systems without the limitations of using billing codes as surrogates for actual AEs. 448 

Study Highlights 449 

• What is the current knowledge on the topic? 450 

o Prior work in automated adverse event (AE) detection from routine clinic notes utilized note 451 

fragments and simplified AE detection tasks. In addition, the newest model architectures 452 

were not widely available when automated AE detection was evaluated in a national natural 453 

language processing challenge in 2018. 454 

• What question did this study address? 455 

o Are the newest model architectures trained on clinical notes capable of detecting serious 456 

AEs in routine clinical notes as written by clinicians seeing patients with inflammatory bowel 457 

diseases at a tertiary medical center.  458 

• What does this study add to our knowledge? 459 

o Our model, UCSF BERT, trained on a large corpus of real-world clinical notes performs better 460 

than prior models previously designed for this task. Notably, our hierarchical model 461 

architecture is able to digest information five times the usual processing limit of BERT.   462 

• How might this change clinical pharmacology or translational science? 463 

o Our work is a step closer to a future of automated drug surveillance algorithms embedded 464 

within EHR systems which can facilitate pharmacovigilance activities.  465 

Access to Data: 466 

The analytic code to train and evaluate models will be made publicly available at 467 

https://github.com/MadhumitaSushil/ADE_detection. A machine-redacted version of the notes-based 468 
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data can be made available to requesting researchers by mutual agreement and following the execution 469 

of a data use agreement.  470 
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Figure and Table Legends 549 
 550 
Figure 1. Example of the three prediction tasks from a clinical note in the corpus. Medications of interest 551 
were pre-annotated in blue, hospitalizations in red and signs and symptoms in yellow. Annotators 552 
marked up the HPI section where medications of interest predated a hospitalization (green and blue 553 
arrow) and AE causing hospitalization (red arrow). Task 3, also referred to as triple, is the combination of 554 
Task 1 and Task 2. 555 
 556 
Table 1. Characteristics of patients in our note corpus  557 

Table 2. Distribution of number of notes containing an SAE 558 

Table 3. Distribution of hospitalizations and SAEs by medication. Anti-tumor necrosis factor (Anti-TNF), 559 
Janus Kinase-inhibitor (JAK-inhibitor), anti-interleukin-12/23 (anti-IL-12/23). 560 
 561 
Table 4. Top 7 SAEs in the Study. Anti-tumor necrosis factor (Anti-TNF), Janus Kinase-inhibitor (JAKi), 562 
anti-interleukin-12/23 (anti-IL-12/23). 563 
 564 
Figure 2. Network Graph of SAEs by medication class. The width of lines indicates the strength of 565 
association by frequency. The size of the nodes is relative to the number of exposures in our corpus to 566 
each medication. SAE colors are indicative of which medication(s) they were associated with. An 567 
interactive version of this figure can be found at https://ibd-ade.streamlit.app/ 568 
 569 
Table 5. Results of UCSF BERT performance on the tasks of SAE detection from real world clinical notes. 570 
Results for the three relation tasks to classify whether a pair/triple of specific entities of type 571 
medication, hospitalization and adverse event are related. Bolded models correspond to those with the 572 
best performance as measured by Macro F1. Only nearby SAEs refer to restricting only SAEs that are 573 
mentioned within a two-sentence window of the hospitalization event. Only the best three models are 574 
reported. H-UCSF-BERT = Hierarchical University of California San Francisco Bidirectional Encoder 575 
Representation from Transformers, TP = true positive, TN = true negative, FP = false positive and FN = 576 
false negative. 577 
 578 

579 
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Figures and Tables 

 

Figure 1. Example of the three prediction tasks from a clinical note in the corpus. Medications of interest

were pre-annotated in blue, hospitalizations in red and signs and symptoms in yellow. Annotators 

marked up the HPI section where medications of interest predated a hospitalization (green and blue 

arrow) and AE causing hospitalization (red arrow). Task 3, also referred to as triple, is the combination of

Task 1 and Task 2. 

 
Patients (N=928) Count(%) 

Sex Female 489 (52.7) 

Male 438 (47.2) 

Nonbinary 1 (0.1) 

Age (years) 18-40 460 (49.6) 

41-60 313 (33.7) 

>60 155(16.7) 

Ethnicity Not Hispanic or Latino 832 (89.7) 

Hispanic or Latino 83 (8.9) 

Unknown/Declined 13 (1.4) 

 
t 

f 
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Race White or Caucasian 670 (72.3) 

Asian 78 (8.4) 

Black or African American 41 (4.4) 

American Indian or Alaska Native 9 (1.0) 

Other Pacific Islander 1 (0.1) 

Other and Unknown/Declined 129 (13.9) 

IBD Diagnosis Crohn's disease  735 (79.2) 

Ulcerative colitis  625 (67.4) 

Table 1. Characteristics of patients in our note corpus  

 

 Train (%) Development (%) Test (%) 

# Annotated notes 742 (80) 93 (10) 93 (10) 

SAEs present 335 (82) 37 (9) 39 (9) 

No SAEs 406 (79) 56 (11) 54 (10) 

Table 2. Distribution of number of notes containing an SAE 

 

 

Non-steroid 

Immunosuppressant 

Class 

Non-steroid 

Immunosuppressant 

Number of Hospitalizations Number of SAEs 

Anti-TNF Adalimumab 136 172 

Certolizumab 19 26 

Etanercept 2 1 

Golimumab 2 2 

Infliximab 179 231 

JAK-inhibitor Tofacitinib 8 8 

Anti-IL-12/23 Ustekinumab 100 128 

Anti-integrin Vedolizumab 106 135 

Table 3. Distribution of hospitalizations and SAEs by medication. Anti-tumor necrosis factor (Anti-TNF), 

Janus Kinase-inhibitor (JAK-inhibitor), anti-interleukin-12/23 (anti-IL-12/23). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.06.23295149doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.06.23295149


Serious Adverse Event MedDRA System Organ Class Steroid Sparing 

Immunosuppressant 

Class 

Frequency 

Infections and infestations  Anti-TNF 66 

Anti-IL 12/23 24 

Anti-integrin 10 

JAKi 2 

Failure of intended efficacy Anti-TNF 216 

Anti-IL 12/23 75 

Anti-integrin 90 

JAKi 6 

Gastrointestinal disorders Anti-TNF 25 

Anti-IL 12/23 12 

Anti-integrin 6 

JAKi 0 

Neoplasms Anti-TNF 1 

Anti-IL 12/23 0 

Anti-integrin 0 

JAKi 0 

Cardiac disorders Anti-TNF 8 

Anti-IL 12/23 1 

Anti-integrin 3 

JAKi 0 

General disorders and administration site conditions Anti-TNF 21 

Anti-IL 12/23 1 

Anti-integrin 9 

JAKi 0 

Nervous system disorders Anti-TNF 7 

Anti-IL 12/23 2 

Anti-integrin 2 

JAKi 0 

Table 4. Top 7 SAEs in the Study. Anti-tumor necrosis factor (Anti-TNF), Janus Kinase-inhibitor (JAKi), 

anti-interleukin-12/23 (anti-IL-12/23). 
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Figure 2. Network Graph of SAEs by medication class. The width of lines indicates the strength of 

association by frequency. The size of the nodes is relative to the number of exposures in our corpus to 

each medication. SAE colors are indicative of which medication(s) they were associated with. An 

interactive version of this figure can be found at https://ibd-ade.streamlit.app/ 

 

Task  Model  Accuracy 

(%)  

Macro 

F1 (%) 

TP  TN  FP  FN  

Medication 

before 

hospitalization 

relations  

H-UCSF-BERT 88  62  63  1989  173  105  

CNN   74 49 51 1682 480 117 

XGBoost  73 51 49 1672 490 119 
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Hospitalization 

for SAE 

relations  

H-UCSF-BERT 96  62  79  9603  421  16  

H-UCSF-BERT + only 

nearby SAEs 

92  68  34  1078  41  61  

BiLSTM + only nearby 

SAEs 

93 48 7 1091 28 88 

 Medication 

before 

hospitalization 

for SAE relation 

(triples) 

H-UCSF-BERT + only 

nearby SAEs 

91  61  141  7790  619  178 

CNN + only nearby AEs 94  49  11 8013 396 308 

BiLSTM + only nearby 

AEs 

95  50  11 7953 456 308 

Table 5. Results of UCSF BERT performance on the tasks of SAE detection from real world clinical notes. 

Results for the three relation tasks to classify whether a pair/triple of specific entities of type 

medication, hospitalization and adverse event are related. Bolded models correspond to those with the 

best performance as measured by Macro F1. Only nearby SAEs refer to restricting only SAEs that are 

mentioned within a two-sentence window of the hospitalization event. Only the best three models are 

reported. H-UCSF-BERT = Hierarchical University of California San Francisco Bidirectional Encoder 

Representation from Transformers, TP = true positive, TN = true negative, FP = false positive and FN = 

false negative. 
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