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14 Abstract
15
16 This study investigates the quality of peak oxygen consumption (VO2peak) prediction based on 
17 cardiac and respiratory parameters calculated from warmup and submaximal stages of treadmill 
18 cardiopulmonary exercise test (CPET) using machine learning (ML) techniques and assesses 
19 the importance of respiratory parameters for the prediction outcome. The database consists of 
20 the following parameters: heart rate (HR), respiratory rate (RespRate), pulmonary ventilation 
21 (VE), oxygen consumption (VO2) and carbon dioxide production (VCO2) obtained from 369 
22 treadmill CPETs. Combinations of features calculated based on the HR, VE and RespRate time-
23 series from different stages of CPET were used to create 11 datasets for VO2peak prediction. 
24 Thirteen ML algorithms were employed, and model performances were evaluated using cross-
25 validation with mean absolute percentage error (MAPE), R2 score, mean absolute error (MAE), 
26 and root mean squared error (RMSE) calculated after each iteration of the validation. The 
27 results demonstrated that incorporating respiratory-based features improves the prediction of 
28 VO2peak. The best results in terms of R2 score (0.47) and RMSE (5.78) were obtained for the 
29 dataset which included both cardiac- and respiratory-based features from CPET up to 85% of 
30 age-predicted HRmax, while the best results in terms of MAPE (10.5%) and MAE (4.63) were 
31 obtained for the dataset containing cardiorespiratory features from the last 30 seconds of 
32 warmup. The study showed the potential of using ML models based on cardiorespiratory 
33 features from submaximal tests for prediction of VO2peak and highlights the importance of the 
34 monitoring of respiratory signals, enabling to include respiratory parameters into the analysis. 
35 Presented approach offers a feasible alternative to direct VO2peak measurement, especially when 
36 specialized equipment is limited or unavailable.
37
38
39 Keywords: cardiorespiratory fitness, peak oxygen consumption, cardiorespiratory signals, 
40 submaximal exercise test, respiratory rate, machine learning, time-series modeling
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41 1. Introduction
42
43 Peak oxygen consumption (VO2peak) obtained through cardiopulmonary exercise test (CPET) is 
44 the gold standard measure of cardiorespiratory fitness (1). It is a reliable predictor of cardiac 
45 events, as well as lung cancer and liver transplantation survival and risk of postoperative 
46 complications (2–6). Moreover, VO2peak is a predictor of sport performance (7–9) and planetary 
47 mission task performance during spaceflight (10). Although CPET is the most reliable form of 
48 test, it is costly, requires specialized personnel and advanced equipment (11).
49 While conducting CPET, heart rate (HR) data are usually obtained through 
50 electrocardiography (ECG), while respiratory rate (RespRate) and pulmonary ventilation (VE) 
51 are gathered using tight-fitting masks. Nevertheless, this data can be acquired with relative ease, 
52 using heart rate monitors or smartwatches in case of HR, and impedance pneumography (IP) in 
53 case of RespRate and VE (12,13). Moreover, CPET is physically demanding as assumes the 
54 participants’ exhaustion and thus it is contraindicated for patients with acute myocardial 
55 infarction, unstable angina, uncontrolled arrhythmia causing symptoms or hemodynamic 
56 compromise, uncontrolled asthma, and other pathological conditions (11). Maximal 
57 cardiopulmonary exercise test might also interfere with an athletes training program (14). 
58 Actually, thanks to: a) the growing development of aforementioned measurement 
59 devices, b) availability of simply field-based tests such as incremental shuttle walk test (15,16) 
60 and c) new statistical prediction models and equations, clinicians and/or researchers are able to 
61 estimate VO2peak, and/or VO2max, based on selected parameters without performing maximal 
62 CPET (17–22). Unfortunately, estimated VO2peak using, e.g., only 6-min Walk Test distance 
63 demonstrated poor agreement with measured VO2peak from a CPET (23). Addition of other data 
64 such as demographic, anthropometric, and functional characteristics improved the accuracy of 
65 VO2peak estimate based on walking tests at least in elderly patients with stable coronary artery 
66 disease (model with all variables explained 73% of VO2peak variance) (24). Thus, estimation of 
67 peak oxygen consumption based on combination of demographic factors and cardiac 
68 parameters obtained during submaximal (or even not) physical effort is possible, however, may 
69 be biased.
70 Reliable and accurate estimation of VO2peak without performing maximal CPET may 
71 require more input physiological data to perform more sophisticated analyses. Thus, the 
72 development of new prediction models or equations, which will be able to accurately estimate 
73 VO2peak, and/or VO2max, and will not relies on performing maximal CPET, is still ongoing 
74 (18,25). In recent years with the growth of the popularity of machine learning tools (ML) 
75 incorporated during the data analysis phase, those techniques were also utilized for the 
76 prediction of VO2 kinetics and VO2max (26,27). ML models were also used by Szijarto et al. for 
77 prediction of VO2peak based on the anthropometric data and 2D echocardiography (2DE) (28). 
78 This approach was more accurate than a model based on anthropometric factors, however, it 
79 required performing a 2DE examination with sophisticated equipment and a trained physician. 
80 Importantly, not only the model or prediction algorithm might be important in terms of the 
81 prediction accuracy, but also the features used for the training. There are existing studies 
82 utilizing respiratory rate and ML for prediction of oxygen uptake dynamics during CPET (29–
83 31). However, to the best of our knowledge, there have been no previous studies utilizing 
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84 features from cardiorespiratory time-series obtained from submaximal CPET, for the prediction 
85 of VO2peak using ML models.
86 The aim of this paper was hence to investigate the quality of VO2peak prediction by 
87 models based on cardiac and respiratory features obtained from different stages of CPET. 
88 Additionally, we assessed the importance of respiratory-based features included in the models 
89 for VO2peak prediction.
90
91 2. Materials and Methods
92
93 2.1.  Data and study population
94
95 The database of cardiorespiratory time-series acquired during treadmill maximal 
96 cardiopulmonary exercise tests presented by Mongin et al. was used (32,33). The database 
97 comprises 992 recordings from experiments undertaken among amateur and professional 
98 athletes in the Exercise Physiology and Human Performance Lab of the University of Málaga 
99 between 2008 and 2018 with two types of protocols: a continuous increase of treadmill speed 

100 and a graded approach. The test itself was preceded by a warmup at 5 km/h. The study was 
101 conducted according to the principles of the Declaration of Helsinki, the study protocol was 
102 approved by the Research Ethics Committee of the University of Málaga, written informed 
103 consent was obtained from the participants and all the data were analyzed anonymously.
104 During each test, the following cardiorespiratory time-series were acquired: heart rate 
105 (HR), respiratory rate (RespRate), pulmonary ventilation (VE), oxygen uptake (VO2) and 
106 carbon dioxide production (VCO2). Data were acquired on a breath-to-breath basis. HR was 
107 monitored via a 12-lead ECG (Mortara Instrument, Inc., USA), while respiratory signals were 
108 obtained using the CPX MedGraphics gas analyzer system (Medical Graphics Corporation, 
109 USA) (32).  
110 Participants between 18 and 40 years old were chosen for the analysis reducing the 
111 sample size to 692. Tests only with ramp speed increments were selected in order to obtain 
112 more consistent conditions along the study population. In result, 485 recordings have left. Next, 
113 subjects who were determined as outliers based on the 1.5 interquartile range method in terms 
114 of weight, height, and VO2peak, with respect to the given sex, were excluded from the study, 
115 limiting to 462 recordings. Furthermore, the obtained data was visually evaluated in order to 
116 discard measurements during which there were visible artefacts in HR acquisition (e.g., sudden 
117 drop of over 30 bpm or lack of continuity of HR time-series during CPET probably due to 
118 electrode detachment); ultimately 369 recordings became background for the analysis. The final 
119 recordings belong to 327 unique subjects (42 subjects had more than one test) including 275 
120 men and 52 women. The demographic summary of the final group is presented in Table 1.
121
122 Table 1. Descriptive statistics of the study population.

Age [years] Height [cm] Weight [kg] BMI VO2peak 
[ml/min/kg]

Men 27.3 ± 5.8 177.4 ± 6.3 76.6 ± 8.3 24.3 ± 2.2 47.7 ± 7.5
Woman 26.9 ± 6.3 165.2 ± 6.1 62.2 ± 8.2 22.8 ± 2.3 38.1 ± 6.3
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All 27.3 ± 5.9 175.5 ± 7.6 74.5 ± 9.7 24.1 ± 2.3 46.3 ± 8.1
123
124 2.2.  Modeling
125
126 Based on the aforementioned dataset, we decided to investigate the quality of VO2peak 
127 prediction from different stages of CPET based on cardiac and respiratory parameters, and to 
128 assess the importance of respiratory-based features included in the modeling of VO2peak. For 
129 this purpose, we utilized recorded time-series of HR, RespRate, and VE. VO2peak was 
130 determined as the maximal value of the signal obtained after a 15-breath VO2 moving average 
131 window according to the recommendation presented by Robergs et al. (34).
132 As features for ML models, basic statistics such as mean, standard deviation, maximal 
133 and minimal value, median, 25th and 75th quantile, skewness, kurtosis, coefficient from linear 
134 regression, impulse and shape factors were calculated for HR, RespRate, and VE, for a given 
135 stage of the maximal CPET. On this basis, 11 datasets were created based on different 
136 combinations of parameters and CPET stages, as presented in Table 2. Our research is focused 
137 on the submaximal stage from the cardiopulmonary exercise test, which equals 85% of the 
138 maximal measured and age-predicted HRmax as a threshold. Studied value of HR termination is 
139 commonly used in submaximal testing (35–37). We also used both actual HRmax obtained 
140 during the treadmill cardiopulmonary exercise test, and age-predicted HRmax (220-age) in order 
141 to provide insights about the utility of the prediction of VO2peak in submaximal tests without 
142 prior knowledge about the value of HRmax for a given subject. The example plot of the signals, 
143 alongside the threshold for all the stages of the CPET for which the features were calculated, is 
144 presented in Figure 2. 
145 The 10-fold cross-validation (CV) was used to assess the accuracy of the prediction. In 
146 each iteration, standardization of the non-categorical features based on the mean and standard 
147 deviation from the training dataset was performed. The only feature that was not standardized 
148 was participants’ sex: -1 was assigned to male, and 1 to female subjects. Different ML 
149 algorithms were utilized: Linear, Lasso and Ridge Regression, Random Forest, XGBoost, 
150 Multilayer perceptron, Epsilon-Support Vector Regression, Bayesian Ridge Regression, 
151 Bayesian Automatic Relevance Determination (ARD) Regression, Gaussian Process 
152 Regression, Gradient Boosting for Regression, Huber Regression and Theil-Sen Estimator (38–
153 40). The hyperparameter tuning was performed for each algorithm using the grid-search 
154 technique. In each iteration of the validation, metrics like mean absolute percentage error 
155 (MAPE), R2 score, mean absolute error (MAE) and root mean squared error (RMSE) were 
156 calculated. The best model for each dataset was determined based one the lowest MAPE score 
157 (which was chosen arbitrarily) obtained from the cross-validation. For the best model, Lin 
158 concordance correlation coefficient was calculated and results were visualized as the 
159 dependency between predicted and actual values of VO2peak and as Bland-Altman plot. 
160 Metrics obtained from all datasets were pairwise compared using the Wilcoxon signed-
161 rank test. The significance level was set to 0.05. For the calculations, Python 3.9.13 was used. 
162 The whole modeling pipeline is presented in Figure 2. 
163
164
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165 Table 2. Characteristics of all datasets with an indication of features belonging to individual datasets.
Dataset subjects’ 

demography
HR features 
from the last 30 s 
of warmup

RespRate and 
VE features from 
the last 30 s of 
warmup

HR features 
from CPET up to 
85% of HRmax

RespRate and 
VE features from 
CPET up to 85% 
of HRmax

HR features 
from CPET up to 
85% of age-
predicted HRmax

RespRate and 
VE features from 
CPET up to 85% 
of age-predicted 
HRmax

D1 +
D2 + +
D3 + + +
D4 + +
D5 + + +
D6 + + +
D7 + + + + +
D8 + +
D9 + + +
D10 + + +
D11 + + + + +
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167
168
169
170 Figure 1. Typical representation of the time-series for participants with selected fragments used 
171 in the analysis. Part A presents the linearly increasing treadmill speed, part B heart rate 
172 fluctuations, part C respiratory rate and part D pulmonary ventilation kinetics. The segment 
173 between the blue and orange dashed lines is the last 30 seconds of warmup. The segment 
174 between the orange and green lines corresponds to the section of CPET up to 85% of the age-
175 predicted HRmax. Finally, the segment between the orange and red lines corresponds to the 
176 increasing workload in CPET up to 85% of the measured HRmax, which is marked with a red 
177 circle on the HR plot.
178
179
180 Figure 2. Modeling pipeline applied for each dataset and algorithm. 
181
182 2.3.  Explainable AI
183
184 In order to investigate the importance of the individual features used for ML modeling, 
185 explainable artificial intelligence (XAI) tools were applied. For this purpose, the Dalex Python 
186 package was used (41). During each iteration of the cross-validation, Shapley values and model-
187 level variable importance based on drop-out loss values were calculated on the test set. After 
188 the whole cross-validation, all Shapley values for each sample and feature, as well as mean 
189 variable importance values were visualized. For the variable importance, model_parts function 
190 of dalex.Explainer class was used. 30 permutation rounds were performed on each variable 
191 with MAE as a loss function and no data sampling (argument N was equal to None) due to the 
192 small number of samples. 
193
194 3. Results
195
196 The metrics obtained for the best algorithm in terms of the lowest MAPE from the cross-
197 validation for each dataset are presented in Table 3 alongside the model names. The violin-plots 
198 of the obtained metrics for each dataset were visualized in Figure 3. The p-values from the 
199 Wilcoxon signed-rank test from a pairwise comparison of the metrics are presented in Figure 
200 3. 
201 The lowest MAPE and MAE  - 10.51% and 4.63, respectively - were obtained for dataset 
202 D11 (demographic data along with cardiac and respiratory features from the last 30 seconds of 
203 warmup and CPET up to 85% of age-predicted HRmax), while the lowest RMSE and highest R2 
204 score (5.78 and 0.47, respectively) were obtained for D9 (demographic data along with cardiac 
205 and respiratory features from CPET up to 85% of age-predicted HRmax). The worst prediction 
206 of VO2peak in terms of all metrics was achieved by using the D1 (demographic data) dataset. 
207 Results obtained for D11 were statistically significantly better in terms of all metrics than results 
208 for all the rest of the datasets excluding D9 as presented in Figure 3. Regarding R2 score and 
209 RMSE metrics, datasets that included respiratory-based features from the part of CPET 
210 (irrespective of HRmax determination, whether measured or estimated) showed statistically 
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211 significant superiority over datasets lacking features based on VE and respiratory rate during 
212 the corresponding period as presented in Figure 3. Similarly, for MAPE and MAE, datasets 
213 containing respiratory-based features calculated up to 85% of age-predicted HRmax 

214 demonstrated significantly better metrics than datasets without such features.
215
216 Table 3. Mean and standard deviation of metrics from cross-validation for each dataset for the 
217 model which resulted in the lowest MAPE for the given dataset. The highest metric values were 
218 highlighted.

MAPE [%] R2 MAE 
[ml/min/kg]

RMSE 
[ml/min/kg]

Model

D1 12.52 ± 2.11 0.26 ± 0.09 5.50 ± 0.80 6.84 ± 0.81 Ridge regression

D2 11.95 ± 1.84 0.31 ± 0.07 5.24 ± 0.84 6.61 ± 0.71 Huber regression

D3 11.63 ± 1.84 0.34 ± 0.05 5.13 ± 0.75 6.45 ± 0.65 Bayesian ARD 
regression

D4 11.51 ± 1.72 0.36 ± 0.06 5.07 ± 0.68 6.36 ± 0.64 Bayesian ARD 
regression

D5 10.86 ± 1.23 0.44 ± 0.06 4.78 ± 0.52 5.95 ± 0.51 Bayesian ARD 
regression

D6 11.67 ± 1.72 0.34 ± 0.07 5.15 ± 0.69 6.46 ± 0.64 Lasso regression

D7 11.10 ± 1.26 0.42 ± 0.08 4.90 ± 0.53 6.07 ± 0.50 Bayesian ARD 
regression

D8 11.36 ± 1.49 0.38 ± 0.06 4.99 ± 0.61 6.29 ± 0.59 Bayesian ARD 
regression

D9 10.54 ± 1.20 0.47 ± 0.06 4.64 ± 0.49 5.78 ± 0.50 Bayesian ARD 
regression

D10 11.50 ± 1.49 0.36 ± 0.07 5.06 ± 0.62 6.37 ± 0.59 Bayesian ARD 
regression

D11 10.51 ± 1.24 0.47 ± 0.07 4.63 ± 0.52 5.78 ± 0.52 Bayesian ARD 
regression

219
220
221
222 Figure 3. Violin-plots of the calculated metrics for each dataset with the visualization of the 
223 metrics obtained in each iteration of the 10-fold cross-validation. Black dots represent metrics 
224 obtained from datasets without respiratory-based features, while red dots represent these that 
225 include such features.
226
227
228
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229 Figure 4. The p-values from Wilcoxon signed-rank test from pairwise comparison of the metrics 
230 obtained from different datasets. P-values smaller than 0.05 are marked with a black 
231 background. 
232
233 The measured values of VO2peak and values predicted for the dataset that obtained the lowest 
234 MAPE score (D11) were visualized in Figure 5. The Lin concordance correlation coefficient 
235 between predicted and measured VO2peak values was 0.66. The Bland-Altman plot for this 
236 dataset is presented in Figure 6. 
237
238
239 Figure 5. The plot of measured and predicted VO2peak values for dataset D11. The solid black 
240 line represents the function where predicted value is equal to the measured one.
241
242 Figure 6. Bland-Altman plot of measured (gold standard from CPET) and predicted VO2peak 
243 values based on the results for dataset D11. 
244
245 As the smallest mean MAPE was obtained for D11, Shapley values and feature importance 
246 were visualized for this dataset in Figures 7 and 8, respectively. The discussion of the XAI 
247 results can be found in the next section.
248
249 Figure 7. Shapley values obtained for dataset D11. Feature names are explained in the Appendix 
250 1.
251
252
253 Figure 8. Variable importance for dataset D11. Feature names are explained in the Appendix 1.
254
255
256 4. Discussion 
257
258 Considering the features calculated from HR, VE, and RespRate time-series (attainable without 
259 the specialized equipment used in CPET), it is possible to predict VO2peak from a submaximal 
260 test relying on age-predicted HRmax, achieving a mean absolute percentage error of 10.51% (for 
261 D11), using Bayesian ARD regression method. The addition of respiratory-based parameters 
262 resulted in an improvement of prediction compared to datasets based solely on the 
263 corresponding stage of the treadmill cardiopulmonary exercise test in 4 out of 5 cases in terms 
264 of R2 score and RMSE, and 2 out of 5 cases in terms of MAPE and MAE. When limiting 
265 treadmill cardiopulmonary exercise test to 85% of age-based HRmax, the inclusion of features 
266 based on VE and RespRate improved the prediction in terms of all the specified metrics. The 
267 fact that the best results were achieved for the dataset considering 85% aged-based HRmax and 
268 parameters obtained from easily accessible time-series indicates the possibility of using the 
269 presented method in clinical practice to determine VO2peak without the prior knowledge of the 
270 actual HRmax value and the necessity to perform a maximal treadmill cardiopulmonary exercise 
271 test. 
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272 Obtaining VO2peak from maximal CPET might be costly, time-consuming and in some 
273 cases impossible or contraindicated to carried out due to observed cardiac or pulmonary 
274 dysfunction, musculoskeletal diseases, or strict training programs. Therefore, there is a growing 
275 interest in the prediction of VO2peak and/or VO2max from submaximal tests (14,42–48). Our study 
276 focused on investigating ML algorithms to predict VO2peak with the set of features, which could 
277 be obtained using simpler techniques than commonly used spirometry, and the significance of 
278 incorporating respiration into the prediction process. The presented results are similar or 
279 superior compared to some other presented VO2peak prediction methods like WFI VO2peak 
280 prediction equation, deep-learning model based on 2DE, or regression models from PACER 
281 20-m shuttle run (19,28,49–52). However, in the existing literature, there are also techniques, 
282 which managed to obtain better performance like regression models based on submaximal 
283 exercise test protocol using a total body recumbent stepper (53–55). Nonetheless, in those 
284 studies more heterogeneous groups of patients were present in terms of age or health status 
285 (patients after heart failure or individuals with low to moderate risk of cardiovascular diseases). 
286 Further improvement of the prediction of VO2peak might be achieved by increasing sample size, 
287 and inclusion of other parameters based on the raw signals (especially ECG) like HRV and 
288 parameters from information and causal domain (56–59). 
289 Another notable aspect of the study was the utilization of XAI tools, specifically Shapley 
290 values and model-level variable importance, to obtain insights into the feature importance for 
291 prediction. For most datasets (including D9 and D11, which produced the best results) Bayesian 
292 ARD Regression model was used, which has an ability to automatically determine the relevance 
293 of each feature, effectively pruning irrelevant or redundant information, while accentuating the 
294 impactful variables (60). In our analysis, we found that the top five most influential features 
295 were consistent between Shapley values and variable importance. The most impactful feature 
296 of the prediction was the maximal value of VE during the test, up to 85% of age-predicted 
297 HRmax. Additionally, subjects' weight and sex influenced the prediction results, with higher 
298 VO2peak observed in lighter individuals and males compared to females. Notably, 13 out of the 
299 20 features with the highest Shapley values and 10 out of the 15 features with the highest 
300 variable importance score were related to respiratory signals. Those findings seem to be in line 
301 with results presented in other studies, where the importance of respiratory signals in the context 
302 of oxygen consumption was presented (31,61,62). The presented configuration offers the 
303 benefit of avoiding monitoring O2 consumption and CO2 production through laboratory device, 
304 instead allowing for the application of less sophisticated respiratory monitoring techniques, 
305 such as IP. Simultaneous acquisition of both ECG and IP can be performed using e.g., 
306 Pneumonitor device, which is a recently developed device, designed for research in the fields 
307 of physiology and sports medicine (12,13,63). Thus, all the cardiorespiratory features under 
308 current study could be obtained using Pneumonitor without any additional equipment. 
309 There are several limitations of the study. First of all, the raw ECG/RR-intervals signals 
310 and raw respiratory curves were unavailable, and thus more sophisticated parameters and 
311 parameters from information and causal domains, which could provide additional insights into 
312 the predictive models could have not been calculated. Moreover, the sample size in this study 
313 was limited, as only 369 recordings from the initial database of 992 CPET recordings were used 
314 for analysis after applying exclusion criteria based on outlier detection methods and visual 
315 inspection of the signals. Furthermore, the dataset was imbalanced in terms of patients’ sex as 
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316 there were 275 men and 52 women. A larger and more balanced dataset could prove beneficial 
317 for ML model training. There was also lack of information about the amount of sport activity 
318 undertaken by the participants, which might introduce inconsistency in the study population. 
319 Additionally, one approach of age-predicted HRmax calculation and one threshold of HRmax were 
320 introduced. Some of these limitations could be overcome by the usage of the Pneumonitor 
321 device, which allows for the simultaneous acquisition of raw ECG and IP signals (63). Thanks 
322 to this, the pulmonary activity (including RespRate and VE) can be monitored without the usage 
323 of sophisticated apparatus for gas analysis and tight-fitting masks may stress some groups of 
324 patients (e.g., children). Future studies may explore the optimal percentage of HRmax as well as 
325 other than treadmill forms of cardiopulmonary exercise tests in order to determine the optimal 
326 settings for the prediction of VO2peak for clinical practice.
327 This study expands the discussion on predicting cardiorespiratory fitness by 
328 highlighting the important role of submaximal testing and incorporating respiratory signals in 
329 the prediction process. The presented analysis indicates that the inclusion of respiratory 
330 parameters might improve the quality of the VO2peak prediction. The use of a submaximal test 
331 based on age-predicted HRmax and the utilization of cardiological and respiratory parameters 
332 that can be obtained without specialized CPET equipment is an advantage of the presented 
333 approach and facilitates its potential application in clinical practice.
334
335 5. Supporting information
336
337 Feature names presented in Figures 7 and 8 are explained in the S1 Appendix.
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