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Abstract 

Mental conditions exhibit a higher-order transdiagnostic factor structure which helps to 

explain the widespread comorbidity observed in psychopathology. However, the phenotypic and 

genetic structures of psychopathology may differ, raising questions about the validity and utility 

of these factors. Here, we study the phenotypic and genetic factor structures of ten psychiatric 

conditions using UK Biobank and public genomic data. Although the factor structure of 

psychopathology was generally genetically and phenotypically consistent, conditions related to 

externalizing (e.g., alcohol use disorder) and compulsivity (e.g., eating disorders) exhibited 

cross-level disparities in their relationships with other conditions, plausibly due to environmental 

influences. Domain-level factors, especially thought disorder and internalizing factors, were 

more informative than a general psychopathology factor in genome-wide association and 

polygenic index analyses. Collectively, our findings enhance the understanding of comorbidity 

and shared etiology, highlight the intricate interplay between genes and environment, and offer 

guidance for psychiatric research using polygenic indices. 
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Main 

Psychiatric disorders are among the leading contributors to the global disease burden. 

They are the main cause of years lived with disability and will affect more than 25% of the 

world's population at some point in their lifetime. Critically, these disorders often co-occur with 

one another1, which further exacerbates the burden on individuals, their families, and 

communities2,3. Indeed, complex patterns of comorbidity are perhaps the norm in 

psychopathology, as more than 50% of people who meet diagnostic criteria for one disorder will 

also meet criteria for a second1. 

In response to these observations of pervasive comorbidity, researchers in clinical 

psychology and psychiatry have increasingly turned toward transdiagnostic approaches in the 

study of mental conditions4,5. By cutting across fuzzy diagnostic boundaries, transdiagnostic 

research aims to identify and understand core mechanisms in psychopathology6–8. Such insights 

are uniquely poised to reduce the burden of mental illness, as they may advance knowledge of 

multiple disorders simultaneously, contribute to the development of therapeutics with broad 

utility, and even inform future nosological systems in the field9–11. 

Advances in statistical and psychiatric genetics have substantiated this fundamental 

change in perspective, especially for biological investigations. Results from large-scale genome-

wide association studies (GWAS) have confirmed that all forms of psychopathology are partly 

heritable11,12 and highly polygenic – influenced by thousands of causal variants with probabilistic 

effects9,13,14. Notably, many disorder-linked variants appear to have pleiotropic effects, 

conferring risk in a transdiagnostic manner11. With overlap at the genetic level typically 

mirroring that at the phenotypic level15, these patterns of widespread pleiotropy support the 

hypothesis that comorbidity among disorders may, in part, arise from shared etiology. 

Concurrently, factor analytic research has revealed a transdiagnostic structure of 

psychopathology that is observed at both phenotypic and genetic levels11,16–21. Generally, these 

studies report that individual disorders comprise higher-order factors of internalizing, 

externalizing, and thought disorder problems that help explain comorbidity17,22. They even 

suggest that a general transdiagnostic dimension – the ‘p’ factor – explains features that are 

common to all mental disorders16,23,24. However, recent data-driven genomic studies report 

genetic factor structures that differ from the phenotypic literature, raising questions about the 

utility and interpretation of the p factor9. In fact, one recent genomic study found that the p factor 
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produced few biological insights, as it obfuscated patterns of associations with individual 

variants, genetic correlations with biobehavioral outcomes, and enrichment within specific 

biological annotations9. 

Here, we aim to advance the understanding of psychiatric comorbidity with two extensive 

sets of analyses. First, we report a comprehensive factor analysis of 10 psychiatric conditions in 

the UK Biobank, and we characterize model (dis)similarity across phenotypic and genetic levels 

of analysis. Second, we evaluate the utility of the p factor in biological investigations of 

comorbidity, using GWAS and polygenic indices (PGIs) as exemplars. In doing so, our results 

provide substantive insights into the factor structure of psychopathology and practical guidance 

on how to leverage these insights.  
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Results 

In the present study, we investigated the factor structure of 10 diverse psychiatric 

conditions in the UK Biobank: generalized anxiety (ANX), alcohol use disorder (AUD), bipolar 

disorder (BIP), depression (DEP), eating disorder (EAT), obsessive-compulsive disorder (OCD), 

posttraumatic stress disorder (PTSD), schizophrenia (SCZ), suicidality (SUI), and substance use 

disorder (SUD). As described in the Methods, these dichotomous outcomes were constructed 

using self-report and diagnostic measures (Supplementary Tables 1-2). To facilitate GWAS and 

PGI analyses, we divided the UK Biobank into discovery and holdout samples (see Methods). 

Analyses were conducted at phenotypic and genetic levels, which are denoted with p and g, 

respectively (e.g., rp = phenotypic correlation, rg = genetic correlation). 

To investigate the phenotypic and genetic factor structure of psychiatric conditions, we 

first conducted univariate genome-wide association analyses (GWASs) for the 10 psychiatric 

conditions in up to 402,411 UK Biobank participants. However, as some phenotypes had 

relatively few cases in UK Biobank (Fig. 1a), we performed genomic meta-analyses using 

publicly available data to improve statistical power for downstream analyses (Methods). UK 

Biobank phenotypes were sufficiently similar to those from external cohorts (Supplemental 

Information) and cross-cohort genetic correlations were generally moderate to high 

(Supplementary Table 3). The difference in the genetic correlations of psychiatric conditions 

from the UK Biobank and the meta-analyzed GWASs tended to be small to moderate (median 

|Δrg| = 0.073); Supplementary Fig. 1). Therefore, we report genetic results from the meta-

analyzed GWASs in the main text.  

All psychiatric conditions were significantly heritable (h2 = 0.057 – 0.476; Table 1) and 

test statistics showed substantial inflation (λGC = 1.023 – 1.699, mean χ2 = 1.03 – 1.955; Table 

1), indicative of a robust polygenic signal for all phenotypes. Linkage disequilibrium (LD) score 

regression intercepts and attenuation ratios indicated that these signals were primarily 

attributable to polygenic architectures rather than population stratification or other confounding 

(intercept = 1 – 1.083, attenuation ratio = less than 0 – 0.157; Table 1).  
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Figure 1. Overview of the data and models tested in the present study. a, Bar chart illustrating 
the proportion of cases in the GWAS meta-analyses from the UK Biobank versus external 
cohorts. b, A matrix of the phenotypic and genetic correlations among psychiatric conditions. 
Heritability on the observed scale is reported along the diagonal, while phenotypic and genetic 
correlations are reported in the lower and upper triangles, respectively. Genetic correlations were 
estimated with LD score regression25. c-f, Path diagrams of the factor models tested in the 
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present study. Solid lines reflect associations across phenotypic and genetic models, while dotted 
lines reflect residual correlations that are specific to the genetic models. ANX = Generalized 
anxiety, AUD = alcohol use disorder, BIP = bipolar disorder, DEP = depression, EAT = eating 
disorder, OCD = obsessive-compulsive disorder, PTSD = posttraumatic stress disorder, SCZ = 
schizophrenia, SUI = suicidality, and SUD = substance use disorder. r = residualized factor after 
taking into account variance shared across all disorders (p factor).   
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Table 1. Summary of the 10 psychiatric conditions included in the present study. 
  Phenotypic Analyses Genetic Analyses 

Phenotype 
(abbreviation) 

 Sample Lifetime Prevalence UK Biobank 
GWAS  

Public GWAS Meta-analyzed GWAS  

N Full CFA Prediction Neff 
Sum of 

Neff 
Ref. 

Max 
Neff 

 h2 (SE)  λGC Mean χ2 
Intercept 

(SE) 
Ratio (SE) 

Alcohol Use Disorder 
(AUD) 

465,858 3.16% 3.22% 3.96% 49,557 23,282 26 72,839 
0.114 

(0.011) 
 1.124 1.147 

1.023 
(0.008) 

0.157 
(0.055) 

Generalized Anxiety 
(ANX) 

465,086 10.01% 11.14% 16.16% 147,311 
14,806 27 

168,782 
0.071 

(0.005) 
 1.210 1.229 

1.020 
(0.009) 

0.087 
(0.038) 

6,665 28 

Bipolar Disorder (BIP) 465,148 1.04% 1.04% 1.09% 15,629 46,582 29 62,211 
0.185 

(0.009) 
 1.320 1.385 

1.022 
(0.008) 

0.056 
(0.020) 

Depression (DEP)** 465,211 19.57% 24.32% 28.98% 254,389 111,221 30 365,610 
0.069 

(0.003) 
 1.3409 1.412 

 1.015 
(0.001) 

0.037 
(0.024) 

Substance Use 
Disorder (SUD)* 

465,007 0.79% 0.80% 1.23% 11,934  - -  11,454 
 0.109 
(0.051) 

 1.023 1.030 
1.003 

(0.008) 
0.091 

(0.260) 

Eating Disorders 
(EAT) 

465,010 0.42% 0.42% 0.78% 6,513 10,164 31 16,677 
0.131 

(0.019) 
 1.071 1.079 

1.000 
(0.008) 

Ratio < 0 

Obsessive-Compulsive 
Disorder (OCD) 

465,052 0.26% 0.26% 0.39% 4,173 7,281 32 11,454 
0.187 

(0.033) 
 1.059 1.059 

1.000 
(0.007) 

0.001 
(0.120) 

Post-Traumatic Stress 
Disorder (PTSD) 

465,052 1.93% 1.94% 3.98% 29,464 5,831 33 35,295 
0.097 

(0.017) 
 1.065 1.070 

1.004 
(0.008) 

0.058 
(0.110) 

Schizophrenia (SCZ) 465,058 0.37% 0.38% 0.10% 5,183 99,863 34 105,033 
0.246 

(0.011) 
 1.699 1.955 

1.083 
(0.012) 

0.087 
(0.012) 

Suicidality (SUI) 465,069  9.86% 11.01% 21.64% 143,212 21,208 35 164,420 
0.048 

(0.003) 
 1.197 1.219 

1.013 
(0.008) 

0.060 
(0.038) 

N.B.*UK Biobank Genome-wide Association Study (GWAS) only.**Public GWAS results without UK Biobank participants. Liability heritability (h2) 
calculated with LDSC from Genomic SEM36. Genomic inflation factor (λGC) and the ratio(SE) : (intercept�−�1)/(mean χ2

�−�1) calculated with LD 
Score Regression25. Neff = 4*(SamplePrev*(1-SamplePrev)). See Supplementary Table 3 for genetic correlations between UK Biobank and public 
GWAS results.  CFA = confirmatory factor analysis.
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Factor analyses reveal the dimensional structure of psychopathology in UK Biobank  

To better understand patterns of comorbidity and shared etiology among psychiatric 

conditions, we calculated the pairwise phenotypic and genetic correlations (rp and rg) for all 

study phenotypes (Fig. 1b). In both matrices, we observed a positive manifold among mental 

conditions, with modest-to-large positive correlations across most pairwise combinations (mean 

rp = 0.404 [range = 0.074 – 0.710], mean rg = 0.39 [range = 0.022 – 0.908]). We then used 

exploratory and confirmatory factor analyses (EFA and CFA, respectively) to characterize the 

multivariate system of relationships between psychiatric conditions at phenotypic and genetic 

levels.  

Guided by the results of a parallel analysis (Supplementary Fig. 4a), we modeled up to 

five phenotypic latent factors using EFA. The phenotypic covariance among conditions was 

parsimoniously described with three factors, as the ∆R2 and change in root mean square error of 

approximation (∆RMSEA) between the three- and four-factor models were less than 0.05 and 

0.015, respectively. We observed a similar pattern in the genetic data, where the inclusion of a 

fourth factor did not substantially increase the variance explained over the three-factor model 

(∆R2 = 0.06; Supplementary Fig. 4b). Notably, the phenotypic and genetic models both 

exhibited approximate simple structure with negligible cross-loadings for most psychiatric 

conditions (Supplementary Table 5). However, cross-level differences in factor loadings 

suggested that the structure of psychopathology may partially differ across phenotypic and 

genetic models. 

In the phenotypic EFA, one factor was defined by thought disorder conditions (BIP and 

SCZ), another factor by internalizing conditions (ANX, DEP, EAT, OCD, PTSD, and SUI), and 

a final factor by externalizing/substance use conditions (AUD and SUD). In the genetic EFA, we 

observed a similar thought disorder factor (BIP and SCZ), but the internalizing factor now 

included substance use conditions (ANX, AUD, DEP, PTSD, SUD, and SUI) and the third factor 

was now composed of conditions characterized by compulsivity (EAT and OCD). The full 

results are reported in Supplementary Table 5.  

Informed by psychometric theory and the above results, we fit four CFA models to the 

phenotypic and genetic data: (i) a first-order factor model, (ii) a correlated factors model with 

three latent factors; (iii) a second-order factor model, where a second-order p factor of 

psychopathology explains variance in first-order psychopathology factors; and (iv) a bifactor 
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model, where four orthogonal factors (one general p factor, three domain-specific factors) 

explain variance in psychiatric conditions (see illustrative path diagrams in Fig. 1c-f ; see 

Supplementary Fig. 5-6 and Supplementary Tables 6-8 for path diagrams with parameter 

estimates). 

While all models showed relatively good fit within their respective level of analysis (all 

models: comparative fit index [CFI] > 0.971 [range = 0.961 – 0.980] and standardized root mean 

square residual [SRMR] < 0.083 [range = 0.079 – 0.086]), the correlated factors and second-

order factor models optimized the balance between parsimony and goodness-of-fit37 in the 

phenotypic and genetic data.  

Cross-level disparities reveal gene-environment interplay in comorbidity & shared etiology 

As our EFAs suggested differences in the phenotypic and genetic factor structure of 

psychopathology, we sought to more formally characterize these dissimilarities. Specifically, we 

aimed to identify which psychiatric conditions contribute to this discordance and probe the 

extent to which measurement models were specific to phenotypic and genetic levels of analysis. 

Although the phenotypic and genetic correlation matrices were highly correlated (r = 

0.873, p = 9.99e-4, several pairwise relationships differed across levels of analysis. To quantify 

these dissimilarities, we calculated the ‘disparity’38,39 between bivariate phenotypic and genetic 

correlations (D = rp – rg) (Fig. 2a). Disparities were generally modest overall (mean |D| = 0.104), 

though there were considerable deviations (range D = -0.290 – 0.317) (Fig. 2b). For example, 

SUI had larger phenotypic than genetic correlations (mean DSUI = 0.091), and exhibited large 

disparities with compulsive conditions (DSUI,EAT = 0.317; DSUI,OCD = 0.247). Conversely, DEP 

had smaller phenotypic than genetic correlations (mean DDEP = -0.051), and showed some 

marked differences with frequently comorbid conditions (DDEP,ANX = -0.29; DDEP,PTSD = -0.182; 

DDEP,AUD = -0.181). Notably, observed disparities were not systematically related to imprecision 

(standard errors) in genetic correlation estimates (r = -0.001, p = 0.992, Fig. 2c), the proportion 

of external cases in the GWAS data (all p > 0.05), or the GWAS Neff (only ANX and AUD p < 

0.05, all other p > 0.05) (Methods). This suggests that differences might reflect environmental 

influences causing phenotypic correlations to deviate from genetic ones. 
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Figure 2. Comparison of phenotypic and genetic correlations among 10 psychiatric

conditions. a, Disparity between the phenotypic and genetic correlations for each pairwise

combination of psychiatric conditions (D = rp -rg). b, Box plots illustrating the distribution of D,

summarized for each condition. Box plots are colored according to the corresponding factor from

the phenotypic model. c, Scatter plot of the association between |D| and the imprecision of the

genetic correlation estimate, as indexed by the standard errors. ANX = generalized anxiety, AUD

= alcohol use disorder, BIP = bipolar disorder, DEP = depression, EAT = eating disorder, OCD =

obsessive-compulsive disorder, PTSD = posttraumatic stress disorder, SCZ = schizophrenia, SUI

= suicidality, and SUD = substance use disorder. 
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To evaluate the degree to which the structure of psychopathology may be level-specific, 

we fit the best phenotypic and genetic models from the EFAs to the phenotypic and genetic data 

(Fig. 3a-d; Supplementary Table 9). We found that the phenotypic model showed acceptable 

fit to the genetic data (CFI = 0.969, SRMR = 0.106), which further improved when the EAT and 

OCD residuals were allowed to correlate (CFI = 0.975, SRMR = 0.083; Fig. 3d). Conversely, the 

genetic model fit the phenotypic data well with no need for additional parameters (CFI = 0.992; 

SRMR = 0.055; Fig. 3c). However, the correlation between the compulsive and internalizing 

factors was 0.889, suggesting that these factors are much more similar phenotypically than 

genetically (DINT,COMP = 0.449; Fig 3b). Note that the loadings of factors with the same 

indicators across phenotypic and genetic models were highly consistent (r = 0.998 and 0.999 for 

the loadings across models for the phenotypic and genetic data, respectively). Sensitivity 

analyses suggest these results were robust to several potential confounds, such as sampling 

differences across datasets (Supplemental Information).  

Collectively, these results suggest that the factor structure of psychopathology is quite 

similar across levels of analysis for thought disorder and internalizing but may differ for 

compulsive and externalizing disorders, possibly due to environmental influences.  
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Figure 3. Cross-level comparison of the phenotypic and genetic factor structure of 
psychopathology. a-d, Path diagrams of the best-fitting phenotypic and genetic correlated factors 
model on the phenotypic data from the UK Biobank and genetic data from the meta-analyses of 
genome-wide analysis studies. Residual variances were omitted for plotting purposes (see 
Supplementary Tables S6 and S8 for further information, respectively). e, Scatter plot of the 
loadings of the phenotypic (a) and genetic (c) correlated factors model applied to the phenotypic 
data. f, Scatter plot of the loadings of the phenotypic (d) and genetic (b) correlated factors model 
applied to the genetic data. The dotted line reflects a perfect correlation (slope of 1). TD = 
thought disorder factor, INT = internalizing factor, COMP = compulsive disorders factor, EXT = 
externalizing factor, ANX = generalized anxiety, AUD = alcohol use disorder, BIP = bipolar 
disorder, DEP = depression, EAT = eating disorder, OCD = obsessive-compulsive disorder, 
PTSD = posttraumatic stress disorder, SCZ = schizophrenia, SUI = suicidality, and SUD = 
substance use disorder.  
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Domain-level transdiagnostic factors show robust validity and utility in genetic analyses 

To investigate the validity of the transdiagnostic factors, we conducted GWAS and QSNP 

analyses. The QSNP analysis is particularly useful in this regard, as it indexes the degree of 

heterogeneity observed in the SNP-level effects by testing whether SNPs plausibly operate 

through the factor as opposed to directly on the indicators (Methods). We performed these 

analyses for eight latent factors in Genomic SEM36: the correlated factors from the phenotypic 

model (TDp, INTp, and EXTp), the correlated factors from the genetic model (TDg, INTg, and 

COMPg), and two versions of a general psychopathology factor from the phenotypic models: one 

from a first-order factor model and one from a second-order factor model (Fig. 1c,e; first-order p 

and second-order p; Supplemental Information for further details on the bifactor model). We 

did not run GWAS for both genetically and phenotypic versions of the second-order p factor, as 

results demonstrated that slight configural changes did not affect GWAS results for other first-

order factors (see Supplemental Information). For example, internalizing and thought disorder 

factors from the phenotypic model were highly correlated (rg > 0.992) with their respective 

factors in the genetic models, as were p factors across models (rg = 0.985; Supplementary Fig. 

14). 

We observed substantial inflation of the GWAS test statistics for all latent genetic factors 

(λGC = 1.091 – 1.607, mean GWAS χ2 = 1.056 – 1.809), which was primarily attributable to 

polygenic architecture (intercept = 0.955 – 1.001, attenuation ratio = less than 0 – 0.001; Table 

2). With respect to the QSNP statistics, we found relatively low degrees of heterogeneity for the 

domain-specific transdiagnostic factors (TDp, INTp, EXTp, TDg, INTg, and COMPg), which 

indicates that many of the associated loci plausibly operate through a common pathway 

(Supplemental Information). However, this was not true for the first- and second-order p 

factors, where we observed substantially greater inflation in the QSNP statistics (ratios of mean 

GWAS χ2 / QSNP χ2 = 0.987 and 1.020, respectively). Coupled with the low number of associated 

loci with either configuration of the p factor (Table 2, Fig. 3a,b), these results suggest that the 

common variants underlying the genetic architecture of psychopathology are not adequately 

captured by the p factor. Although locus discovery was not the aim of the present study, we 

report the significant genomic loci of each psychopathology factor in the supplement 

(Supplementary Table 4, Methods). 
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Comparison to models in the literature provided strong evidence of concurrent validity 

for our latent factors of psychopathology. For instance, our EXT factor was genetically 

correlated at 1 (SE = 0.148) with a well-powered externalizing factor model40,41. Similarly, our 

INTp and TDp factors were strongly correlated with genomic factors of internalizing and thought 

disorder psychopathology42, respectively (INT rg = 0.903, SE = 0.028; TD rg = 1, SE = 0.032). 

Although models from the literature included UK Biobank data, they also used data from other 

cohorts and included conditions that were not well represented in UK Biobank (e.g., attention-

deficit/hyperactivity disorder for externalizing, schizoaffective disorder for thought disorder), 

supporting the generalizability of our inferences.   

We further interrogated the validity of these factors via QTrait analyses, which index 

heterogeneous effects at the level of genetic correlations by testing whether genetic relationships 

between psychiatric conditions and other complex traits plausibly operate through latent genetic 

factors. Once again, domain-level transdiagnostic factors showed low rates of heterogeneity 

while both configurations of the p factor exhibited substantial heterogeneity (Supplemental 

Information). For example, of the 38 phenotypes that were significantly genetically correlated 

with the second-order p factor, 31 (82%) were significant in the QTrait analyses (Supplementary 

Fig. 11). In general, we found that genetic correlations between external traits and the p factor 

were similar to those with INT, but differed from those with TD (Fig. 3c), suggesting that the p 

factor may obfuscate domain-specific associations.
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Table 2. Results from multivariate genome-wide association analyses 
 

Model 
Genetic Model Phenotypic Model First-

order Correlated Factors Model Correlated Factors Model Second-order 

Factor Internalizing 
Thought 
Disorder 

Compulsive Internalizing 
Thought 
Disorder 

Substance 
Use 

p p 

Neff 362,650 109,579 49,867 359,422 108,836 61,732 369,034 400,760 
Genomic 
Loci 

18 97 0 19 97 0 1 47 

Q Hits  4 (0) 8 (0) 0 0 2 (2) 0 35 (0) 56 (6) 
Mean χ2 1.446 1.809 1.063 1.450 1.808 1.056 1.489 1.579 
Q Mean χ2  1.229 1.232 1.026 1.229 1.233 1.035 1.475 1.626 

λGC 1.357 1.607 1.105 1.361 1.606 1.091 1.496 1.457 

Intercept 1.001 0.986 0.965 1.000 0.986 0.955 0.948 0.995 
(SE) (0.011) (0.013) (0.007) (0.011) (0.013) (0.007) (0.001) (0.011) 
N.B. First-order p factor = p factor from the first-order p factor model. Second-order p factor = p factor from the second-order p factor 

model. Mean χ2, λGC, and the intercept were obtained from LD Score regression in Genomic SEM. Genomic loci were identified using 

FUMA. λGC = genomic inflation factor. Prev = Prevalence. N calculated as mean(1/((2*MAF*(1-MAF))*SE^2)). See Supplementary 

Information for further details and Manhattan and Miami plots.  
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Polygenic indices for the p factor obfuscate domain-specific associations  

 Finally, we examined whether the p factor provided additional utility over the domain-

level factors in the context of PGI analyses. Here, we compared associations between 

transdiagnostic PGIs and outcomes related to psychopathology (8 factors) and neuroanatomy (62 

cortical mean thickness and 62 surface areas) in a UK Biobank holdout sample of approximately 

24,100 individuals (Method). We calculated PGIs for the eight factors described above: TDp, 

INTp, EXTp, TDg, INTg, COMPg, first-order p, and second-order p. 

 All PGIs were significantly associated with their cognate outcome (e.g., PGIs for TDp 

and TDg were associated with a phenotypic thought disorder factor) and most showed cross-trait 

patterns of association (Supplemental Table 11). With respect to the p factor PGIs, the second-

order p factor PGI explained less variance than the combined three PGIs from the correlated 

factors model (e.g., TDp, INTp, and EXTp or TDg, INTg, and CMPg) across all scenarios. This 

was also true for the first-order p factor PGI, except for compulsive disorders, where it explained 

more variance in compulsive disorders than the three PGIs from the correlated factors models 

(∆R2 = 0.63 and 0.81%, respectively). Generally, the PGIs of the genetic and phenotypic 

correlated factors model of well-powered GWAS (i.e., TD and INT) tended to explained more or 

similar variance to the p factor PGIs (Supplemental Table 11).  
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Figure 4. Comparison of p factor effects relative to domain-level factor effects. a, Miami 
plot for the second-order general psychopathology (p) factor. b, Q-Q plot of the second-order p 
factor and QSNP results. c, Scatter plot of genetic correlations between psychopathology factors 
and neurodevelopmental disorders, socio-economic outcomes, and subjective well-being. The 
dotted line indicates a genetic correlation of 0. d, Cortical map depicting associations between 
the second-order p factor polygenic index (PGI) and regional cortical thickness, as parcellated in 
the Desikan-Killiany-Tourville atlas. Effects were adjusted for age, sex, age2, and sex-by-age 
interactions (Method). e, Box plots depicting the distributions of PGI effects on regional cortical 
thickness. f, Scatter plot illustrating the correlation between standardized betas from the 
regression of the second-order p factor PGI on cortical thicknesses and those from the correlated 
factors model. g, Scatter plot of the correlations between the effect size of the associations of the 
p factor and the domain-level factors across phenome-wide association study outcomes in Mass 
General Brigham Biobank.  
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 When predicting individual differences in cortical thickness and surface area (Fig. 4d), 

we found that associations between PGIs and regional structural metrics were quite variable 

(Supplementary Table 13, Supplementary Fig. 23-24). For instance, the INTp PGI was 

generally positively associated with cortical mean thicknesses, whereas the TDp PGI tended to be 

negatively associated with cortical mean thicknesses (Fig. 4e). Consequently, these associations 

were often obfuscated when using a p factor PGI. Further examination revealed that the p factor 

results largely reflected diminished effects of the INTg PGI – a pattern that was consistent for 

both first-and second-order p factor PGIs (correlations between INTg and p factor effects ~ 

0.749; Fig. 4f). While we did not observe similarly strong patterns with surface area outcomes 

(Supplementary Table 13), this is likely a consequence of the very small effect sizes estimated 

in those models. 

To evaluate whether the psychopathology factors were differentially related to risk for 

adverse medical outcomes, we conducted phenome-wide association study (PheWAS) analyses 

for each PGI in the Mass General Brigham Biobank (MGBB; N = 43,323). Once again, we found 

that the domain-level PGIs varied in their associations with health, genetic, and lifestyle 

outcomes (Supplementary Fig. 25-27; Supplemental Information). However, unlike the 

cerebral results, the p factor PGIs were more broadly associated with health outcomes when 

compared to the individual domain-level PGIs. Effect sizes of the p factor PGIs were similar to 

one or more of the domain-level PGIs (Fig. 4g) – even for the 34 phecodes that were uniquely 

associated with p. Therefore, the p factor estimates generally resembled those of one or two 

specific factors, rather than all forms of psychopathology (Supplementary Tables 14). Finally, 

despite the greater predictive power of the p factor PGIs, 9% of significant domain-specific 

associations were not observed when using these indices (Supplemental Information). 
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Discussion 

Psychiatric disorders are a common cause of human suffering3,43, and their frequent co-

occurrence complicates the effective assessment and treatment of these conditions7. Here, we 

examined several data-driven and theoretical models of shared etiology to help explain the 

pervasive comorbidity observed in this domain. We modeled the phenotypic and genetic factor 

structure of 10 psychiatric conditions in the UK Biobank to characterize patterns of 

(dis)similarity between these levels of analysis, which yielded novel insights into the form, 

validity, and utility of transdiagnostic factors in biological psychopathology. Three key insights 

emerged from these efforts. 

First, the factor structure of mental conditions was only partially concordant across 

phenotypic and genetic levels of analysis, somewhat supporting Cheverud’s conjecture44 (or the 

“phenotypic null hypothesis”45 in the case of factor analysis), which states that phenotypic and 

genetic correlations between complex traits can be assumed to be highly similar38. While the 

structure of thought disorder and internalizing psychopathology was largely consistent, our 

results suggest that externalizing and compulsive disorders may be differentially related to other 

conditions at phenotypic and genetic levels. As disparities were not a consequence of 

heterogeneous data or low statistical power, differences might reflect environmental influences 

that cause phenotypic correlations to deviate from genetic ones. For instance, compulsive 

conditions were more strongly phenotypically (r= 0.889) than genetically (r= 0.449) correlated 

with internalizing conditions. Such deviations also occurred at the indicator level: OCD and 

AUD were phenotypically but not genetically correlated. One possible explanation is that 

overlapping symptoms may arise from a combination of different genetic predispositions and 

environmental factors. In contrast, the genetic correlation of depression and anxiety was greater 

(r= 0.908) than its phenotypic correlation (r= 0.618), which could suggest that while these 

disorders share genetic predispositions, environmental factors may drive different phenotypic 

expressions. These results provide new hypotheses to be tested by future gene-environment 

studies. 

Second, we provide novel evidence for the validity and utility of multiple transdiagnostic 

factors in biological psychopathology, especially those characterized by internalizing, 

externalizing, compulsive, and thought disorders. With few exceptions, correlations between 

these factors were quite moderate, underscoring that they are largely modeling (co)variances that 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.05.23295086doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.05.23295086
http://creativecommons.org/licenses/by/4.0/


Licence : CC-BY 4.0 21

are unique from one another5. The internalizing factor, serving as an exemplar with the greatest 

number of indicators, was shown to be particularly robust to configural changes to the model. 

Moreover, despite some structural differences across levels of analysis, all four of these factors 

improved statistical power compared to the p factor GWAS and exhibited low rates of 

heterogeneity in genetic analyses, as demonstrated in the QSNP and QTrait results.  

Third, the p factor had relatively low validity and utility at the genetic level. While first- 

and second-order p factor models can be fit to the data, they offer limited insights into biology 

due to heterogeneous genetic effects across mental conditions. Specifically, QSNP and QTrait 

results indicated that many SNP-level effects and nearly all genetic correlations were 

inconsistent with a general factor of psychopathology. Moreover, PGI results from the cerebral 

and PheWAS analyses revealed that information is lost when opting to use PGIs for p over 

correlated-but-distinct domain-level factors (e.g., thought disorder, internalizing, externalizing). 

Collectively, our findings build upon recent studies that suggest the p factor will generate fewer 

robust and comprehensive findings than the domain-level factors in the study of psychiatric 

comorbidity46  – at least with the currently available data. 

Although the present study has taken important steps to address potential confounds and 

shortcomings, several limitations should be considered when interpreting results. For instance, 

the present study does not comprehensively sample the full spectrum of psychopathology and 

related conditions, as the UK Biobank did not have adequate data for all phenotypes of interest 

(e.g., autism spectrum disorder, attention-deficit/hyperactivity disorder, specific substance use 

disorders, schizoaffective disorder). This resulted in the omission of a neurodevelopmental 

factor8,9 and limited the available data for the thought disorder, externalizing, and compulsive 

factors, which were each modeled with two indicators. While these findings should be replicated 

in models with more data, our thought disorder and externalizing factors did have genetic 

correlations that were indistinguishable from unity (rg = 1) with more expansive models from the 

literature40,42. Finally, our analyses were limited to individuals of European ancestries in the UK 

Biobank due to data availability and methodological constraints25,36,47. Extending these analyses 

to additional cohorts with more diverse data48 and less healthy volunteer bias49 will be critical to 

evaluating the robustness and generalizability of our findings.  

In conclusion, the present study generates novel insights into the structure of 

psychopathology by reporting results at phenotypic and genetic levels, refining our 
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understanding of comorbidity and shared etiology10. We add to the relatively scarce literature 

characterizing Cheverud’s conjecture and its exceptions in this domain, identifying instances 

where environmental influences may have a particularly pronounced effect on comorbidity. We 

also extend recent investigations into the validity of transdiagnostic factors in psychiatric genetic 

research9,40,42,50,51, providing practical insights that can guide the development and use of 

transdiagnostic PGIs in the field. Ultimately, our results highlight the intricate interplay between 

genetic and environmental factors in mental disorders10,52, paving the way for targeted studies of 

the shared etiological landscape for these conditions.  
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Methods 

UK Biobank  

The UK Biobank has phenotypic, genotypic, and imaging data from more than 500,000 

participants. Participants were recruited between 2006 and 2010 across 22 assessment centers in 

England, Wales, and Scotland, between the ages of 40 to 69 years old49. Participants provided 

informed consent (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200) and the UK Biobank 

received ethical approval from the Research Ethics Committee (reference 11/NW/0382). This 

study was conducted based on application 46007.  

Genotyping, imputation, and quality checks. Participants (N = 488,377) were genotyped 

with the UK BiLEVE or the UK Biobank Axiom array. The array design, genotyping, and 

quality control procedures have been previously described by the UK Biobank investigators53. 

Genotypes were imputed to the Haplotype Reference Consortium (HRC) reference 

panel26 (Version 1.1) and UK10K and the 1000 Genomes Project Phase 3 reference panel by the 

UK Biobank. We kept SNPs from the 1000 Genomes Project Phase 154 that were filtered on 

minor allele frequency ≥ 0.01, genotyping call rate ≥ 0.05, and a Hardy-Weinberg equilibrium 

threshold ≥ 5×10–6. Samples were filtered on missingness rate ≥ 0.1. In total, 5,319,661 variants 

and 487,409 people pass filters and QC, including 431,006 individuals from British ancestry with 

genetic principal components. 

Image acquisition and preparation. We analyzed the cortical mean thicknesses and 

surface areas of the Desikan-Killiany-Tourville (DKT) atlas from the first Magnetic Imaging 

Resonance (MRI) visit generated by an image-processing pipeline developed and run by the UK 

Biobank Imaging team (Category 19655,56). Analyses were conducted in R57. The MRI data were 

collected with a standard Siemens Skyra 3 T running VD13A SP4 with a standard Siemens 32-

channel RF receive head coil. The UK Biobank Imaging team analyzed the 3D MPRAGE T1-

weighted volumes with pipeline scripts that primarily call for FSL and Freesurfer tools. The UK 

Biobank Imaging Protocols provide details of the acquisition protocols, image processing 

pipeline, image data files, and derived measures of brain structure and function. There were three 

scanner sites located in Cheadle (Site 11025, coded as 0); Reading (Site 11026, coded as 2); and 

Newcastle (Site 11027, coded as 3). 

Psychiatric phenotype construction. We used 10 binary lifetime psychiatric disorders or 

conditions diagnoses (depression (DEP), generalized anxiety (ANX), suicidality (SUI), eating 
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disorders (EAT), posttraumatic stress disorder (PTSD), obsessive-compulsive disorders (OCD), 

Hazardous Alcohol Use or Dependence (AUD), substance use disorder (SUD), bipolar 

disorder(BIP), and schizophrenia (SCZ)) generated in a previous study58 by combining self-

reported measures and patient diagnoses (Supplementary Table 1). We did not include 

psychiatric disorders or conditions in the UK Biobank with fewer than 1,000 cases, such as 

autism spectrum disorder and attention-deficit/hyperactivity disorder. If a participant reported 

having a psychiatric disorder or condition during any of their visits at the center or the online 

follow-up, they were identified as a case for that disorder. There were 502,120 individuals with 

data on the presence or absence of a disorder for at least 1 of the 10 disorders (501,234 without 

missing data) and cases ranged from 1,3210 (OCD) to 101,530 (depression; Table 1; 

Supplementary Table 2). These analyses were conducted in R57 and were not restricted to 

British individuals.  

UK Biobank holdout sample. We created a validation holdout sample of UK Biobank 

individuals with neuroimaging data that were not related to individuals in the UK Biobank 

discovery sample. This yielded 24,162 individuals (12,511 females) for which we calculated 

polygenic indices.  

Factor analyses   

We calculated the phenotypic and genetic correlations across psychiatric disorders and 

conducted exploratory factor analyses to identify models of psychopathology to validate in the 

confirmatory factor analyses.  

Bivariate correlations among study phenotypes. We calculated the bivariate phenotypic 

and genetic correlations (rp and rg) for all study phenotypes to better understand patterns of 

comorbidity and shared etiology among psychiatric disorders. For the phenotypic data, we 

randomly selected 50% of the sample as the training sample and calculated the tetrachoric 

correlation matrix of our psychiatric conditions using the mixedCor function from the psych 

package59 in R57. The phenotypic correlation here assesses the degree to which two psychiatric 

conditions tend to vary together in a population. For the genetic data, we used LD Score 

Regression25 to calculate the genetic correlation from all SNPs. A high genetic correlation 

suggests that there is a strong genetic overlap between the two traits, indicating that the same 

genes are likely involved in the expression of both traits. 
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Disparity calculations. To quantify differences between the phenotypic and genetic 

correlations of the 10 psychiatric conditions, we calculated the ‘disparity’38,39 between bivariate 

phenotypic and genetic correlations (D = rp – rg) in R57. To evaluate whether the calculated 

disparities were systematically related to technical factors, we computed Pearson correlations 

between D estimates and (1) the standard errors of genetic correlations, (2) the proportion of 

external cases in contributing GWAS, and (3) the effective sample size of contributing GWAS. 

For the latter two tests, we used a permutation-based correlation approach. Specifically, for each 

disorder, we shuffled the vector values during each of the 1,000 permutations and then computed 

the correlation between the matrix and this permuted vector. This yielded a distribution of 

correlations under the null hypothesis of no association specific to each disorder. The observed 

correlation for each disorder was then compared to its respective null distribution to compute 

empirical p-values. When these p-values are non-significant, it suggests that observed 

discrepancies might reflect environmental influences leading to differences in phenotypic 

expression.   

Phenotypic factor analyses. We ran exploratory factor analyses (EFA) on the tetrachoric 

correlation matrix of our psychiatric conditions from the training sample using the fa function 

from the psych package59 in R57. Since indicators were categorical and some loadings were under 

0.5, we used the difference in the Root Mean Square Error Approximation (ΔRMSEA) with a 

0.015 cut-value to determine the number of factors to retain60. We first examined the ΔRMSEA 

across EFAs with 1-4 factors. We applied an oblimin rotation and the principal axis factoring 

(PAF) method, which is more appropriate for non-normal data than the maximum likelihood 

method61. We report results on the sample with missingness for some psychiatric conditions 

because the model fit and variance explained across psychiatric disorders or conditions were 

similar when excluding individuals with missing data.  

We used the lavaan package 62 in R57 to conduct confirmatory factor analyses (CFA) in 

the test sample (i.e., the remaining 50% of the sample) with and without missing data using 

diagonally weighted least squares (DWLS) estimation and pairwise likelihood estimation for 

missing cases (Fig. 1). CFA models were informed by the published literature23, as well as the 

EFA results. We ran bifactor models with modified latent variable variances and loadings and 

added constraints when the solution was not found. Specifically, we constrained the loadings on 

residual latent factors with only 2 indicators to solve Heywood cases63. 
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 Good fit was assessed with the following cut-offs: a comparative fit index (CFI) > 0.95, 

a root mean square error approximation (RMSEA) < 0.06, and a standardized root mean square 

residual (SRMR) < 0.08 (Hu and Bentler 1999). We report the model fit and parameters from the 

models with participants that had missing data or one or more disorders since the model 

parameters were similar when including and excluding individuals with missing data. 

Genetic factor analyses. To characterize the genetic structure of psychopathology, we 

first performed EFA with promax rotation and modeled up to 4 factors in the training data, a 

genetic covariance matrix constructed from odd chromosome SNPs. We then used Genomic 

SEM36 to evaluate the fit of these data-driven models in the test data in R57, a genetic covariance 

matrix constructed from even chromosome SNPs, before testing model fit on all SNPs. Finally, 

we also used Genomic SEM to estimate SNP effects on the latent genetic factors. Estimated 

sample size (��) for each factor was calculated as the mean of 1/��2 � MAF � �1 � MAF�� �

SE^2� across SNPs42.  

Genome-wide association analyses 

Univariate genome-wide association analyses. We ran GWASs of the 10 psychiatric 

conditions in the UK Biobank (Supplementary Table 1) in 395,364 individuals of white British 

ancestry who did not have neuroimaging data. UK Biobank GWASs were conducted using a 

sparse GRM (fastGWA-GLMM64) from the Genome-wide Complex Trait Analysis (GCTA) 

package65. We controlled for relatedness, sex (0 = males, 1 = females), center, genotyping chip, 

birth year, and the first 40 PCs of the genotyped data. We included information provided by the 

UK Biobank on the genetically inferred kinship of respondents (estimated in the KING 

software66). 

Meta-analysis. Since several psychiatric conditions had few cases in the UK Biobank, we 

sought to improve statistical power of our GWASs via meta-analysis. For this procedure, we 

obtained GWAS summary statistics for similar phenotypes (Supplementary Table 1) that (i) 

were publicly available, (ii) excluded the UK Biobank, and (iii) were from European ancestry. 

We then meta-analyzed the UKB and external summary statistics using METAL67. Meta-

analyzed GWAS summary statistics (META GWASs) were generated for all disorders except for 

SUD, which lacked publicly available summary statistics due to the broad definition of case 

status. Meta-analyses were conducted using a sample size weighted analysis. The weight was set 

to the effective N for univariate summary statistics (Neff = 4*(sample.prevalence*(1-
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sample.prevalence))*(N controls + N cases)) and to the sum of the N Effective (i.e., the sum of 

the Neff of each cohort included in the meta-analysis) for meta-analyzed summary statistics68. 

When the minor allele frequency (MAF) was unavailable, we calculated the MAF from the 

reported frequency of the effect allele or used the MAF from the 1000 Genome Project Phase 3 

reference panel54.  

Multivariate genome-wide association analyses. Prior to analysis, all summary statistics 

were munged using Genomic SEM, where we applied the conventional filters of imputation 

quality ≥ 0.90 and minor allele frequency (MAF) ≥ 0.01. The genetic covariance and sampling 

covariance matrices were estimated using multivariable LDSC in Genomic SEM36. Model fit 

was assessed using the following cut-offs: comparative fit index (CFI) > 0.95 and Standardized 

Root Mean Square Residual (SRMR) < 0.08 indicative of good fit, and CFI > 0.90 indicative of 

acceptable fit. Diagonally-weighted least squares estimation was used in all Genomic SEM 

analyses. 

To characterize the genetic structure of psychopathology, we first performed EFA with 

promax rotation and modeled up to 4 factors in the training data, a genetic covariance matrix 

constructed from odd chromosome SNPs. We then used Genomic SEM36 to evaluate the fit of 

these data-driven models in the test data, a genetic covariance matrix constructed from even 

chromosome SNPs, before testing model fit on all SNPs. Finally, we also used Genomic SEM to 

estimate SNP effects on the latent genetic factors. Estimated sample size (��) for each factor was 

calculated as the mean of 1/��2 � MAF � �1 � MAF�� � SE^2� across SNPs42.  

We used the “functional mapping and annotation of genetic associations” method 

(FUMA; version 1.3.5e69) to extract (i) the number of lead SNPs and genomic loci associated 

with a factor and (ii) the number of lead SNPs and genomic loci identified in the QSNP analyses 

(see the section below) using the multivariate GWAS results from Genomic SEM as input. We 

then compared the number of lead SNPs from the first-order factor analyses to those from the 

QSNP analyses (we set the maximum cutoff P threshold to 1). The remaining parameters were set 

to their default value (see SNP2GENE: https://fuma.ctglab.nl/tutorial#snp2gene). FUMA was 

applied on about 5,319,661 SNPs for each multivariate GWAS output.  

We performed QSNP analyses to examine whether a SNP operates through a given factor. 

This metric is described elsewhere36,70,71. In brief, it is an index of the decrement in model fit 

between two models: one where the factor of interest is regressed onto a given SNP and another 
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where the indicators for the factor of interest are regressed onto a given SNP or trait. Subsequent 

comparison of these two models allows us to test whether the observed pattern of association 

plausibly operates via the latent factor or if it is better described by indicator-specific 

relationships. We calculated the factor and the QSNP mean χ2 on the reference SNPs from the 

1000 Genomes Project Phase 3 reference panel54 as the mean of the squared Z estimate obtained 

for each SNP from the Genomic SEM output.  

Comparing the Phenotypic and Genetic Psychopathology Factor Models  

We conducted three sets of analyses to compare phenotypic and genetic factor structure 

of our phenotypes. First, we examined the consistency of the UK Biobank and META GWAS 

results to ensure that differences in factor model structure were not due to idiosyncrasies between 

the genetic and phenotypic data that were introduced by including public GWAS results. This 

was accomplished by (i) examining differences in the genetic correlation and the heritability of 

the indicators from the UK Biobank and META GWASs using LDSC25, (ii) conducting 2-, 3-, 

and 4-factor EFAs on the UK Biobank and the META GWAS results, (iii) estimating the 

correlation of the indicator loadings of the UK Biobank GWAS and META GWAS across 

genetic and phenotypic models, and (iv) examining whether the correlation between the meta-

analyzed genetic correlation matrix was more similar to the phenotypic correlation matrix than 

the UK Biobank genetic correlation matrix. Second, we tested the phenotypic model in the 

genetic data and vice-versa to test whether the models fit similarly across data types. Third, when 

applied to the genetic and phenotypic data, we calculated the correlation of factor loadings across 

the genetic and phenotypic models.  

Genetic correlations with external traits 

We examined the concurrent validity of our psychopathology factors by estimating genetic 

correlations between our factors and factors from models in the literature with additional 

indicators and larger samples. Specifically, we examined the correlation between our 

externalizing factor and the externalizing factor from a well-powered multivariate GWAS 

excluding 23andMe data40,41,. We also estimated the genetic correlation between our 

internalizing factor and a factor indexing mood disturbance (self-reported depressive, psychotic, 

and manic symptoms, as well as clinically diagnosed bipolar II and major depressive disorder), 

as well as the genetic correlation between our thought disorder factor and a factor indexing 

serious mental illness (bipolar I, schizoaffective disorder, and schizophrenia). We recreated the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.05.23295086doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.05.23295086
http://creativecommons.org/licenses/by/4.0/


Licence : CC-BY 4.0 29

latent factors from the literature using the model structure and indicator GWAS from the 

literature and calculated the genetic correlation between the latent factors from the literature and 

ours with Genomic SEM36. Our latent factors were estimated with our indicator GWAS. 

We performed QTrait analyses to examine whether the pattern of genetic correlation 

between an outcome ad the indicators of the model are well accounted for by the latent factor. 

The calculation of this statistics is described elsewhere36,70,71. In brief, it is an index of the 

decrement in model fit between a model where the factor of interest is regressed onto a given 

trait and a model where the indicators for the factor of interest are regressed onto a given trait. 

We compare these models to test whether the observed pattern of association plausibly operates 

via the latent factor or if it is better described by indicator-specific relationships.  

For the QTrait analyses, we used GWAS summary statistics from a previously published 

pipeline40,42,68, while removing phenotypes that were redundant with the investigated latent factor 

(e.g., schizophrenia was excluded from the pipeline when estimating genetic correlations with 

the thought disorder factor). Summary statistics were chosen due to their broad relevance to 

human health and well-being, as previously described40,42. Briefly, they correspond to 4 main 

domains: health and disease outcomes, personality and risky behavior, psychopathology and 

cognition, and demography and socioeconomic status. The number of external traits for which 

QTrait analyses were conducted depended on whether the QTrait model converged. In some cases, 

the QTrait model did not converge because of negative variance estimates.  

Polygenic index (PGI) analyses 

PGI construction. Using sBayesR72, we created polygenic indexes (PGIs) for individuals 

with neuroimaging data and their siblings with the summary statistics of the latent variables of 

the most parsimonious and best-fitting genetic and phenotypic models.  

PGI analyses in UK Biobank. We created residualized PGIs by adjusting the PGIs for the 

year of birth, genetic sex, and the first 40 principal components of the genotyped data. We 

excluded individuals with related individuals in the discovery and individuals that were related in 

the target sample. The major histocompatibility complex (MHC) region was excluded from the 

PGI analyses for the COMP and first-order p factor PGI because including the MHC region led 

to counterintuitive results (i.e., first-order p factor PGI predicted over 3% of the TD factor but 

0.8% of the first-order p factor). Removing the MHC region did not affect the PGI prediction of 

the other psychopathology factors.  
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To examine the predictive power of the PGIs on their respective latent variables, we 

quantified the degree to which each PGI predicted the latent psychopathology factors in the 

present study (Fig 3.).  The loadings were set to those reported in the behavioral analyses (Fig. 

3a,c) CFA test model to address Heywood cases and model convergence issues. The residualized 

PGI was the regression predictor and each latent factor served as an outcome. We fit the 

complete measurement model per PGI, with each PGI predicting each factor (i.e., the INT PGI 

predicting EXT, TD, and INT in the same model). We report the R2 of each PGI for all eight 

psychopathology factors. The following cutoffs were set to establish a good model fit: CFI > 

0.95, RMSEA < 0.06, and SRMR < 0.0873.  

To evaluate associations between the PGIs of psychopathology and cortical brain measures, 

we examined the association between the PGIs and 64 regional mean thicknesses and 64 surface 

areas from the cortical Desikan-Killiany-Trouville atlas. We conducted linear regressions with 

PGIs, age at the MRI, sex, quadratic age at imaging, sex and age interactions, and sex and 

quadratic age interactions predicting each cortical measure. Age corresponds to age at MRI and 

the PGI were adjusted for year of birth and the 40 first genetic principal components provided by 

the UK biobank. Continuous variables were unit standardized to have a mean of 0 and a standard 

deviation of 1. We report the correlations between the brain-PGI associations to compare (1) 

brain-PGI associations between the p factors and domain-specific factors and (2) brain-PGI 

associations between domain-specific factors.  

PGI analyses in MGB Biobank. To evaluate associations between the PGIs of 

psychopathology and a wide variety of medical outcomes, we performed PheWAS analyses in 

the Mass General Brigham Biobank (MGBB). The MGBB is a biorepository from the MGB 

healthcare system with patient data on electronic health record, genetic, and lifestyle variables74. 

It has enrolled 138,042 participants, 65,265 of whom have also been genotyped. The recruitment 

strategy, genotyping procedures, and quality control procedures for this dataset have been 

described in previously published studies74. All participants provided written consent upon 

enrollment, and analyses were conducted under MGB Institutional Review Board protocols 

#2009P002312 and #2021P003641. 

A standard “phecode” approach75,76 was used to assign case status for 1,817 medical 

outcomes, requiring the presence of at least two International Classification of Disease 10 

Clinical Modification (ICD-10-CM) codes. To reduce the risk of population stratification, 
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PheWAS analyses were restricted to 43,323 patients of European ancestry. PGIs were computed 

using the sBayesR method64 in these individuals, as described above, and standardized prior to 

analysis. PheWAS analyses were then conducted using the PheWAS package in R77 

(https://github.com/PheWAS/PheWAS), where logistic regression models were fit for each of the 

1,817 medical outcomes under study. Sex assigned at birth, current age, genotyping chip, and the 

first 10 genetic principal components were included as covariates. Statistical significance was 

evaluated at a Bonferroni-corrected threshold (p < 2.75e-5).  

To evaluate whether there was any sample overlap between our GWAS and PheWAS data, 

we used LD Score regression to estimate the cross-trait intercept between a published GWAS of 

tobacco use disorder in the MGBB43 and our correlated factors of psychopathology. The genetic 

correlation estimates were non-zero in all cases (EXT rg = 0.592 [SE = 0.120], INT rg = 0.210 

[SE = 0.066], and TD rg = 0.171 [SE = 0.059]), which implies the cross-trait intercept can be 

used to detect sample overlap. We found the cross-trait intercept was not significantly different 

from zero in all cases, indicating that there is no detectable overlap between the GWAS and 

PheWAS data in the present study.
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