- 1 Blood transfusion in care of patients with Visceral Leishmaniasis: a review
- 2 of practices in therapeutic efficacy studies
- 3 Prabin Dahal^{*1,2}, Sauman Singh-Phulgenda^{1,2}, James Wilson^{1,2}, Glaucia Cota³, Koert
- 4 Ritmeijer⁴, Ahmed Musa⁵, Fabiana Alves⁶, Kasia Stepniewska^{1,2}, Philippe J Guerin^{*1,2}

5

¹Infectious Diseases Data Observatory (IDDO), Oxford, UK 6 ²Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, 7 University of Oxford, Oxford, UK 8 9 ³Instituto René Rachou (IRR), Fiocruz, Minas Gerais, Brazil ⁴Médecins Sans Frontières, Amsterdam, Netherlands 10 ⁵Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan 11 ⁶Drugs for Neglected Diseases initiative, Geneva, Switzerland 12 13 14 15 16 Keywords: Kala azar; visceral leishmaniasis; transfusion; anaemia; haemoglobin 17 18 *Correspondence: prabin.dahal@ndm.ox.ac.uk; philippe.guerin@ndm.ox.ac.uk 19

20 Abstract

- 21 Anaemia is a common presentation feature in patients with visceral leishmaniasis (VL).
- 22 Blood transfusion remains an important aspect of patient management in VL. However,
- 23 triggers considered for making decisions on transfusion are poorly understood. This review
- 24 is based on the Infectious Diseases Data Observatory (IDDO) VL clinical trials library, a
- 25 database of all published efficacy studies since 1980 and has indexed 160 published trials
- 26 (1980–2021). Description of blood transfusion was reported in 16 (10.1%) trials (n=3,459
- 27 patients). Transfusion was initiated solely based on haemoglobin (Hb) measurement in 9
- studies, using a combination of Hb and other health conditions (epistaxis, poor health, or
- 29 clinical instability) in 3 studies, and the criteria was unclear in 4 studies; Hb threshold ranged
- 30 from 3-8 g/dL. Overall, the number of patients receiving transfusion was explicitly reported
- in 10 trials (n=2,421 patients enrolled). Of these, 217 patients underwent transfusion; 58
- 32 before treatment initiation and 46 during treatment or the follow-up phase, and the time of
- 33 transfusion was unclear in 113. The median proportion of patients who received a
- transfusion in a study was 8.0% [Interquartile range (IQR): 4.7% to 47.2%; range: 0-100%;
- 35 n=10 studies]. This review describes the variation in current clinical practice and is an
- 36 important initial step in policy/guideline development, where both the patient's
- 37 haemoglobin concentration and clinical status must be considered.
- 38 **Word count:** abstract (n=219 words); main text (n = 2713 words)

39 Introduction

40	Visceral leishmaniasis (VL) is the most severe of the three forms of leishmaniasis and,
41	is fatal without treatment. The disease typically presents insidiously and is characterised by
42	protracted fever, hepatosplenomegaly and weight loss, often with evolving anaemia,
43	leukopaenia and thrombocytopaenia leading to pancytopaenia. ¹ At presentation, moderate
44	anaemia around 7–10 g/dL is common but can evolve into severe anaemia. 1 While the
45	underlying mechanism for the onset of anaemia in VL is likely multifactorial, the literature
46	suggests the main cause is due to macrophage induced haemolysis in the spleen ("splenic
47	sequestration, splenic haemophagocytosis"). ²
48	The WHO defines anaemia based on the haemoglobin levels below the reference
49	values based on age, sex, and pregnancy status. ³ In patients presenting with severe
50	anaemia, especially when accompanied by signs of anaemia (typically shortness of breath,
51	fatigue, weakness, light-headedness, occasionally chest pain), transfusion of blood products
52	may be therefore clinically indicated. Red blood cell (RBC) transfusion may also be indicated
53	in cases of acute blood due to invasive procedures such as splenic aspiration or venous
54	catheterisation or due to spontaneous haemorrhage from a VL-related bleeding diathesis.
55	Bleeding risk is exacerbated in VL patients as the disease can lead to alterations of hepatic
56	coagulation factors and thrombocytopaenia. ⁴ Therefore, operational manuals from national
57	control programmes suggest that haematological factors are taken into consideration prior
58	to splenic aspirations (or completely contra-indicate splenic aspiration) and that blood
59	transfusion services are in place for the management of acute blood loss. $^{4-8}$
60	Despite a clear recognition of the importance of transfusion in the management of
61	VL patients, the actual transfusion practice in clinical trials or daily management of patients

- 62 is poorly documented. In this review, we aim to collate information on blood transfusion
- 63 among VL patients enrolled in therapeutic efficacy trials.

64 Methodology

65 Information sources and search strategy for clinical trials

- 66 This review synthesises data from studies indexed in the Infectious Diseases Data
- 67 Observatory (IDDO) VL clinical trials library of prospective therapeutic studies from 1980
- 68 until Nov-2021⁹; details of the search strategy adopted for each of the databases have been
- 69 described elsewhere.¹⁰ Data on the following aspects of design and conduct of studies
- 70 captured by the IDDO VL library were extracted: the number of participants enrolled, details
- on the timing of transfusion (baseline, during treatment phase, or during the follow-up
- phase after discharge), and the details of the blood products transfused (whole blood,
- 73 packed red blood cells (PRBC), plasma, or platelets), the haemoglobin threshold used for
- 74 patient inclusion, and the transfusion triggers adopted.

75 Data summary and analysis

A descriptive summary of the data extracted is presented. The median proportion of patients reported to have received blood products is presented along with the range and inter-quartile range. No formal meta-analysis was undertaken owing to the large heterogeneity in transfusion practices adopted. All statistical analyses were carried out using R software.¹¹

81 Risk of bias assessment

- 82 The risk of bias assessment in studies included in this review was carried out using
- the Cochrane Risk of Bias (ROB) tool for randomised controlled trials.¹² Risk of bias in non-
- randomised studies will be carried out using ROBINS-I tool.¹³ Two reviewers (PD and SS)
- 85 independently assessed the risk of bias.

86 **Results**

87	The IDDO systematic review library has currently indexed 160 publications (35,763
88	patients; 1980–2021). There were 108 (67.5%) studies from the Indian subcontinent, 27
89	(16.9%) from East Africa, 9 (5.6%) from the Mediterranean region, 7 (4.4%) from South
90	America, 5 (3.1%) from Central Asia (the Middle East), and 4 (2.5%) were multi-regional
91	studies. The haematological measures adopted for patient inclusion are presented in Table
92	1. The minimum haemoglobin concentration required for inclusion was 3 g/dL in 8 (5.0%)
93	studies, >3-5 g/dL in 38 (23.8%) studies, >5-7 g/dL in 22 (13.8%) studies, and unclear in the
94	remaining 92 (57.5%) studies. Ranges of other heamatological parameters considered at
95	inclusion are presented in Table 1 .
96	Transfused products and transfusion triggers (n=16 studies)
97	Of the 160 studies in the IDDO VL systematic review library, the description of blood
98	transfusion was explicitly reported in 16 (10.1%) studies (n=3,459 patients; 1984-
99	2018)(Table 2). 7/108 studies from the Indian sub-continent, 6/27 studies from East Africa,
100	2/7 studies from South America, 1/5 studies from Central Asia and none of the 9 studies
101	from the Mediteeranean region or none of the 4 multi-regional studies reported data on
102	blood transfusion. Patients living with VL-HIV co-infection were included in 2 studies (n=113
103	patients), excluded in 4 studies (n=384 patients), and unclear in the remaining 10 studies
104	(n=2,962 patients). Pregnant women were included in 3 studies (n=996 patients), excluded
105	in 4 studies (n=304 patients), and unclear in the remaining 9 studies (n=2,159 patients).
106	Transfusion was not required for any patient in 1 study, and in the remaining 15
107	studies, transfusion of either whole blood or other blood products was reported (Table 2).
108	Transfusion of blood (without specifying if whole blood was transfused or the blood

components) was reported in 12 studies, 1 study transfused red blood cells, and 2 studies
reported transfusing either blood (without making distinction if whole blood or packed RBC)
or platelets.

112 Transfusion was initiated solely based on the measured concentration of 113 haemoglobin (or anaemia status) or platelet concentrations in 9 studies (Table 2). In 2 studies from India, the transfusion trigger was a combination of measured haemoglobin 114 concentration and existing of clinical conditions such as epistaxis or poor health ^{14, 15}. In a 115 study from Brazil ¹⁶, the measured concentration of red cells or international normalisation 116 117 ratio (INR) in addition to the clinical condition of the patient was adopted; transfusion of 118 RBC was undertaken if a patient had severe anaemia (haemoglobin <8 g/dL) along with 119 clinical instability and plasma transfusion was undertaken if the INR >1.5 and the patient 120 had active bleeding. The criteria used for blood transfusion were not stated in the remaining 121 4 studies (Table 2). The haemoglobin threshold used as a transfusion trigger was 3 g/dL in 2 122 studies, 4 g/dL in 2 studies, 5 g/dL in 2 studies, 6 g/dL in 1 study, 8 g/dL in 1 study, anaemia 123 or severe anaemia status (without reporting the haemoglobin threshold) in 3 studies, and 124 the threshold was not clear in 1 study.

Of the 2 studies that reported on platelet transfusion, a threshold of <65,000 cells/μL
 was used in a study from India ¹⁷, and in another study from Brazil [14], a threshold of
 <50,000 cells/μL was adopted among those who were given prophylactic transfusion before
 undertaking invasive procedures and a threshold of <20,000 cells/μL for patients with active
 bleeding (Table 2).

130 The number of blood transfusions reported (n=10 studies)

131	The number of patients who received transfusions were clearly reported in only 10
132	trials (2,421 patients enrolled); a total of 217 patients received blood transfusions (total
133	number of transfusion episodes were not reported). Of these 217 patients, 58 transfusions
134	occurred before initiation of antileishmanial therapies ^{15, 18} , 46 patients underwent
135	transfusion during treatment or follow-up phase $^{18-20}$, and the time when transfusion was
136	carried out was not reported for the remaining 113 patients (Table 2). Overall, from the 10
137	studies that clearly reported transfusion data, the median proportion of patients who
138	received a transfusion at any time-point in the study was 8.0% [Interquartile range (IQR):
139	4.7% to 47.2%; range: 0-100%] (Figure 1).
140	Two studies described transfusion among pregnant women: in a patient (1/16) in a
141	study from Kenya (transfused at 3.2 g/dL) 21 and all patients (100%, 42/42) in another study
142	on VL in pregnant women from Sudan (transfusion based on severe anaemia) ²² . In 3 studies
143	that explicitly enrolled children <15 years, of the 112 enrolled, 29 required transfusions
144	(Table 2 and supplemental table 1); the criteria for transfusion was Hb concentration <4
145	g/dL along pre-existing hemorrhagic problems in a study from India 23 and this unclear in
146	studies from Yemen ²⁴ and East Africa ²⁰ .
147	Two studies enrolled patients with HIV co-infections; 23/44 (52.2%) patients from a

Two studies enrolled patients with HIV co-infections; 23/44 (52.2%) patients from a study in Brazil ¹⁶ required transfusion; and the actual number of patients requiring transfusion was not reported in a study from Ethiopia (n=23 enrolled; number requiring transfusions was not reported) ²⁵.

151 Risk of bias assessment in studies included

152 Of the 16 studies included, 4 were randomised, and 12 v	vere non-randomised
---	---------------------

- 153 studies. The four randomised studies were judged to be at high/unclear risk of bias on
- 154 blinding domain, low or unclear risk of bias on sequence generation and allocation conceal
- domain. Of the 12 non-randomised studies, all of them were either open label or this
- description was unclear, bias in participants selection was considered low/moderate in 10
- 157 studies, high in 1 study, and unclear in 1 study. Risk of bias assessment is presented in

158 supplemental file 1.

159 **Discussion**

160	From the studies indexed in the IDDO VL clinical trials library, reporting of
161	information on blood transfusion was not explicit in the majority of clinical trials. These
162	could be partly due to the exclusion of patients with severe anaemia or severe disease in
163	standard efficacy studies in VL. For example, approximately 40% of the 160 therapeutic
164	efficacy studies excluded patients with haemoglobin concentrations less than 5 g/dL. The
165	combination of inclusion/exclusion criteria adopted will likely lead to the exclusion of severe
166	patients who may be less likely to require transfusion. From the 16 studies that clearly
167	reported occurrences (or abscences) of blood transfusion, the criteria adopted for
168	transfusion varied between the studies. Most of the studies reported initiating blood
169	transfusion based on thresholds of haemoglobin concentration or anaemia status, without
170	taking other factors (for example, clinical stability/bleeding conditions/poor health) into
171	consideration; the haemoglobin concentration used as a transfusion trigger ranged from 3-8
172	g/dL. This wide variation is particularly relevant as recent studies (non-VL context) have
173	pointed towards the lack of benefit of blood transfusion in preventing mortality when
174	transfusion is initiated at haemoglobin concentration greater than 4 g/dL. ^{26–29} Such
175	assessment of the risk-benefit ratio associated with transfusion was not possible in this
176	review as clinical outcomes were not disaggregated by transfusion status in the included
177	studies. In addition to these criteria, it is also important to consider further haemodynamic
178	stability and clinical history of patients, such as heart conditions, when considering the
179	adoption of a transfusion threshold. ³⁰

180 The current WHO guidelines on the management of paediatric anaemia recommend 181 carrying out transfusion when haemoglobin concentration is below 4 g/dL, and among those

182 with non-severe anaemia (haemoglobin 4-6 g/dL), transfusion is only indicated if the child presents with other clinical features including dehydration and heart failure.³¹ For adults, 183 184 specific guidelines among critically ill patients in the ICU have advocated a threshold of 7 185 g/dL and have recommended further personalising the transfusion decision based on the clinical condition of the patient.³² However, only three studies included in this review 186 187 reported carrying out transfusion using a combination of haemoglobin concentration and 188 further clinical criteria such as clinical stability, poor health or active bleeding, such as epistaxis (**Table 1**). This is particularly relevant as the ability to tolerate anaemia can partly 189 190 depend on the speed of its evolution, as compensatory mechanisms can enable relatively severe degrees of anaemia to be tolerated if it develops over a prolonged duration.³³ VL 191 primarily affects the poor and marginalised populations with limited access to healthcare, 192 193 leading to a prolonged duration of illness prior to presentation. As the disease itself often 194 evolves insidiously over weeks or months, and patients often receive care late in the disease course, anaemia evolves over a prolonged.³⁴ Therefore, in VL patients, it can be anticipated 195 196 that compensatory mechanisms will have led to a physiological adaptation to anaemia. 197 However, acute anaemia arising as a result of acute bleeding occurring due to complications during splenic puncture or post-partum haemarroage among pregnant VL patients ³⁵ can 198 199 overwhelm the compensatory mechanisms of the body and can be fatal, thus requiring 200 immediate transfusion. 201 Further caution is urged when transfusing patients who present with severe acute 202 malnutrition (a common feature of VL patients), as fluid overload and respiratory impairment are a recognised and feared complication in patients with hypoalbuminemia.³¹ 203

204 In the studies included in this review, one case of transfusion reaction was reported ²⁰; but

205 specific details on the nature of this adverse event were not presented. In other studies

included in this review, no reports on the occurrence of transfusion reactions or transfusionassociated risks were reported. However, the absence of reporting of such occurrences
cannot be taken as evidence of absence of adverse events. In general, transfusion reactions
are estimated to occur up to 1 per 100 transfusions.³⁶ There are no such estimates specific
to the VL context, and the risks associated with transfusion in the context of VL are not well
understood.

212 From the relatively limited set of studies that reported the occurrences of 213 transfusions, the median proportion of patients who received blood transfusions was 8% 214 (n=10 studies). As mentioned earlier, patients with severe anaemia or those with severe VL 215 and pre-existing co-morbidities are excluded in standard therapeutic efficacy studies leading 216 to the inclusion of mostly uncomplicated VL cases. Therefore, the incidence of transfusion in 217 routine clinical practice is likely to be much higher. This suggests that there might be a 218 substantial economic/logistic cost to the healthcare facilities arising from the requirement 219 of transfusion in the management of VL patients. The cost could also be further increased as 220 a central cause of anaemia may require multiple transfusions leading to increased 221 expenditure and the management of potential safety risks associated with transfusion alone $^{37-39}$, while the benefit for the patients may not be warranted. 222

There are several limitations with this review. Of the 160 clinical studies in the VL IDDO systematic review library, the majority of the studies didn't report any transfusion related data. Data on the number of transfusions carried out were also not reported; therefore, the actual number of transfusion episodes remains unclear. Overall, these indicate generally high or unclear risk of bias in the studies included with respect to assessing blood transfusion and their effect on treatment. However, since blood transfusion

229 isn't the main focus of the efficacy studies, lack of details regarding transfusion and 230 outcomes preveted a thorough assessment of risk of bias. Instead, the overall quality of 231 studies were assessed using standard risk of bias tools. Another aspect to be considered is 232 the influence of the conditions of the health services where the patients gathered here were 233 originally treated, including the possibility of different local guidelines for transfusions. For 234 example, three studies reported undertaking haematological profile correction prior to enrolment of patients without describing if any transfusions were carried out.^{15,40,41} Such 235 236 practice can affect the requirement for transfusion during the study. Similarly, access to 237 blood products is relatively difficult in some countries, which may have contributed to the 238 observed differences in the rate of transfusions between studies. Finally, from the reports 239 included in this review, it was not possible to reliably assess if some patient groups were 240 more or less likely to require transfusion than others; this would require an individual 241 participant data meta-analysis. 242 A checklist of items for reporting data related to transfusion is proposed in Box 1. 243 Adoption of such a checklist can facilitate better reporting of the transfusion-related 244 parameters and can enable a thorough assessment of the risks and benefits of transfusion 245 strategies adopted among VL patients in the future. Additionally, the standardisation and 246 completeness of haematological data in VL studies before, during and after treatment, 247 including information concerning blood transfusions, therapy and clinical outcome 248 stratification, may also help in recognising the dynamics of VL clinical improvement after

treatment, over time, contributing to the establishment of operational definitions to

250 support cure assessment.

251 Conclusions

252	Data regarding blood transfusions remain largely unreported in therapeutic efficacy
253	studies on VL, with information available only on 16 therapeutic efficacy studies published
254	since 1980. When reported, the decision to undertake transfusion was often found to be
255	solely based on the haemoglobin concentration of the patients, with only three studies
256	incorporating additional clinical criteria. Overall, this review represents the initial step in
257	acknowledging the magnitude of the gap related to blood derivatives use and points to the
258	need for harmonisation of the clinical data presentation in VL prospective studies. The
259	research community should adopt a standardised method for the reporting oftransfusion
260	episodes so that the true benefit of transfusion in VL case management can be reliably
261	assessed.

262

- 264 Study Conception: PD, SSP, KS, PJG
- 265 Methodology: PD, SSP
- 266 Data curation: PD, SSP
- 267 Project supervision: SSP, KS, PJG
- 268 Project administration: PD, SSP
- 269 Funding acquisition: PJG
- 270 Writing-original draft: PD, SSP, JW, GC, KR, AM, FA, KS, PJG
- 271 Writing- review and editing: All authors were involved in reading and critical revision of the
- 272 initial draft and approved the final manuscript.

273

274 Funding

- 275 This work is funded by a Bill & Melinda Gates Foundation grant to the Infectious Diseases
- 276 Data Observatory, Oxford University, UK (Recipient: Prof. Philippe Guerin; ref: INV-004713).
- 277 Funding agency had no role in developing the manuscript or its publication.

278

- 279 Conflict of Interest
- 280 None
- 281

282 Data Availability

All the data used in this review are available within supplemental file 1.

284

- 285
- 286

287 **References**

288	1.	Boelaert M, Sundar S. 47. Leishmaniasis. In: Jeremy Farrar, Peter Hotez, Thomas
289		Junghanss, Gagandeep Kang, David Lalloo and NJW, ed. Manson's Tropical Diseases.
290		Elsevier Health Sciences; 2014:631-651.
291	2.	Goto Y, Cheng J, Omachi S, Morimoto A. Prevalence, severity, and pathogeneses of
292		anemia in visceral leishmaniasis. <i>Parasitol Res</i> . 2017;116(2):457-464.
293		doi:10.1007/s00436-016-5313-x
294	3.	Vitamin and Mineral Nutrition Information System.World Health Organization.
295		Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity.
296		Geneva, Switzerland,World Health Organization (WHO/NMH/NHD/MNM/11.1).
297		doi:2011
298	4.	WHO. Guideline for diagnosis, treatment & prevention of leishmaniasis in Ethiopia.
299		WHO. Published 2013. Accessed July 28, 2021.
300		https://www.who.int/leishmaniasis/burden/Guideline_for_diagnosis_treatment_and
301		_prevention_of_leishmaniasis_in_Ethiopia.pdf
302	5.	Federal Ministry of Health - Republic of Sudan. Manual for the diagnosis and
303		treatment of leishmaniasis. WHO. Published 2014. Accessed July 28, 2021.
304		https://www.who.int/leishmaniasis/burden/Manual_for_the_diagnosis_and_treatme
305		nt_Leishmaniasis_Guideline_Sudan_2014.pdf?ua=1
306	6.	National Vector Borne Disease Control Programme. Operational guidelines on kala-
307		azar (visceral leishmaniasis) elimination in India - 2015. WHO. Published 2015.
308		Accessed October 29, 2019.

309		https://www.who.int/leishmaniasis/burden/Operational_guidelines_on_kala_azar_el
310		imination_in_India.pdf
311	7.	Ministry of Health R of K. Prevention, diagnosis and treatment of Visceral
312		Leishmaniasis (Kala-Azar) in Kenya. Published 2017. Accessed August 30, 2019.
313		https://www.who.int/leishmaniasis/burden/Kala_Azar_Kenya_2017.pdf?ua=1
314	8.	Ministry of Health - Somali Fedral Government. Guidelines for diagnosis , treatment
315		and prevention of visceral leishmaniasis in Somalia. WHO. Published 2012. Accessed
316		July 28, 2021.
317		https://www.who.int/leishmaniasis/burden/Guidelines_for_diagnosis_treatment_an
318		d_prevention_of_VL_in_Somalia.pdf
319	9.	Infectious Diseases Data Observatory. VL Surveyor. Published 2023. Accessed January
320		9, 2023. https://www.iddo.org/vlSurveyor/#0
321	10.	Bush JT, Wasunna M, Alves F, et al. Systematic review of clinical trials assessing the
322		therapeutic efficacy of visceral leishmaniasis treatments: A first step to assess the
323		feasibility of establishing an individual patient data sharing platform. PLoS Negl Trop
324		<i>Dis</i> . 2017;11(9):1-16. doi:10.1371/journal.pntd.0005781
325	11.	R Core Team. R: A language and environment for statistical computing. <i>R Found Stat</i>
326		<i>Comput Vienna, Austria</i> . Published online 2018.
327	12.	Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in
328		randomised trials. <i>BMJ</i> . 2019;366(14898):1-8. doi:10.1136/bmj.l4898
329	13.	Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: A tool for assessing risk of bias in
330		non-randomised studies of interventions. BMJ. 2016;355:4-10. doi:10.1136/bmj.i4919

- 331 14. Thakur CP. Epidemiological, clinical and therapeutic features of Bihar kala-azar
- 332 (including post kala-azar dermal leishmaniasis). *Trans R Soc Trop Med Hyg*.
- 333 1984;78(3):391-398. doi:10.1016/0035-9203(84)90131-7
- 15. Thakur CP, Sinha GP, Pandey AK, Barat D, Sinha PK. Amphotericin B in resistant kala-
- azar in Bihar. *Natl Med J India*. 1993;6(2):57-60.
- 16. Cota GF, de Sousa MR, de Mendonça ALP, et al. Leishmania-HIV Co-infection: Clinical
- 337 Presentation and Outcomes in an Urban Area in Brazil. *PLoS Negl Trop Dis*.
- 338 2014;8(4):2-8. doi:10.1371/journal.pntd.0002816
- 339 17. Thakur CP, Kumar A, Mitra DK, Roy A, Sinha AK, Ranjan A. Improving outcome of
- 340 treatment of Kala-Azar by supplementation of amphotericin B with physiologic saline
- and potassium chloride. *Am J Trop Med Hyg*. 2010;83(5):1040-1043.
- 342 doi:10.4269/ajtmh.2010.10-0255
- 18. Thakur CP, Singh RK, Hassan SM, Kumar R, Narain S, Kumar A. Amphotericin B
- 344 deoxycholate treatment of visceral leishmaniasis with newer modes of administration
- and precautions: A study of 938 cases. *Trans R Soc Trop Med Hyg.* 1999;93(3):319-
- 346 323. doi:10.1016/S0035-9203(99)90037-8
- 347 19. Moore E, O'Flaherty D, Heuvelmans H, et al. Comparison of generic and proprietary
- 348 sodium stibogluconate for the treatment of visceral leishmaniasis in Kenya. Bull
- 349 World Health Organ. 2001;79(5):388-393. doi:10.1590/S0042-96862001000500004
- 350 20. Mbui J, Olobo J, Omollo R, et al. Pharmacokinetics, safety and efficacy of an allometric
- 351 miltefosine regimen for the treatment of visceral leishmaniasis in Eastern African
- 352 children: an open-label, phase-II clinical trial. *Clin Infect Dis*. Published online 2018.

353 doi:10.1093/cid/ciy747

354	21.	Rees PH, Kager PA, Wellde BT, Hockmeyer WT. The response of Kenyan kala-azar to
355		treatment with sodium stibogluconate. <i>Am J Trop Med Hyg</i> . 1984;33(3):357-361.
356		doi:10.4269/ajtmh.1984.33.357
357	22.	Adam GK, Abdulla MA, Ahmed AA, Adam I. Maternal and perinatal outcomes of
358		visceral leishmaniasis (kala-azar) treated with sodium stibogluconate in eastern
359		Sudan. Int J Gynecol Obstet. 2009;107(3):208-210. doi:10.1016/j.ijgo.2009.08.002
360	23.	Thakur CP, Sinha GP, Sharma V, Pandey AK, Sinha PK, Barat D. Efficacy of
361		amphotericin B in multi-drug resistant kala-azar in children in first decade of life.
362		Indian J Pediatr. 1993;60(1):29-36. doi:10.1007/BF02860503
363	24.	Haider NA, Diab A-BL, EL-Sheikh AM. Visceral Leishmaniasis in children in the Yemen.
364		Saudi Med J. 1990;11(2):99-104.
365	25.	Berhe N, Wolday D, Hailu A, et al. HIV viral load and response to antileishmanial
366		chemotherapy in co-infected patients. <i>AIDS</i> . 1999;13(14):1921-1925.
367		doi:10.1097/00002030-199910010-00015
368	26.	Lackritz EM, Campbell C, Ruebush II T, et al. Effect of blood transfusion on survival
369		among children in a Kenyan hospital. <i>Lancet</i> . 1992;340:524-528.
370	27.	Hebert PC, Wells G, Blajchman MA, et al. A Multicenter, Randomized, Controlled
371		Clinical Trial of Transfusion Requirements in Critical Care. J Urol. 1999;162(1):280-
372		280. doi:10.1097/00005392-199907000-00110
373	28.	Carson JL, Sieber F, Cook DR, et al. Liberal versus restrictive blood transfusion

374 strategy: 3-year survival and cause of death results from the FOCUS randomised

375 controlled trial. *Lancet*. 2015;385(9974):1183-1189. doi:10.1016/S0140-

376 6736(14)62286-8

- 377 29. Maitland K, Ohuma EO, Mpoya A, Uyoga S, Hassall O, Williams TN. Informing
- 378 thresholds for paediatric transfusion in Africa: The need for a trial. *Wellcome Open*
- 379 *Res.* 2019;4:1-25. doi:10.12688/wellcomeopenres.15003.2
- 380 30. Kansagara D, Dyer E, Englander H, Fu R, Freeman M, Kagen D. Treatment of anemia in
- patients with heart disease: A systematic review. Ann Intern Med. 2013;159(11):746-
- 382 757. doi:10.7326/0003-4819-159-11-201312030-00007
- 383 31. WHO. Pocket Book of Hospital Care for Children: Guidelines for the Management of
 384 Common Childhood Illnesses 2nd Ed.; 2013.
- 385 32. Retter A, Wyncoll D, Pearse R, et al. Guidelines on the management of anaemia and
- red cell transfusion in adult critically ill patients. *Br J Haematol*. 2013;160(4):445-464.
- 387 doi:10.1111/bjh.12143
- 388 33. Vincent JL. Which carries the biggest risk: Anaemia or blood transfusion? *Transfus Clin*389 *Biol.* 2015;22(3):148-150. doi:10.1016/j.tracli.2015.05.001
- 390 34. Lucy Paintain, Hererro M, Aggarwal V, et al. Cross-sectional surveys in Bangladesh,
- 391 India, Ethiopia & Sudan: understanding treatment seeking & household economic
- 392 burden for VL patients. In: WorldLeish Congress, 16-20 May 2017, Toledo, Spain. ;
- 393 2017.
- 394 35. Pekelharing JE, Gatluak F, Harrison T, Maldonado F, Siddiqui MR, Ritmeijer K.
- 395 Outcomes of visceral leishmaniasis in pregnancy: A retrospective cohort study from
- 396 South Sudan. *PLoS Negl Trop Dis*. 2020;14(1):e0007992.

397 doi:https://dx.doi.org/10.1371/journal.pntd.0007992

- 398 36. Delaney M, Wendel S, Bercovitz RS, et al. Transfusion reactions: prevention,
- diagnosis, and treatment. *Lancet*. 2016;388(10061):2825-2836. doi:10.1016/S0140-
- 400 6736(15)01313-6
- 401 37. Burchenal JH, Bowers RF, Haedicke TA. Visceral Leishmaniasis Complicated by Severe
- 402 Anemia—Improvement Following Splenectomy. *Am J Trop Med Hyg*. 1947;27(6):699-
- 403 709. doi:https://doi.org/10.4269/ajtmh.1947.s1-27.699
- 404 38. Cachia EA, Fenech FF. A review of kala-azar in Malta from 1947 to 1962. *Trans R Soc*
- 405 *Trop Med Hyg*. 1964;58(3):234-241. doi:10.1016/0035-9203(64)90035-5
- 406 39. Grech V, Mizzi J, Mangion M, Vella C. Visceral leishmaniasis in Malta An 18 year
- 407 paediatric, population based study. *Arch Dis Child*. 2000;82(5):381-385.
- 408 doi:10.1136/adc.82.5.381
- 409 40. Thakur CP, Ahmed S. Observations on amphotericin B treatment of kala-azar given in
 410 a rural set up in Bihar, India. *Indian J Med Res.* 2001;113 (JAN.):14-18.
- 411 41. Ekram MR, Amin MR, Hasan MJ, et al. Efficacy and safety of single-dose liposomal

412 amphotericin B in patients with visceral leishmaniasis in Bangladesh: a real-life

- 413 experience. J Parasit Dis. 2021;45(4):903-911. doi:10.1007/s12639-021-01379-w
- 414 42. Thakur CP, Kumar M, Kumar P, Mishra BN, Pandey AK. Rationalisation of regimens of
- 415 treatment of kala-azar with sodium stibogluconate in India: A randomised study. Br
- 416 *Med J (Clin Res Ed)*. 1988;296(6636):1557-1561. doi:10.1136/bmj.296.6636.1557
- 417 43. Thakur CP, Kumar M, Pandey AK. Comparisons of regimens of treatment of antimony-
- resistant Kala-Azar patients: A randomized study. *Am J Trop Med Hyg*. 1991;45(4).

419	44.	Dietze R, Milan E, Berman J, Grogl M, et al. Treatment of Brazilian kala-azar with a
420		short course of amphocil (amphotericin B cholesterol dispersion). <i>Clin Infect Dis</i> .
421		1993;17(6):981-986.
422	45.	Thakur CP, Singh RK, Hassan SM, Kumar R, Narain S, Kumar A. Amphotericin B
423		deoxycholate treatment of visceral leishmaniasis with newer modes of administration
424		and precautions: A study of 938 cases. <i>Trans R Soc Trop Med Hyg</i> . 1999;93(3):319-
425		323. doi:10.1016/S0035-9203(99)90037-8
426	46.	Moore E, O'Flaherty D, Heuvelmans H, et al. Comparison of generic and proprietary
427		sodium stibogluconate for the treatment of visceral leishmaniasis in Kenya. Bull
428		World Health Organ. 2001;79(5):388-393.
429	47.	Mueller Y, Nguimfack A, Cavailler P, et al. Safety and effectiveness of amphotericin B
430		deoxycholate for the treatment of visceral leishmaniasis in Uganda. Ann Trop Med
431		<i>Parasitol</i> . 2008;102(1):11-19. doi:10.1179/136485908X252142
432	48.	Das VNR, Siddiqui NA, Pandey K, et al. A controlled, randomized nonblinded clinical
433		trial to assess the efficacy of amphotericin B deoxycholate as compared to
434		pentamidine for the treatment of antimony unresponsive visceral leishmaniasis cases
435		in Bihar, India. Ther Clin Risk Manag. 2009;5(1):117-124. doi:10.2147/TCRM.S3581

	Number of studies	
Haematological parameters	(number of patients)	% (n=160)
Minimum haemoglobin concentration		
>3 g/dL	8 (n=1,804)	5.0%
>3 to <=5 g/dL	38 (n=11,452)	23.8%
>5 to <=7 g/dL	22 (n=2,644)	13.8%
Unclear	92 (n=19,863)	57.5%
Prothrombin time (above control values)		
>4 seconds	9 (n=1,277)	5.6%
>5 seconds	14 (n=5,599)	8.8%
>15 seconds	2 (n=631)	1.3%
>20 seconds	1 (n=89)	0.6%
Prothrombin activity <40%	1 (n=57)	0.6%
INR >2	1 (n=378)	0.6%
Unclear	132 (27,732)	82.5%
Minimum platelets concentration		
>4,000/µL	1 (n=30)	0.6%
>5,000/µL	1 (n=60)	0.6%
>20,000/µL	1 (n=378)	0.6%
>30,000/µL	2 (n=38)	1.3%
>40,000/µL	22 (n=7,432)	13.8%
>50,000/µL	19 (2,681)	11.9%
>60,000/µL	1 (n=230)	0.6%
>75,000/µL	1 (n=120)	0.6%
>80,000/µL	4 (n=50)	2.5%

437 Table 1: Haematological parameters considered for defining inclusion/exclusion criteria for patient enrolment

Unclear	108 (n=24,274)	67.5%
Minimum WBC count		
<750/µL	1 (n=412)	0.6%
<1,000/µL	18 (n=7,086)	11.3%
<2,000/µL	8 (n=756)	5.0%
<1,000/mL	1 (n=30)	0.6%
<2,000/nL	1 (n=39)	0.6%
granulocytes <1,000/μl	18 (n=3,636)	11.3%
granulocytes <2,000/μl	1 (n=45)	0.6%
Unclear	112 (n=23,763)	70.0%

438 INR= International normalisation ratio

Table 2: Description of transfusion in clinical studies of VL indexed in the IDDO living systematic review library

Author-year	Country	Drug regimen	Total enrolle d	Number of transfusions	Transfusion rules	Transfuse d product	Description	Number of Patients requiring transfusion at baseline	Transfusion during treatment /follow-up
Rees-1984 ²¹	Kenva	SSG	16	1	Unclear if there were any specific rules (the transfused patient had Hb measurement of 3.2 g/dL)	Blood	In one pregnant patient with a haemoglobin of 3.2 g/dl, 2 pints of blood were given concomitantly with the commencement of SSG	-	Transfused during treatment; unclear number of patients
				-			If Hb was below 4.0 g/dL and the general condition of the patient was poor, a blood transfusion was given. Blood transfusions were given to all cases with haemorrhage.		
					4 g/dL +poor health OR	Blood	Four cases of cancrum oris were encountered in the early phase of the epidemic when drugs were scarce. With specific treatment, general management with blood transfusion and oral protein supplements and crystalline penicillin,		
Thakur- 1984 ¹⁴	In dia	SSG SSG	750 371	4 0	haemorrhage Unclear	No transfusion	cancrum oris improved. As our patients were selected so that they did not have a haemoglobin concentration of less than 3 g/dL no blood transfusion was required for any patient	0	0
Thakur- 1991 ⁴³	India	P ent amidin e; P ent amidin e + SSG	312	Unclear	3 g/dL	Biood	Patients whose haemoglobin level was less than 3 g/dL were given a blood transfusion, and when the haemoglobin level improved beyond 3 g/dL, they were included in the trial	Transfused at baseline; Unclear number of patients	-
Dietze 1993 ⁴⁴	Brazil	ABCD	20	Unclear	Unclear	Red cells	Some patients were administered transfusions of red blood cells during therapy	-	Transfused during treatment; unclearnumber of patients

1								Patients were given blood transfusions if they		
								had haemoglobin below 4 g/dL, or had any		
								hemorrhagic problems like epistaxis. Epistaxis		
								occurred in 4 patients and it was treated with		
								blood transfusions (Table 1 of the publication		
						4 g/dL + pre-existing				
	TI I 4000 ²³			50				indicates transfusions occurred before treatment		
	Thakur-1993 ²³	India	Amphotericin B	50	4	hemorrhagic problems	Blood	as no epistaxis occurred)	4	0
								Blood transfusion was given to patients with		
								severe anaemia and the post-transfusion		
								haemoglobin value among the two groups was		
	Berhe-1999 ²⁵	Ethiopia	PA	23	Unclear	severe anaemia	Blood	not different	-	-
								The initial precaution taken was that patients		
								whose haemoglobin level was below 5 g/dL were		
								given blood transfusion first and only when the		
								haemoglobin reached 5 g/dL was treatment for		
								visceral leishmaniasis started. Blood transfusion		
								was required in 54 (6%) patients before start of		
								treatment. Anaemia improved with treatment but		
								in 2 patients, haemoglobin dropped after		
	Thakur- 1999 ⁴⁵	India	AMBd	938	56	5 g/dL	Blood	treatment and they required blood transfusion	54	2
	Thakur• 1999	IIIula	AMDU	538	50	5 g/uL	Bibbu	Blood transfusions were available for an aemic	54	2
								patients. Patients required transfusions during		
	46							and after treatment; as described in Table 2 of		
	Moore-2001 ⁴⁶	Kenya	SSG	102	43	anaemia	Blood	the manuscript ⁴⁶ .	-	43
	24							Blood transfusions were required for 24 patients		
	Haidar-2001 ²⁴	Yemen	SSG	32	24	Unclear	Blood	(73%)	-	-
								Blood transfusions for severe anaemia were		
	Mueller-2008 ⁴⁷	Uganda	AMBd; PA	371	Unclear	severe anaemia	Blood	given, if necessary	-	-
								In cases of VL, who had severe anaemia (Hb < 6	Transfused at	
								g/dl), before excluding such patients from the	baseline:	
								study, an effort was undertaken to increase their	Unclear	
			AMBd;					haemoglobin level by giving fresh blood	number of	
	Das-2009 48	India	Pentamidine	82	Unclear	6 g/dL	Blood	transfusion as required	patients	
	Da3-2005	mula	rentamune	02	Uncrear	0 g/uL	Diood	÷	patients	-
	Adam-2009 ²²	Curden	SSG	42	42		Disad	All 42 patients received blood transfusions for		
	Auam-2009	Sudan	200	42	42	severe anaemia	Blood	severe anaemia	-	-
								If patients had haemoglobin levels < 5 g/dL or a		
								thrombocyte count < 65,000 cells/µL, whole	Transfused at	
							1	blood transfusions or platelet transfusions were	baseline;	
							Whole	given, respectively. If these two parameters	Unclear	
	-						blood/platel	reached acceptable levels, only then were the	number of	
	Thakur-2010 ¹⁷	India	Amphotericin B	230	Unclear	5 g/dL	ets	patients included in the trial	patients	-

	1		1		T				
							In this study, all types of blood products were		
							accounted for between baseline and the end of		
							hospitalisation for VL treatment.		
	Brazil	PA; AMBd; L-AmB							
							Specific transfusion rules:		
							platelets: <20,000 + active bleeding or below		
							50,000 before performing invasive procedures;		
					Measured		red cells: severe anaemia or Hb < 8 g/dL + clinical		
					Hb/platelets/INR +	Red cells or	instability;		
Cota-2014 ¹⁶					clinical	plasma or	mstability,		
(HIV negative)			46	19*	instability/bleeding	platelets	plasma: INR > 1,5 + active bleeding	_	-
(inotability, biocouning	pratereto	In this study, all types of blood products were		
							accounted for between baseline and the end of		
							hospitalisation for VL treatment.		
	Brazil	PA; AMBd; L-AmB							
		, ,					Specific transfusion rules:		
							platelets: <20,000 + active bleeding or below		
							50,000 before performing invasive procedures;		
					Measured		red cells: severe anaemia or Hb < 8 g/dL + clinical		
					Hb/platelets/INR +	Red cells or	in stability;		
Cota-2014 ¹⁶					clinical	plasma or			
(HIV positive)			44	23*	instability/bleeding	platelets	plasma: INR > 1,5 + active bleeding	-	-
							The first had a case of "transfusion reaction" that		
							was considered an important medical event by		
	Kenya,						the investigator, occurring on day 203 after the		
Mbui-2018 ²⁰	Uganda	Miltefosine	30	1	Unclear	Unclear	treatment start	-	1

440 Three trials that reported provision for haematological profile correction prior to patients enrolment without describing if any transfusions were carried out; these studies 441 are not included in this table ^{15,40,41}.

Hb= haemoglobin; SSG = Sodium stibogluconate; PA = Pentavalent antimony; AMB = Amphotericin B; AMBd = Amphotericin B deoxycholate; ABCD= Amphotericin B
 colloidal dispersion

444

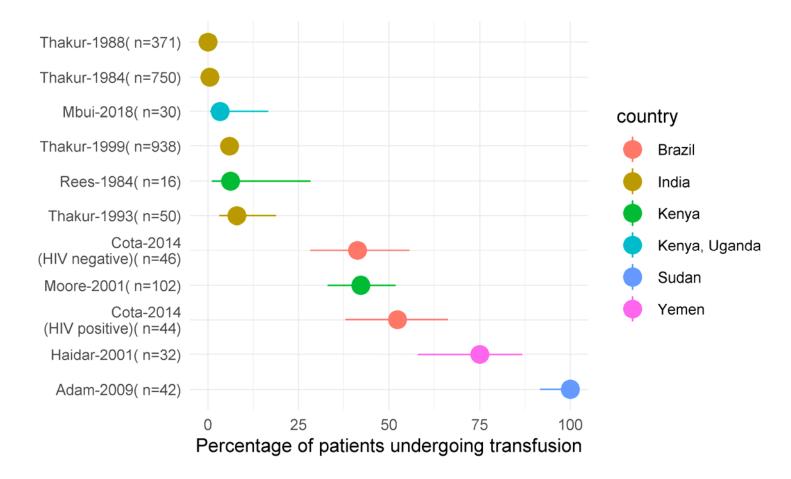


Figure 1: Proportion of patients undergoing transfusion in 10 studies that clearly reported the transfusion status

447 **Box 1: Transfusion parameters**

ltem	Description			
Haematological parameters	Rules used for indicating transfusion			
	Haemoglobin (or haematocrit) level used for indicating transfusion			
	Information regarding blood/blood products transfused: whole blood, plasma, platelets			
	Units of transfused blood/blood products/transfusion volume			
	Time-point of transfusion: before treatment, during treatment (in days) or during the follow-up phase (in days or weeks)			
	Reason for transfusion: severe anaemia, acute blood loss, epistaxis/haemorrhage/splenic bleeding			
	Minimum haemoglobin concentration required for patient enrolment into a study			
	Definition of anaemia/severe anaemia			
Distinction between patients and episodes				
	Number of patients who required transfusion			
	Total number of episodes of transfusion			
Therapeutic outcomes				
	Reports of transfusion reactions, including the nature of the transfusion reaction (if any)			
	Therapeutic outcomes stratified by transfusion status for each drug regimen			

448