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Abstract4

Replicability is the cornerstone of modern scientific research. Reliable identifications5

of genotype-phenotype associations that are significant in multiple genome-wide associ-6

ation studies (GWASs) provide stronger evidence for the findings. Current replicability7

analysis relies on the independence assumption among single nucleotide polymorphisms8

(SNPs) and ignores the linkage disequilibrium (LD) structure. We show that such a9

strategy may produce either overly liberal or overly conservative results in practice.10

We develop an efficient method, ReAD, to detect replicable SNPs associated with the11

phenotype from two GWASs accounting for the LD structure. The local dependence12

structure of SNPs across two heterogeneous studies is captured by a four-state hidden13

Markov model (HMM) built on two sequences of p-values. By incorporating informa-14

tion from adjacent locations via the HMM, our approach provides more accurate SNP15

significance rankings. ReAD is scalable, platform independent and more powerful than16

existing replicability analysis methods with effective false discovery rate (FDR) con-17

trol. Through analysis of datasets from two asthma GWASs and two ulcerative colitis18
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GWASs, we show that ReAD can identify replicable genetic loci that existing methods19

might otherwise miss.20

1 Introduction21

Genome-wide association studies (GWASs) allow for simultaneous study of millions of single22

nucleotide polymorphisms (SNPs). Numerous genetic risk variants associated with various23

phenotypes and complex diseases have been reported over the past couple of decades (Mc-24

Carthy et al., 2008; MacArthur et al., 2017). These associations provide insights into the archi-25

tecture of disease susceptibility. Despite these progresses, many reported genotype-phenotype26

associations fail to replicate in other studies (Ioannidis et al., 2001; Chanock et al., 2007).27

An analysis of past studies indicates that the cumulative prevalence of irreplicable preclini-28

cal research (including GWAS) exceeds 50% (Ioannidis, 2005; Prinz et al., 2011; Begley and29

Ellis, 2012; Freedman et al., 2015). Approximately 28 billion annually is spent on preclinical30

research that is not replicable in the United States alone (Freedman et al., 2015). Irrepli-31

cable and/or inconsistent between-study associations might be spurious findings caused by32

confounding factors, such as population stratification, misclassification of phenotypes, geno-33

typing errors, or technical biases, among others. Replicability is now considered a sine qua non34

for establishing credible genotype-phenotype associations in the era of GWAS (Moonesinghe35

et al., 2008; Huffman, 2018). We study conceptual replicability where consistent results are36

obtained using different processes and populations that target the same scientific question.37

For GWASs, replicability analysis aims to detect genetic risk loci that are significantly as-38

sociated with the same phenotype across different studies (Heller and Yekutieli, 2014; Heller39

et al., 2014; Bogomolov and Heller, 2022). By eliminating genetic associations that can not40

be generalized across studies, replicability analysis provides stronger support for genuine sci-41

entific findings, avoids wasted resources, and improves efficiency of drug development. This42
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helps the translation of bench discoveries to bedsided therapies.43

In GWASs, millions of SNPs are tested simultaneously, requiring multiple testing adjust-44

ment. False discovery rate (FDR), defined as the expectation of the proportion of false discov-45

eries over total discoveries, is a commonly used metric for type I error control (Benjamini and46

Hochberg, 1995). A central characteristic of GWAS data is the linkage disequilibrium (LD)47

among SNPs, with which alleles at nearby sites can co-occur on the same haplotype more48

often than by chance alone (Pritchard and Przeworski, 2001; Wall and Pritchard, 2003). As49

a result, it is common to observe that phenotype-associated SNPs form clusters and exhibit50

high correlations within clusters (Wei et al., 2009). An effective approach to account for the51

LD structure among SNPs is through the hidden Markov model (HMM) (Churchill, 1992).52

Existing GWAS literature (Sun and Cai, 2009; Wei et al., 2009) using HMM for a single study53

is not applicable to replicability analysis of multiple studies. Furthermore, their approaches54

cannot be generalized to more than one study due to the heterogeneity of LD across different55

studies (Lonjou et al., 2003). Replicability analysis of GWASs explicitly accounting for the56

LD structure has not been studied before to the best of our knowledge.57

To claim replicability, an ad hoc approach is to implement an FDR control method, such58

as the Benjamini and Hochberg (BH) procedure (Benjamini and Hochberg, 1995), for each59

study and intersect significant results from all studies as replicable findings. This approach60

does not control the FDR and moreover has low power as it does not borrow information61

from different studies. The maximum of p-values across studies (Pmax) is a straightforward62

significance measure for replicability (Benjamini et al., 2009). After summarizing data from63

multiple studies by Pmax, classic FDR control procedures such as BH are used for replicability64

analysis. This procedure is overly conservative as it guards against the worst scenario and does65

not incorporate the composite null structure of replicability analysis. For independent features66

from high-throughput experiments, various methods were proposed for replicability analysis.67

These methods are not robust to heterogeneity of different studies (Li et al., 2011; Philtron68
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et al., 2018), require tuning parameters (Zhao et al., 2020), impose parametric assumptions69

on the p-values (Heller et al., 2014) or demand access to full datasets which can be prohibitive70

due to privacy concerns or logistics (McGuire et al., 2021).71

We address the limitations of existing methods by developing an efficient method, ReAD72

(Replicability Analysis accounting for Dependence) to detect replicable genotype-phenotype73

associations across two GWASs by incorporating the LD structure. We use GWAS summary74

statistics such as p-values, treating multiple studies symmetrically. Our approach models the75

clustered signals from two studies with a four-dimensional HMM accounting for the hetero-76

geneity of LD structures in different studies. Conditional on the HMM, we model the two77

p-value sequences as a four-group mixture of SNPs (Efron, 2012; Chung et al., 2014). The78

replicability null hypothesis consists of three components: zero effects in both studies, zero79

effect in one study and non-zero effect in another study and vice versa. ReAD calculates the80

posterior probability of replicability null given data. Compared to other replicability analysis81

methods, ReAD is robust as it is non-parametric, jointly models the signal and non-signal82

from different studies, and accounts for the heterogeneity of different studies. ReAD pro-83

vides more efficient rankings of importance for replicable SNPs by pooling information from84

two p-value sequences via the forward and backward probabilities (Rabiner and Juang, 1986;85

Murphy, 2012). ReAD applies a step-up procedure to identify clusters of genotype-phenotype86

associated signals, improving the power of replicability analysis while effectively controlling87

the FDR. ReAD is computationally scalable to whole genome with tens of millions of SNPs.88

Its implementation combines the non-parametric expectation-maximization (EM) algorithm89

(Dempster et al., 1977) and the pool-adjacent-violator algorithm (PAVA) in shape constraint90

inference (Robertson et al., 1988; Busing, 2022), without any tuning parameters. We conduct91

extensive simulation studies to evaluate the performance of our approach across a wide range92

of scenarios. By applying our procedure to summary statistics of two asthma GWASs and93

two ulcerative colitis GWASs, we show that ReAD identifies more replicable genetic loci that94
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otherwise might be missed using existing methods that do not account for the LD structure.95

These identified association signals pinpoint potential new loci on metabolisms and immunity.96

2 Results97

2.1 Method overview98

ReAD takes p-values from two independent GWASs with the same phenotype as input. Sup-99

pose we have J SNPs with corresponding p-values (p1j, p2j), j = 1, . . . , J . We aim to identify100

replicable SNPs associated with the phenotype in both studies. Our method can handle SNPs101

in the whole genome where J is in the order of millions. We use θij to represent the inferred102

association status of SNP j in study i. For each SNP, we consider its association analysis103

Hidden Markov model

𝑝1𝑗 , 𝑝2𝑗
𝑗 = 1,… , 𝐽

Estimators 
𝝀 = ෝ𝝅, መ𝒜, መ𝑓1, መ𝑓2

Replicable SNPs

Test statistics
rLIS𝑗 , 𝑗 = 1, … , 𝐽

𝜃11 𝜃21

𝜃12 𝜃22

𝜃1,𝐽−1 𝜃2,𝐽−1

𝜃1𝐽 𝜃2𝐽

……

𝑝11 𝑝21

𝑝12 𝑝22

𝑝1,𝐽−1

𝑝1𝐽 𝑝2𝐽

𝑝2,𝐽−1

ReAD

A step-up procedure

Figure 1: Schematic of ReAD. θij represents the inferred association status of SNP j (j =
1, . . . , J) in study i (i = 1, 2). For each SNP j, we consider its association analysis results are
replicable if θ1j = θ2j = 1. The dependence structure among SNPs across two studies can be
modeled with a HMM.
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results are replicable if its corresponding θ values are consistently 1. The correlations between104

θ’s within a study are caused by LD among tested SNPs, and we model their dependence105

structure using a Markov chain. Following Li and Stephens (2003), this is an effective way to106

model the correlations between observed p-values. Given the observed p-values are from both107

studies, the overall model structure can be represented by a HMM.108

We present our schematic in Figure 1. We use sj ∈ {0, 1, 2, 3} to denote the joint inferred109

association status for SNP j, where sj = 0 if θ1j = θ2j = 0, sj = 1 if θ1j = 0 and θ2j = 1,110

sj = 2 if θ1j = 1 and θ2j = 0, and sj = 3 if θ1j = θ2j = 1. The composite null for replicability111

analysis corresponds to sj ∈ {0, 1, 2}. To capture the local dependence of LD structure among112

SNPs, we impose a four-state HMM on s = (s1, . . . , sJ). The transition matrix is denoted113

as A = {akl : k, l = 0, 1, 2, 3}, where the transition probability from sj = k to sj+1 = l is114

given by akl, and
∑3

l=0 akl = 1 for all k. An efficient EM algorithm in combination with115

the forward-backward procedure and PAVA is developed to estimate the unknown parameters116

and functions. We use the posterior probability of being replicability null, rLISj, j = 1, . . . , J ,117

as the test statistic and obtain r̂LISj for all SNPs. By applying a step-up procedure on118

r̂LISj, j = 1, . . . , J , we get powerful testing results while controlling the FDR. More details of119

ReAD can be found in the Methods Section and the Supplemental Note A.120

2.2 Simulation study121

2.2.1 Simulation I122

In simulation I, we evaluated the FDR and statistical power of ReAD based on the rLIS123

statistic across two studies. Here power is defined as the averaged proportion of true discoveries124

among the total number of non-null hypotheses. We compare the FDR and power of ReAD125

with several replicability analysis methods developed under independence, including the ad126

hoc BH method, the MaxP method based on Pmax(Benjamini et al., 2009) and the STAREG127
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Figure 2: FDR control and power comparison of different methods.

method based on the local false discovery rate (Lfdr) (Li et al., 2023). Details of these methods128

can be found in the Supplemental Note B. An extensive comparison with more replicability129

analysis methods can be found in Supplemental Note C.130

In each simulation, the hidden states of 10, 000 SNPs were generated from a four-state131

Markov chain. A detailed description of the data generating process is provided in Sup-132

plemental Note C. In all simulations, we fix the initial distribution of four states as π =133

(0.9, 0.025, 0.025, 0.05). The signals from two studies are generated from normal distributions134

with mean µi and variance σ2
i , i = 1, 2. We vary the transition matrix A = {akl : k, l =135

0, 1, 2, 3} and µ2 while fix µ1 = 2, and σ1 = σ2 = 1. Empirical FDR and power are calculated136

from 100 replications for each setting. The results are summarized in Figure 2 (left: FDR;137

right: power). In Figure 2, each row corresponds to a different a00, and each column corre-138

sponds to a different a33. In each panel, we set µ2 to 1.5, 2, or 3. At FDR level 0.05, we see139

that the ad hoc BH fails to control the FDR. MaxP is overly conservative across all settings.140
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ReAD
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Figure 3: Methods comparison for cluster identification. Circles range from 1 (the outermost
circle) to 4 (the innermost circle). The outermost circle represents true states; circle 2 repre-
sents ReAD, circle 3 represents STAREG and cirle 4 represents MaxP.

STAREG has a slight FDR inflation in some settings. By accounting for the local dependence141

structure via the rLIS statistic, ReAD properly controls the FDR and has substantial power142

gain compared to competing methods. The powers of all methods increase as µ2 increases.143

The forward-backward procedure of HMM implies that a small rLIS does not occur alone,144

but in clusters. Therefore, ReAD tends to identify the entire cluster of genotype-phenotype145

associations. Such clusters are unlikely to occur by chance and are more plausible biological146

signals. To illustrate this, p-values for two studies are generated following the above strategy147

by setting a00 = 0.9, a33 = 0.7, and µ2 = 2. We compare three methods for testing the148

composite replicability null hypotheses across two studies: the MaxP method (Benjamini et al.,149

2009), the STAREG method (Li et al., 2023), and the ReAD method. Figure 3 presents results150

of different methods in one replication. It can be seen that MaxP is extremely conservative,151
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which only identifies one single signal; STAREG rejects individual hypotheses with very small152

p-values in both studies; whereas ReAD can identify clusters of replicable signals.153

2.2.2 Simulation II154

By incorporating the LD structure in GWASs through HMM, the rLIS statistic integrates155

information from adjacent locations. Therefore, the rankings of SNPs based on rLIS are156

different from the rankings from MaxP (based on Pmax) and STAREG (based on Lfdr). We157

perform simulation studies to demonstrate different rankings in GWASs with realistic LD158

patterns among SNPs. Data for two studies are generated based on two SNP matrices from the159

Genetic European Variation in Disease project (Lappalainen et al., 2013). The CEU genotype160

data are collected from 78 Utah residents with Northern and Western European ancestry,161

and the FIN genotype data are measured from 89 Finnish in Finland. CEU and FIN are162

both sub-populations of the European Ancestry population, therefore they may have similar163

A B

𝑃max

Lfdr
rLIS

Figure 4: (A) Histogram of estimated h2
g for simulated CEU data and FIN data from 5, 000

runs. (B) Power of top K SNPs identified by different methods. The power is calculated as
the averaged percentages of true positives selected by the top K SNPs ranked based on rLIS,
Lfdr produced by STAREG, and Pmax used in MaxP. The results are calculated from 100 runs.
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LD structures. A detailed description of the strategy to generate continuous phenotypes164

corresponding to SNPs in a single gene across two studies is provided in the Methods Section.165

To make realistic simulations, we adjust the signal-to-noise ratio in two studies so that the166

SNP heritability h2
g is centered between 0.2 and 0.3. Figure 4(A) presents the histogram of167

h2
g for CEU and FIN studies generated from 5, 000 replications. We repeat the above data168

generating process to simulate GWAS data for 100 genes, resulting in 1, 676, 400 pairs of169

p-values for corresponding SNPs. As in Wei et al. (2009), we define five adjacent SNPs on170

each side of the 400 causal SNPs as relevant SNPs and evaluate the performance of different171

replicability analysis methods by calculating the percentages of selecting relevant SNPs.172

We average the percentages of true positives selected by the top K hits from 100 runs173

as our evaluation criterion. The power curves of different K values based on SNP rankings174

produced by Pmax, Lfdr and rLIS are depicted in Figure 4(B). We see that rLIS shows higher175

power than Pmax and Lfdr, indicating that the rankings based on rLIS are more efficient than176

the rankings based on Pmax and Lfdr in replicability analysis of GWAS data by incorporating177

the LD block structure through HMM.178

2.3 Data analysis179

2.3.1 Replicability analysis of asthma GWASs180

Asthma is a complex bronchial disease characterized by chronic inflammation and narrowing181

of the airways, which is caused by a combination of environmental and genetic factors. The182

prevalence of asthma varies across different populations and ethnicities. We implement ReAD183

to conduct replicability analysis of asthma GWASs from the Trans-National Asthma Genetic184

Consortium (TAGC) and UK Biobank. The results are compared with competing meth-185

ods. Demenais et al. (2018) conducted ancestry-specific meta-analyses from ethnically-diverse186

populations and deposited the HapMap2-imputed data in the TAGC consortium. The TAGC187
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asthma GWAS data with high-density genotyped and imputed SNP based on the European-188

ancestry comprises 8, 843, 303 genetic variants for 19, 954 asthma cases and 107, 715 controls.189

UK Biobank is a large-scale prospective cohort study with over half a million participants190

aged 40-69 years from the United Kingdom between 2006 and 2010 (Sudlow et al., 2015). The191

imputed asthma GWAS from UK Biobank contains summary statistics for 8, 856, 162 genetic192

variants measured on 39, 049 self-reported asthma cases and 298, 070 controls. We filter out193

SNPS with minor allele frequency (MAF) smaller than 0.05, resulting in 6, 234, 241 SNPs194

in the TAGC study and 6, 242, 120 SNPs in UK Biobank. After taking the intersection of195

SNPs in the two studies, we obtain paired p-values of 6, 222, 195 SNPs to conduct replicability196

analysis.197

As the ad hoc BH does not control FDR, we apply MaxP and STAREG on the paired p-198

values for comparison. The GWAS Catalog (Welter et al., 2014) reported cytogenetic regions199

(loci) associated with asthma. To assess the replicability of GWAS loci, we state that if at least200

one of the identified SNPs falls into one of the regions, the locus is identified as replicable. If a201

locus contains multiple significant SNPs, the SNP with the strongest association is considered202

as the lead SNP. For instance, if we use STAREG with Lfdr as the test statistic, the SNP203

with the smallest Lfdr is the lead SNP.204

At FDR level 5 × 10−8, MaxP identifies 2, 853 significant SNPs in 10 loci, which are also205

identified by STAREG and ReAD. Compared to MaxP, STAREG identifies 909 additional206

significant SNPs in 3 loci. By capturing the local LD structure through HMM, ReAD identifies207

10, 084 significant SNPs in 28 genetic loci with replicable asthma associations, of which 15208

loci are not detected by MaxP or STAREG. Figure 5 presents the Manhattan plots of MaxP,209

STAREG, and ReAD. In Figure 5, the vertical axis are − log10 transformations of test statistics210

for replicability analysis, i.e., Pmax for MaxP, Lfdr for STAREG, and rLIS for ReAD.211
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Figure 5: The Manhattan plots based on Pmax, Lfdr and rLIS. The dashed horizontal lines
denote the FDR cutoffs of 5 × 10−8 produced by MaxP, STAREG, and ReAD, respectively.

Table 1: Main characteristics of the 28 loci associated with asthma in the European-ancestry TAGC and UK

Biobank GWASs identified by ReAD. The SNP with the strongest association within each locus is called Lead

SNP. The mapped gene denotes genes overlapping or closest to the lead SNP in the identified locus.

Locus Lead SNP Location of lead SNP Mapped gene Pmax Lfdr rLIS

Replicable asthma loci identified by all methods

2q12.1 rs3771180 chr2:102,337,157 IL18R1,IL1RL1 1.5e-20 2.5e-16 2.5e-20

5q22.1 rs10455025 chr5:111,069,301 BCLAF1P1,TSLP 2.0e-25 2.4e-21 1.9e-25

5q31.1 rs20541 chr5:132,660,272 IL13,TH2LCRR 1.4e-14 9.1e-11 7.0e-15

6p21.32 rs17843604 chr6:32,652,506 HLA-DQA1,HLA-DQB1 2.2e-33 5.0e-29 3.8e-33

6p21.33 rs2596465 chr6:31,445,171 LINC01149 1.2e-14 4.1e-11 3.1e-15

6q15 rs2325291 chr6:90,276,967 BACH2 8.6e-13 1.3e-09 1.0e-13

9p24.1 rs992969 chr9:6,209,697 GTF3AP1,IL33 4.3e-29 5.5e-25 4.8e-29

11q13.5 rs2155219 chr11:76,588,150 LINC02757,EMSY 2.9e-15 6.3e-12 4.8e-16

15q22.33 rs17228058 chr15:67,157,967 SMAD3 2.9e-15 6.3e-12 1.8e-15

16p13.13 rs12935657 chr16:11,125,184 CLEC16A 2.1e-12 1.3e-09 2.0e-13

Replicable asthma loci identified by ReAD and STAREG but not by MaxP

5q31.3 rs2338822 chr5:142,123,494 NDFIP1 6.0e-09 1.2e-06 1.5e-10

10p14 rs962993 chr10:9,011,169 LINC02676 1.9e-10 1.5e-07 1.2e-11

15q22.2 rs11071558 chr15:60,777,222 RORA 8.3e-11 8.1e-08 9.9e-12

Replicable asthma loci only identified by ReAD
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1q32.1 rs7555556 chr1:203,121,848 ADORA1 5.5e-06 9.3e-04 6.9e-08

1q21.3 rs4845623 chr1:154,443,301 IL6R 1.5e-04 5.1e-04 2.7e-07

1q24.2 rs864537 chr1:167,442,147 CD247 3.2e-05 3.0e-03 3.2e-07

2p25.1 rs10174949 chr2:8,302,118 LINC00299 3.0e-06 5.7e-04 5.3e-08

3q28 rs2889896 chr3:188,384,928 LPP 1.0e-06 1.9e-04 1.5e-08

4p14 rs6815814 chr4:38,814,717 TLR1 1.2e-05 1.7e-03 1.3e-07

4q27 rs1904522 chr4:122,415,763 ADAD1 1.7e-05 2.5e-03 2.3e-07

6p22.1 rs2523716 chr6:30,202,748 TRIM26 1.4e-08 4.6e-06 3.5e-10

8q21.13 rs10957979 chr8:80,377,552 RNU6-1213P 2.3e-08 8.6e-06 6.5e-10

11q12.2 rs174541 chr11:61,798,436 FADS2 2.3e-06 5.6e-04 4.4e-08

12q13.3 rs324014 chr12:57,116,526 STAT6 2.7e-07 6.0e-05 5.1e-09

12q24.31 rs625228 chr12:120,840,463 SPPL3 9.0e-06 5.8e-04 7.7e-08

17q21.33 rs17637472 chr17:49,384,071 ZNF652,PHB 3.3e-09 3.3e-06 2.5e-10

17q21.32 rs12949836 chr17:49,271,490 FLJ40194 1.6e-07 6.0e-05 4.6e-09

17q21.2 rs34349578 chr17:42,446,111 ATP6V0A1,RNU7-97P 5.6e-05 1.0e-03 1.9e-07

Table 1 displays main characteristics of the 28 cytogenetic regions identified by ReAD.212

The mapped gene denotes genes overlapping or closest to the lead SNP in the identified locus.213

The 15 loci only identified by ReAD harbor signals closely related to asthma. For example,214

the lead SNP in locus 2p25.1, rs10174949, is in the intron of gene LINC00299 and plays an215

important role in atopic dermatitis, including asthma, hay fever and eczema in European and216

UK populations (Zhu et al., 2020, 2018; Ferreira et al., 2017). The 8q21.13 region is reported217

to be associated with asthma and hay fever in a European-ancestry study (Ferreira et al.,218

2014). The lead SNP rs6473226 lies between gene MIR5708 (chr8:80,241,389–80,241,473)219

and gene RNU6-1213P (chr8:80,405,516–80,405,609), and its association with asthma has220

been observed in several European-ancestry studies (Demenais et al., 2018; Olafsdottir et al.,221

2020).222
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2.3.2 Replicability analysis of ulcerative colitis GWASs223

Inflammatory bowel disease is a chronic, relapsing intestinal inflammatory disease. It has the224

highest age-standardized prevalence rate in the US followed by the UK (Alatab et al., 2020)225

with increasing prevalence in Asia and developing countries (Molodecky et al., 2012). Ulcer-226

ative colitis (UC) is one of the two main forms of inflammatory bowel disease. We conduct227

replicability analysis of GWASs from the International Inflammatory Bowel Disease Genet-228

ics Consortium (IIBDGC) and the UK Biobank. The IIBDGC GWAS analyses 8, 857, 076229

SNPs from 6, 968 UC cases and 20, 464 population controls of European descent (Liu et al.,230

2015). The imputed UK Biobank GWAS data contain summary statistics of 8, 856, 162 SNPs231

genotyped on 1, 795 self-reported UC cases and 335, 324 controls from the United Kingdom.232

We filter out SNPs with MAF smaller than 0.05, resulting in 6, 243, 744 SNPs in the IIBDGC233

study and 6, 242, 120 SNPs in the UK Biobank. We use the paired p-values of 6, 232, 147 SNPs234

common to both studies as input for replicability analysis.235

We apply MaxP, STAREG, and ReAD on the paired p-values. At FDR level 5 × 10−8,236

MaxP identifies 1, 239 significant SNPs in 1 locus. STAREG identifies 1, 542 significant SNPs237

in 2 loci, one of which is also detected by MaxP. ReAD identifies 3, 307 significant SNPs in 7238

genetic loci, including 5 loci that are not detected by MaxP or STAREG. Figure 6 presents239

the Manhattan plots of MaxP, STAREG and ReAD.240

Figure 6: The Manhattan plots based on Pmax, Lfdr and rLIS. The dashed horizontal lines
denote the FDR cutoffs of 5 × 10−8 produced by MaxP, STAREG, and ReAD, respectively.
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We assess the replicability of genetic loci identified by different methods in GWAS Catalog241

(Welter et al., 2014). Table 2 presents the main characteristics of the 7 replicable genetic loci242

identified by ReAD. UC associations of these loci in cohorts of European descent have been243

repored in the literature. For instance, the lead SNP of loci 6p21.32, rs6927022, is in the244

intron of gene HLA-DQA1, and the HLA complex is associated with multiple risk alleles245

for inflammatory bowel disease, including UC (Nowak et al., 2021; Reinshagen et al., 1996;246

Ashton et al., 2019). The lead SNP harbored in loci 1q23.3, rs1801274, is only identified by247

ReAD, and has confirmed associations with UC in several European-ancestry studies (Liu248

et al., 2015; De Lange et al., 2017; Anderson et al., 2011). We have additional validations in249

DisGeNET, a versatile platform that contains a comprehensive catalog of genes and variants250

associated with human diseases (Piñero et al., 2015). Many mapped genes of the lead SNP251

only identified by ReAD have been reported to be associated with UC, such as gene FCGR2A252

in locus 1q23.3, gene IL23R in locus 1p31.3, gene IL10 in locus 1q32.1, and gene MST1 in253

locus 3p21.31.254

3 Discussion255

In this paper, we present ReAD, an efficient method accounting for the LD structure to256

identify replicable associations from two GWASs datasets. We conduct extensive simulation257

studies and analyze two GWAS datasets. Compared to conventional approaches that impose258

independence assumption among SNPs, ReAD provides effective FDR control. It has a sub-259

stantial power gain in identifying genuine and replicable genetic loci. It is computationally260

scalable to hundreds of millions of SNPs and has no tuning parameters.261

In this paper, our discussion mainly focuses on assessing the replicability of each SNP262

within a genomic locus. We acknowledge that, in the applications of genetic association anal-263

ysis, varying LD patterns between studies can lead to inconsistent significant findings at the264
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Table 2: Main characteristics of the 7 loci associated with UC in the European-ancestry IIB-
DGC and UK Biobank GWASs identified by ReAD. The SNP with the strongest association
within each locus is called the lead SNP. The mapped gene denotes genes overlapping or clos-
est to the lead SNP in the identified locus.

Locus Lead SNP Location of lead SNP Mapped gene Pmax Lfdr rLIS

Replicable asthma loci identified by all methods

6p21.32 rs6927022 chr6:32,644,620 HLA-DQA1 1.1e-20 2.8e-15 1.2e-19

Replicable asthma loci identified by ReAD and STAREG but not by MaxP

21q22.2 rs2836882 chr21:39,094,644 RPL23AP12 4.5e-11 1.9e-07 8.1e-12

Replicable asthma loci only identified by ReAD

1p36.13 rs4654903 chr1:19,874,497 RNF186, OTUD3 1.3e-08 3.6e-05 6.7e-09

1q23.3 rs1801274 chr1:161,509,955 FCGR2A 1.7e-08 3.6e-05 7.7e-09

1p31.3 rs2201841 chr1:67,228,519 C1orf141, IL23R 6.1e-08 1.8e-04 1.8e-08

1q32.1 rs3024505 chr1:206,766,559 Y RNA, IL10 4.1e-08 8.9e-05 5.4e-07

3p21.31 rs3197999 chr3:49,684,099 MST1 1.2e-06 5.2e-03 3.4e-07

SNP level. Hence scientifically, a more relevant question should be the consistency of under-265

lying association signals within each interrogated locus across original and replication studies.266

To this end, we apply a simple and practical strategy requiring at least one SNP-level findings267

replicable. With the potential varying LD structures fully accounted for by the proposed268

HMM, we find this strategy intuitive and effective when applied to genomic loci with proper269

resolutions (as illustrated by our simulations and real data examples). Nevertheless, this270

locus-level criterion may be considered overly lenient. We will continue to explore alternative271

locus-level replicability assessment criteria in our future work.272

In this work, we use repeated significance to assess replicability. We note that applying273

such a replicability criterion is debatable in the scientific community. While acknowledging274

its drawbacks, especially its conservativeness, we note the following context-specific factors.275

First, despite continued efforts to include more informative statistics summarizing GWAS276

findings, a large body of historical GWAS findings are only reported in p-values (See GWAS277
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catalog (Welter et al., 2014)), which fundamentally limits applying alternative replicability278

criteria. Second, because complicated unknown confoundings, e.g., population stratification279

and unobserved batch effects in genotyping experiments, often cause false positives in genetic280

association analysis, the genetics community has consistently advocated conservative replica-281

bility criteria to ensure the reliability of GWAS findings (Skol et al., 2006; McGuire et al.,282

2021). Third, we emphasize that our main statistical contribution is to account for the corre-283

lation structure between genetic variants, and our work can be naturally extended to applying284

other alternative replicability criteria.285

On a related point, although we exclusively assume that GWAS results are reported in the286

form of single-SNP testing p-values throughout this paper, the proposed statistical method-287

ology can be extended to other forms of summary statistics. For example, probabilistic fine-288

mapping analysis of genetic association signals has become increasingly popular, thanks to289

the availability of efficient variable selection algorithms (Benner et al., 2016; Wang et al.,290

2020; Wen et al., 2016). The fine-mapping result is typically given as a posterior inclusion291

probability (PIP) at the individual SNP level. With the ability to construct a Bayesian cred-292

ible set for each underlying signal within a genomic locus, the PIPs have many advantages293

over single-SNP p-values. Theoretically, our work can be straightforwardly extended to this294

setting by noting the connection that 1 − PIP is equivalent to the local fdr in the Bayesian295

perspective. We will leave this extension to our future work.296

4 Methods297

4.1 The hidden Markov model for replicability analysis298

Suppose there are J SNPs in two independent GWASs. We are interested in testing whether

the jth SNP is associated with the phenotype in both studies. Let θij denote the inferred
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association status of SNP j in study i, where θij = 1 indicates the jth SNP (j = 1, . . . , J) is

inferred associated with the phenotype in study i (i = 1, 2) and θij = 0 otherwise. We use sj

(j = 1, . . . , J) to denote the joint status.

sj =



0, (θ1j, θ2j) = (0, 0),

1, (θ1j, θ2j) = (0, 1),

2, (θ1j, θ2j) = (1, 0),

3, (θ1j, θ2j) = (1, 1).

The replicability null hypotheses is299

H0j : sj ∈ {0, 1, 2}, j = 1, . . . , J. (1)

Let pi = (pij)
J
j=1 denote p-values of J SNPs in study i. We use mixture models for the300

conditional distributions of p-values given θ values. Specifically,301

p1j|θ1j ∼ (1 − θ1j)f0 + θ1jf1,

p2j|θ2j ∼ (1 − θ2j)f0 + θ2jf2,

(2)

where f0 is the probability density function of p-values when θ1j = θ2j = 0, and f1 and f2 are302

the p-value density functions under non-null in study 1 and study 2, respectively. We assume303

f0 follows the standard uniform distribution and impose the following monotone likelihood304

ratio condition (Sun and Cai, 2007; Cao et al., 2013, 2022).305

f1(x)/f0(x) and f2(x)/f0(x) are monotonically non-increasing in x. (3)

This condition naturally arises as small p-values indicate evidence against the null. To capture306
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the LD structure among SNPs, we assume that s = (s1, . . . , sJ) follows a four-state stationary,307

irreducible, and aperiodic hidden Markov model (HMM). The transition probabilities308

akl = P(sj+1 = l|sj = k) (4)

for k, l = 0, 1, 2, 3 with constraint
∑3

l=0 akl = 1. The stationary distribution of each state sj

is P(sj = k) = πk for k = 0, 1, 2, 3 and
∑3

k=0 πk = 1. The paired p-values for the jth SNP are

assumed to be conditionally independent satisfying

f(p1j, p2j|θ1j, θ2j) = f(p1j|θ1j)f(p2j|θ2j).

Based on the mixture model (2), we have

f (sj)(p1j, p2j) =



f0(p1j)f0(p2j), sj = 0,

f0(p1j)f2(p2j), sj = 1,

f1(p1j)f0(p2j), sj = 2,

f1(p1j)f2(p2j), sj = 3.

Denote by A = {akl : k, l = 0, 1, 2, 3} the transition matrix, π = (π0, π1, π2, π3) the vector of

stationary distribution, and F =
(
f (0), f (1), f (2), f (3)

)
the probability density functions of the

bivariate observations (p1j, p2j). The convergence theorem of a Markov chain (Theorem 5.5.1

in Durrett (2019)) implies that

1

J

J∑
j=1

I(sj = k) → πk

almost surely for k = 0, 1, 2, 3 as J → ∞. As f0 is assumed to follow a standard uniform309

distribution, we use λ = (π,A, f1, f2) to denote the collection of unknown parameters and310

functions in the HMM. Our goal is to separate the replicable SNPs (sj = 3) from the non-311
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replicable SNPs (sj ∈ {0, 1, 2}) based on the observed bivariate p-values.312

4.2 FDR control for replicability analysis accounting for LD313

4.2.1 The rLIS statistic for replicability analysis across two studies314

Consider the ideal setup that an oracle knows λ = (π,A, f1, f2). We define the replicability

local index of significance (rLIS) as the posterior probability of being null. Specifically,

rLISj := Pλ (sj ∈ {0, 1, 2}|p1,p2) .

Given λ, the forward and backward probabilities are defined as αj(sj) = Pλ

(
(p1t, p2t)

j
t=1, sj

)
and βj(sj) = Pλ

(
(p1t, p2t)

J
t=j+1 | sj

)
, respectively. The forward-backward procedure (Baum

et al., 1970) can be used in the calculation. Specifically, we initialize α1(s1) = πs1f
(s1)(p11, p21)

and βJ(sJ) = 1. We can obtain αj(·) and βj(·) for j = 1, . . . , J recursively by

αj+1(sj+1) =
3∑

sj=0

αj(sj)asjsj+1
f (sj+1)(p1,j+1, p2,j+1)

and

βj(sj) =
3∑

sj+1=0

βj+1(sj+1)f
(sj+1)(p1,j+1, p2,j+1)asjsj+1

.

Hence we have

rLISj =

∑2
sj=0 αj(sj)βj(sj)∑3
sj=0 αj(sj)βj(sj)

.

The rejection rule can be written as

δj = I(rLISj ≤ t), j = 1, . . . , J,
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where I(·) is the indicator function.315

We next derive the threshold t̂ for a pre-specified FDR level q. Total number of discoveries

and the number of false discoveries are R(t) =
∑J

j=1 I(rLISj ≤ t) and V (t) =
∑J

j=1 I(rLISj ≤

t, sj ∈ {0, 1, 2}), respectively. We have

E[V (t)] = E

[
J∑

j=1

{π0I(rLISj ≤ t|sj = 0) + π1I(rLISj ≤ t|sj = 1) + π2I(rLISj ≤ t|sj = 2)}

]

= E

[
J∑

j=1

I(rLISj ≤ t)rLISj

]
.

Let rLIS(1) ≤ rLIS(2) ≤ · · · ≤ rLIS(J) be the order statistics and H(1), . . . , H(J) be the cor-

responding hypotheses. If k hypotheses are rejected, the number of false discoveries can be

estimated by

V̂ (k) =
k∑

j=1

rLIS(k),

and the FDR can be estimated by 1
k

∑k
j=1 rLIS(j). We shall use the following step-up procedure

to control the FDR at level q (Sun and Cai, 2009).

let k̂ = max

{
k :

1

k

k∑
j=1

rLIS(j) ≤ q

}
;

then reject all H(j) for j = 1, . . . , k̂.

We provide an estimation of λ in the next section.316

4.2.2 Data-driven testing procedure317

To estimate the unknown parameters and functions in λ, we first define two posterior prob-

abilities γj(sj) = Pλ(sj | p1,p2) and ξj(sj, sj+1) = Pλ(sj, sj+1 | p1,p2). By the definition,

γj(sj) =
∑3

sj+1=0 ξj(sj, sj+1). They can be obtained from the forward and backward probabil-
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ities

γj(sj) =
αj(sj)βj(sj)∑3

sj=0 αj(sj)βj(sj)

and

ξj(sj, sj+1) =
αj(sj)βj+1(sj+1)asjsj+1

f (sj+1)(p1,j+1, p2,j+1)∑3
sj=0

∑3
sj+1=0 αj(sj)βj+1(sj+1)asjsj+1

f (sj+1)(p1,j+1, p2,j+1)
.

The likelihood function of the complete data (p1,p2, s) is given by

L (λ;p1,p2, s) = πs1

J∏
j=2

asj−1sj ·
J∏

j=1

f (sj)(p1j, p2j).

We develop a non-parametric EM algorithm (Dempster et al., 1977) to estimate the unknowns318

λ = (π,A, f1, f2) under the monotone likelihood ratio constraint (3). With an appropriate319

initialization of the unknowns, λ(0) =
(
π(0),A(0), f

(0)
1 , f

(0)
2

)
, the EM algorithm proceeds by320

iteratively implementing the following two steps.321

E-step: Given current λ(t) =
(
π(t),A(t), f

(t)
1 , f

(t)
2

)
, the forward and backward probabili-

ties α
(t)
j (sj), β

(t)
j (sj) and the posterior probabilities γ

(t)
j (sj), ξ

(t)
j (sj, sj+1) are calculated. The

conditional expectation of the log-likelihood function can be written as

D
(
λ|λ(t)

)
=

∑
s

Pλ(t)(s|p1,p2) logL (λ;p1,p2, s)

=
∑
s

{
Pλ(t)(s|p1,p2)

[
log πs1 +

J∑
j=2

log asj−1sj +
J∑

j=1

log f (sj)(p1j, p2j)

]}
.

M-step: Update λ(t+1) by

λ(t+1) = arg max
π,A,f1,f2

D
(
π,A, f1, f2|λ(t)

)
.
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We can update each component alternatingly. By using the Lagrange multiplier, we can

calculate π(t+1) and A(t+1) as

π(t+1)
s = γ

(t)
1 (s), s ∈ {0, 1, 2, 3}

and

a
(t+1)
kl =

∑J
j=2 ξ

(t)
j−1(k, l)∑J

j=2

∑3
l=0 ξ

(t)
j−1(k, l)

, k, l ∈ {0, 1}.

The two functions can be updated by

f
(t+1)
1 = arg max

f1∈H

{
J∑

j=1

[
γ
(t)
j (2) + γ

(t)
j (3)

]
log f1(p1j)

}
(5)

and

f
(t+1)
2 = arg max

f2∈H

{
J∑

j=1

[
γ
(t)
j (1) + γ

(t)
j (3)

]
log f2(p2j)

}
, (6)

where H is a set of monotonic non-increasing density functions (Sun and Cai, 2007; Cao322

et al., 2013, 2022). We solve (5) and (6) independently using the non-parametric maximum323

likelihood estimation implemented with PAVA (Robertson et al., 1988).324

The E-step and M-step are conducted iteratively until convergence. Detailed deriva-

tions of the algorithm are presented in the Supplemental Note A. With the estimate λ̂ =

{π̂, Â, f̂1, f̂2}, we can calculate the test statistics r̂LISj = Pλ̂(sj ∈ {0, 1, 2}|p1,p2). Let

r̂LIS(1) ≤ · · · ≤ r̂LIS(J) be the order statistics of r̂LISj, and denote H(1), . . . , H(J) as the
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corresponding H0j. The data-driven testing procedure works as follows.

Let k̂ = max

{
i :

1

i

i∑
j=1

r̂LIS(j) ≤ q

}
,

and reject H(i) for i = 1, . . . , k̂.

4.3 Realistic simulation design325

In simulation II, we perform realistic simulations to show the rankings of SNPs using rLIS in326

two GWASs, where LD structures are derived from real data. Based on the CEU genotype data327

and FIN genotype data from the Genetic European Variation in Disease project (Lappalainen328

et al., 2013), we filter out SNPs with the same genotypes in all samples and obtain genotypes329

of 16, 764 SNPs in both studies. We specify 5 causal SNPs in each study, 4 of which are the330

same in the two studies. Two of the 4 causal SNPs are close (separated by five SNPs), and331

the other SNPs are selected randomly. Then in each study, for the ith subject (i = 1, . . . , 78332

in the CEU study and i = 1, . . . , 89 in the FIN study), we generate continuous phenotypes333

using the linear regression model334

yi = β0 +
5∑

k=1

Gc
ikβk + ϵi,

where β0 is the intercept term, Gc
i1, . . . , G

c
i5 are the genotypes of the ith subject for the 5335

causal SNPs, β1, . . . , β5 are regression coefficients, and ϵi is an error term generated from336

N(0, 1), a standard normal distribution. The intercept term and the regression coefficients337

of causal SNPs βk, k = 0, 1, . . . , 5, follow N(0, σ2), a normal distribution with mean 0 and338

standard deviation σ. We set σ = 0.6 such that the SNP heritability h2
g, similar in spirit to339

the R2 in linear regression models, is centered between 0.2 and 0.3. p-values are obtained by340

a marginal regression of each SNP on the phenotype. We repeat the above process 100 times341
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to get p-values of 1, 676, 400 SNPs.342

4.4 Computation time343

We compare the computation time of different methods. All methods are implemented in R,344

in which STAREG and ReAD use Rcpp to speed up the computation. All computations are345

carried out in an Intel(R) Core(TM) i7-9750H 2.6GHz CPU with 64 GB RAM laptop. Table346

3 summarizes the results. We observe that all methods are quick to compute. The additional347

time that ReAD takes in simulation studies is negligible in practice.348

Table 3: Computation time (in seconds) of different methods.

Dataset # of SNPs MaxP STAREG ReAD

Simulation I 10, 000 0.0033 0.0165 0.1871

Simulation II 1, 676, 400 0.1897 3.7237 35.159

Asthma 6, 222, 195 0.7317 169.82 105.47

UC 6, 232, 147 0.7428 9.5248 83.974
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