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Abstract

Recurrent copy number variants (rCNVs) are associated with increased risk of neuropsychiatric
disorders but their pathogenic population-level impact is unknown. We provide population-based
estimates of rCNV-associated risk of neuropsychiatric disorders for 34 rCNVs in the
iPSYCH2015 case-cohort sample (n=120,247).

Most observed significant increases in rCNV-associated risk for ADHD, autism or schizophrenia
were moderate (HR:1.42-5.00), and risk estimates were highly correlated across these
disorders, the most notable exception being high autism-associated risk with Prader-Willi/
Angelman Syndrome duplications (HR=20.8). No rCNV was associated with significant increase
in depression risk. Also, rCNV-associated risk was positively correlated with locus size and gene
constraint. Comparison with published rCNV studies suggests that prevalence of some rCNVs is
higher, and risk of psychiatric disorders lower, than previously estimated.

In an era where genetics is increasingly being clinically applied, our results highlight the
importance of population-based risk estimates for genetics-based predictions.
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Introduction

Recurrent copy number variants (rCNVs) arise through non-allelic homologous recombination
mediated by low-copy repeat sequences. rCNVs are particularly relevant for human disease
genetics studies because they are maintained at fairly stable population frequencies (due to
high de novo mutation rates) despite often being associated with substantial pathogenicity1,2and
reduced reproductive fitness3. At least 40 loci in the human genome harbour rCNVs conferring
moderate to high risk of intellectual disability (ID), developmental delay (DD) and congenital
malformations (CM)4. Many of these have also been associated with increased risk of
neuropsychiatric disorders; autism spectrum disorder (ASD)1, attention-deficit/hyperactivity
disorder (ADHD)5, schizophrenia spectrum disorder (SSD)6-8 and epilepsy9, while evidence for
associated risk of bipolar disorder (BPD)10 and major depressive disorder (MDD)11 is limited.

Most rCNV studies have derived estimates of prevalence and associated risk of disease from
clinical case-control studies, often based on highly selected cases (e.g., with severe or
long-term illness) and controls (e.g., screened for lack of any family history of mental illness).
While this study design can increase power for detecting associations between genetic
exposures and disease outcomes, it may yield distorted estimates of the prevalence of the
exposure and the associated risk of the outcome. Alternative study designs that rely on
community-based samples – most prominently the UK Biobank (UKB)11-12 – benefit from larger
sample sizes and a multitude of available study outcomes. However, the UKB suffers a “healthy
volunteer” bias13 that has been shown to affect association estimates in genetic studies14,15. The
lack of population-unbiased estimates of rCNV prevalence and disease risk compromises
proper implementation of genetically informed clinical care, including guiding patient
assessment and choice of treatment, and genetic counselling.

Our recent research in Danish registers and biobanks16 found that deletions at 22q11.2 may
have much more modest effects on risk of SSD in the Danish population17,18 than reported in
clinical case-control studies6,19-21. This dampening of effect size estimates compared to
case-control studies was also observed for SSD, ADHD and ASD when we applied the same
population-based analyses to rCNVs at six other loci (1q21.1, 15q11.2, 15q13.3, 16p11.2,
17p12, and 17q12).22

In the present study, we expand on our initial population-based analyses of rCNV prevalence
and penetrance in two key directions. First, we expand these analyses to systematically
consider deletions and duplications across 30 rCNV loci most commonly associated with
genomic disorders and clinical phenotypes.12 Second, we also compare the effects on risk
across rCNV loci and type, and across psychiatric outcomes. Such direct comparisons are
essential for clarifying if rCNVs impart risk profiles differently – an open question of central
mechanistic and translational importance in psychiatry. We pursue both of these advances in a
substantially increased sample size23 – affording unprecedented precision and power to
characterise population-unbiased rCNV prevelances and penetrances.
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Results

Quality control (QC) and analysis of CNV detection accuracy

We processed PennCNV24 calls for available samples through the QCtreeCNV pipeline25 and
additional QC tests (Methods, Supplementary Note 2), yielding 3,589 verified rCNV calls in
120,247 samples; 79,535 cases (anyone having received a hospital diagnosis of any of the
index psychiatric disorders, see Methods) and 43,311 from the subcohort (a randomly drawn
sample from the same birth cohort, including an overlap [cases-in-subcohort] of 2,599 samples,
see Methods). The sample genotype success rate corresponded to 85.8% of the 140,087
samples ascertained in the iPSYCH2015 design23 (Extended Data Figure 1), and did not differ
across the case, subcohort, and cases-in-subcohort groups (Fisher’s Exact Test; simulated
P=0.12). The sample included 64,735 (53.8%) males and 55,512 (46.2%) females, as recorded
at birth. Age at end of follow-up (AEF) ranged between 7.0-34.7 years (mean 21.8, standard
deviation 7.0). All participants were born in Denmark but information on self-declared ethnicity
was not available. Out of 30 queried loci, 12 were excluded due to poor quality of SNP array
data, low carrier count or failure to meet the proportionality of hazards assumption underlying
the fitted Cox Proportional Hazards (CPH) models used to estimate rCNV-associated risk of
iPSYCH2015 disorders (Methods, Supplementary Table 1).

rCNV prevalence and comparison with UKB

We estimated population prevalence and 95% confidence intervals (CI95%) for each of 18
deletions and duplications in the full case-cohort sample using finite population correction (fpc)
to account for oversampling of cases (Methods). Consistent with previous rCNV studies12,26,27

the overall prevalence of duplications was higher than that of deletions (1.29% vs 0.99%,
P=2.2×10-5). However, the prevalence disparity differed substantially across loci (Figure 1A); five
loci (TAR, 1q21.1, 15q13.3, 16p13.11, 16p11.2 and 22q11.2) had significantly higher prevalence
of duplications and two loci (2q13 and 16p12.1) had significantly higher prevalence of deletions
(Supplementary Table 2). We then compared rCNV prevalence between our study and the
UKB12 for the 17 loci with estimates in both studies (Methods). The overall population-based
prevalence of deletions was higher in iPSYCH2015 (0.98% vs 0.70%; P=7.7×10-12) whereas
overall duplication prevalence was similar in both studies (1.27% vs 1.23%, P=0.42). In the
per-locus comparison nine deletions and one duplication (16p11.2-dup) had higher prevalence
(PFDR<0.05) in iPSYCH2015, while 13q12.12-dup was more prevalent in UKB, and 23 rCNVs
showed no significant differences (Figure 1B, Supplementary Table 2).
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CNV-associated risk of psychiatric disorders

We estimated population-based hazard ratios (HR) for each deletion and duplication at the 18
rCNV loci for each of the ascertained psychiatric diagnosis groups (Methods, Extended Data
Figure 1). Per-diagnosis results for the main diagnosis groups (ASD, ADHD, MDD and SSD) are
shown in Figure 2, while a per-locus version of all estimates, including for schizophrenia (ICD10:
F20), BPD (for which HR could be estimated for only 11 rCNVs) and the broader diagnosis
groups (any affective disorder and any iPSYCH2015 disorder, Methods) are provided in
Extended Data Figure 2 and Supplementary Table 3.

Risk estimates exceeded 1.5 for a majority of rCNVs tested for ASD (18 of 34), ADHD (21 of
32), and SSD (19 of 31), but only for 6 of 32 tested for MDD (Figure 2). In fact, we observed no
significantly increased HRs for MDD (Figure 2) or the broader category of any affective disorder
(Extended Data Figure 2). Six rCNVs (1q21.1-dup, Prader-Willi/Angelman Syndrome (PWAS)
-dup, 15q13.3-del, 16p13.11-del, 16p13.11-dup and 17q12-dup) were associated with
significantly increased HR of all three; ADHD, ASD, and SSD, and further four rCNVs
(15q11.2-del, 16p11.2-dup, 17q12-del and 22q11.2-dup) with increased HR of both ADHD and
ASD (Extended Data Figure 2). The greatest increases in HR were observed for PWAS-dup
with ASD (HR=20.7; CI95%: 7.8-54.9) and SSD (HR=9.1; CI95%: 1.7-49.2), and for 17q12-del
with ADHD (HR=4.2; CI95%: 1.2-13.9) (Figure 2).

We compared the association results for the four main diagnosis groups with the largest
available published case-control studies. The number of rCNVs with available estimates in
those studies ranged from 11 for ASD1 to 13 for ADHD5, 20 for MDD11, and 22 for SSD6-8. Risk
estimates (HRs from our study and odds ratios (ORs) from comparison studies) were compared
with a Welch’s t-test and adjusted for multiple comparisons for each disorder separately using
false discovery rate (FDR). Risk estimates were significantly lower in our study for 1q21.1-del,
15q11.2-del, 16p11.2-dup, 17p12-del and 22q11.2-del for SSD, 16p11.2-del and 16p11.2-dup for
ASD, and 22q11.2-del for ADHD (Extended Data Figure 3, Supplementary Table 4). The only
significantly higher risk estimate in iPSYCH2015 was for 22q11.2-dup in SSD, for which we find
no indication (HR=1.34; CI95%: 0.70-2.54) of the protective effect reported in the comparison
study (OR=0.15; CI95%: 0.04-0.52)6. While HRs and ORs are slightly different estimates of risk,
a sensitivity analysis found very high correlation across all diagnosis groups between the
CPH-derived HRs and corresponding ORs derived from logistic regression models of
iPSYCH2015 data (Pearson’s correlation test: r=0.94, P<2.2×10-16, Supplementary Table 5)
indicating that they are comparable.

As no individual rCNV was significantly associated with increased risk of MDD, we assessed the
overall effect of rCNV carrier status on MDD diagnosis using nested generalised linear models
(GLMs) with and without a categorical rCNV variable (with separate levels for each rCNV and
“no rCNV” as reference) and sex and AEF as covariates (Methods). A likelihood ratio test (LRT)
found no effect of rCNV carrier status on MDD prediction (𝜒2=40.32; P=0.28); a stark contrast to
corresponding results for ADHD, ASD, and SSD (𝜒2>104.68 and P<1.27×10-8 for each).
Therefore, we excluded MDD from the following comparative analyses of rCNV-associated risk
across diagnosis groups, between deletions and duplications, and across loci.
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Comparison of rCNV-associated risk across disorders

The availability of information on multiple outcomes and rCNVs carrier status in the same
population-based dataset allowed us to test if rCNV-associated risk varied across outcomes,
which we did through several complementary approaches. First, we plotted CNV-associated HR
estimates for each pair of the three most relevant diagnosis groups (ADHD, ASD and SSD) and
observed high pairwise correlations (r(ASD-ADHD)=0.68; P=2×10-5, r(ASD-SSD)=0.71; P=7×10-6

,r(ADHD-SSD)=0.75; P=2×10-6; Figure 3A).

To test for an omnibus rCNV-associated difference between pairs of disorders, we used
generalised estimating equations (GEE) which allow accounting for individuals in multiple
diagnosis groups, and fitted nested models with and without an interaction term between
diagnosis group and overall rCNV carrier status (with sex at birth and AEF as covariates), with
diagnosis of either of the two disorders as outcome (Methods). This revealed a significant
difference in overall rCNV-associated effects between ASD and SSD, and ADHD and SSD, but
not between ASD and ADHD (ASD vs SSD: χ2=7.47, P=0.0063; ADHD vs SSD: χ2=10.08,
P=0.0015; ASD vs ADHD: χ2=0.21, P=0.64).

Then, we tested for rCNV-specific differences using the same approach but replacing the overall
rCNV carrier variable with the categorical rCNV variable described above (previous subsection).
This analysis showed significant effect of adding the rCNV-diagnosis interaction term in all three
comparisons, suggesting that for each pair of disorders at least some rCNVs differ in effect size
(χ2(ASD-ADHD)=94.6, P=4.2×10-8; χ2(ASD-SSD)=72.9, P=3.1×10-5; χ2(ADHD-SSD)=50.1, P=1.2×10-2). Post
hoc analyses of the interaction coefficients from the GEE analyses revealed no clear trend for
rCNVs consistently conferring higher or lower risk of any of the three diagnoses compared with
either of the other two (Figure 3B, Supplementary Table 6), but among rCNVs with significant
interaction coefficients (PFDR<0.05) both PWAS-dup and 16p11.2-del were associated with
higher HR for ASD than for ADHD or SSD, and both 15q11.2-del and 22q11.2-dup were
associated with higher HR for ASD and ADHD than for SSD (Figure 3A).

Comparison of risk between deletions and duplications

The distribution of HR estimates for deletions vs duplications across loci for the three main
diagnosis groups reveals no indication of a consistent dosage-dependent effect (Figure 4). To
formally test whether the level of rCNV-associated risk is dependent on dosage type (deletion or
duplication), we used GEE models to predict case status from dosage type among rCNV
carriers using AEF, sex and diagnosis group as covariates, for all 16 loci with risk estimates
available for both deletions and duplications (Methods). This analysis found no omnibus effect of
rCNV type across all three diagnosis groups (χ2=0.11, P=0.73). Also, a comparison of the GEE
models with and without an interaction term between rCNV type and locus found no indication of
significant locus-specific rCNV type effects (χ2=20.66, P=0.14).
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Locus features as predictors of rCNV-associated risk

As HRs for ADHD, ASD and SSD vary significantly across rCNVs, we hypothesised that
rCNV-associated risk would be correlated with the gene content or locus size, as potential
indicators of pathogenicity. Also, given the significant differences in prevalence of some rCNVs
between our study and the UKB11, we hypothesised that rCNV-associated risk would be
correlated with their population-based prevalence and/or the difference in prevalence between
our population-based study and the volunteer-based UKB study.

We plotted the HR estimates for the three disorders against locus size and locus-wide
loss-of-function observed/expected upper bound fraction (LOEUF) score28 across loci (Figure 5
a-b), and population-based prevalence and the iPSYCH2015/UKB prevalence ratio across
rCNVs (Figure 5 c-d), fitting log-linear trend lines for deletion- and duplication-associated
estimates separately (excluding PWAS due to outlying locus size and HR estimates). While
differing somewhat across diagnoses, the plots indicate that HRs tend to increase with locus
size (Figure 5a), LOEUF score (Figure 5b) and iPSYCH/UKB rCNV prevalence ratio (Figure 5d),
while decreasing with rCNV prevalence itself (Figure 5c).

To formally test these trends, we used GEE to model the association of these four features with
case status across all three diagnosis groups simultaneously among rCNV carriers, while taking
full account of the correlation structure among carriers (Methods). In this analysis, both locus
size and LOEUF score were significantly associated with overall case prediction (𝛽size=0.09,
P=0.01; 𝛽LOEUF=0.10, P=0.0015) as was the iPSYCH/UKB rCNV prevalence ratio (𝛽=0.12,
P=0.0086), whereas iPSYCH2015 prevalence was not (𝛽=-0.02, P=0.31).

ID and epilepsy

We applied weighted CPH models to estimate the risk of epilepsy and ID associated with rCNVs
in our dataset (Methods). These disorders were not targeted specifically in the iPSYCH2015
case ascertainment and the risk estimates therefore are not population-representative in the
same way as for the psychiatric disorders targeted in the study design.

Nine rCNVs were significantly associated with increased risk of both epilepsy and ID (out of 28
and 33 tested, respectively), and further 10 rCNV were associated with increased risk of one or
the other disorder. Both deletions and duplications were significantly associated with increased
risk of ID at the following loci: 1q21.1, 15q13.3, 16p13.3, 16p11.2, 17q12 and 22q11.2
(Extended Data Figure 2 and Supplementary Table 7).

Three of the nine rCNVs conferring increased risk of both ID and epilepsy (PWAS-dup,
15q13.3-del and 16p13.11-del) were also associated with significantly increased risk for ADHD,
ASD and SSD (Extended Data Figure 2, Supplementary Table 3). The greatest increases in risk
of both ID (HR=46.45, CI95%: 20.04-107.63) and epilepsy (HR=15.10, CI95%: 7.38-30.90) were
associated with PWAS-dup.
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Discussion

The comprehensive assessment of rCNV-associated risk across common psychiatric disorders
in an entire population presented in this study, extends beyond current knowledge due to two
features of the study design. First, the systematic assessment of deletions and duplications
across most known rCNV loci, enabled us to fill a critical gap in the existing literature, especially
for ADHD and ASD where our samples are considerably larger and involve more rCNVs than in
earlier studies1,5. Second, the unbiased population-based study design23 allowed accurate
revisement of estimates of rCNV prevalence and associated risk of psychiatric disorders.

Our study includes approximately five times as many ASD cases (22,167) and three times as
many ADHD cases (26,186) as the largest published rCNV studies1,5, and risk estimates for a
majority of the examined rCNV are novel for both disorders. We observed six and seven rCNV
associated with increased risk of ASD and ADHD, respectively, that had either not been
included or not found significant in the previous studies. We confirm high risk of ASD associated
with PWAS-dup and 17q12-del, while rCNVs at 16p11.2 were associated with lower increase in
ASD risk than previously reported1. In general, rCNV-associated increases in risk of ADHD were
modest, with HR ranging from 1.4 at 15q11.2 to 4.2 at 17q12. Further, we did not find evidence
to support previous reports of high risk of ADHD associated with 22q11.2-del5.

Our SSD sample includes 13,126 cases and while some published case-control meta-analyses
include larger case samples6-8, we provide risk estimates for nine rCNVs not included in those
studies6-8. We confirm high risk of SSD associated with PWAS-dup (HR=9.2) and moderate
SSD-associated risk (HR: 2.0-4.8) with seven other rCNVs. Notably, for six rCNVs our results
differ significantly from those of previous studies6-8. These include 1q21.1-del, 15q11.2-del,
16p11.2-dup and 17p12-del, for which we find no significant evidence of association with SSD;
22q11.2-del, previously reported with very high risk (as high as OR=68)6 but only moderately
associated risk (HR=3.3) in our study; and 22q11.2-dup, reported to protect against SSD
(OR=0.15)6 but here found not to significantly affect SSD risk (HR=1.3, CI95%: 0.70-2.5).

The results for 22q11.2_del are consistent with earlier studies involving Danish registers and
biobanks20-22, and contrast with several studies that consistently found high risk of SSD
associated with 22q11.2-del,6,17-19. One explanation that could reconcile this difference is if
22q11.2-del were specifically associated with a late-onset form of SSD, although this hypothesis
has not been suggested in past studies of clinically ascertained SSD patients. Also, such a
scenario would not explain the risk disparity for 22q11.2-dup. Importantly, we confirm high risk
conferred by PWAS-dup of both ASD (HR=21) and SSD (HR=9.2) strongly supporting the
validity of the SSD analyses in our study. Earlier studies found risk of ASD29 and SSD30,31 to be
confined to maternally inherited PWAS-dup, but information on parent-of-origin is unfortunately
unavailable for rCNV carriers in iPSYCH2015.

Our MDD sample is similar in effective sample size to that of the UKB11, which also included
many rCNVs assessed in our study. Nonetheless, the UKB study reports high risk for
PWAS-dup (OR=8.1) and modest risk increases for four other rCNVs (OR: 1.7-2.7)11, while we
find no evidence of significantly increased risk of MDD associated with any rCNV. The BPD
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case sample in our study is small and doesn’t add meaningfully to the limited evidence for rCNV
involvement in BPD10, while for the broader diagnosis group of “any affective disorder” we find
no significant evidence of associated risk among the tested rCNV.

Consistent with previous reports highlighting the pleiotropic effect of rCNVs1,2, we observed high
pairwise correlation of risk estimates for rCNVs across ASD, ADHD and SSD. Also, our
indicative associations for ID and epilepsy mostly overlapped rCNVs conferring increased risk
also of ASD, ADHD, and/or SSD. The main exception from this pleiotropic trend was MDD, for
which we found no evidence of rCNV-associated risk increase. Also, despite clearly having a
pleiotropic effect, the PWAS-dup is associated with substantially higher risk of ASD than of
ADHD and SSD. The PWAS locus stands out in several aspects; it is by far the largest of the 18
loci that we could study, and, as mentioned above, has a well-documented parent-of-origin
dependent mode of inheritance29-31.

While meiotic non-allelic homologous recombination produces de novo rCNV deletions more
often than duplications32, rCNV studies (including this study) consistently report higher
population prevalence of duplications12,26,27. The general view has been that this prevalence
disparity reflects a greater effect on viability and reproductive fitness associated with deletions
than duplications, a part of which has been attributed to risk of psychiatric disorders. Our
results, however, suggest a more complicated picture.

Firstly, we demonstrate that the deletion-duplication disparity in population prevalence differs
widely among rCNV loci, with at least two loci (2q13 and 16p12.1) having a higher prevalence of
deletions than duplications, whereas the loci with significantly higher prevalence of duplications
include many of the rCNVs most consistently reported to be associated with psychiatric
disorders (1q21.1, 15q13.3, 16p11.2 and 22q11.2).

Secondly, we do not observe greater risk associated with deletions than with duplications for the
three most relevant psychiatric disorders; ASD, ADHD and SSD. Across the 17 mostly small or
medium sized (0.2-1.7 Mb) rCNV loci included in our analysis, both locus size and locus-wide
LOEUF scores were independently associated with increased disease risk while rCNV dosage
type was not. This is consistent with a recent study that found the summed constraint of genes
affected by CNVs to best explain their associated risk with ASD33. The same study also reported
that risk associated with deletions was attenuated when accounting for IQ, whereas
duplication-associated risk was not33.

Thirdly, comparison of the population-based rCNV prevalence in our study with that reported for
the UKB12 found that deletion carriers are specifically underrepresented in the UKB. This
suggests that the “healthy volunteer” bias reported in the UKB13-15, may in large part derive from
cognitive/developmental outcomes (such as IQ and ID/DD/CM) that in turn may follow a different
pattern of association with rCNVs than do psychiatric disorders. In fact, in the comparison of risk
estimates between our study and published case-control studies (where a similar selection bias
is most often present) we also observe more diminished risk for deletions than duplications (with
6/27 vs 2/19 comparisons having significantly lower risk estimates in iPSYCH2015).
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Thus, our results point to a disparity between rCNV-associated risk of psychiatric disorders and
other developmental/cognitive outcomes, with the latter being more strongly affected by
deletions and thereby driving the overall deletion-duplication prevalence disparity. Given that
both types of outcomes are selected against in volunteer-based studies such as the UKB, or
case-control studies using screened controls, the expectation would be consistent with what we
observe; that disparity in rCNV prevalence and associated risk of psychiatric disorders between
iPSYCH2015 and UKB/case-control studies is more pronounced for deletions than duplications.

To summarise the above discussion, we propose that; (1) overall, rCNVs are associated with
increased risk of psychiatric disorders to a degree that varies according to locus size and gene
content but not according to gene dosage; (2) this risk is overall similar across ADHD, ASD and
SSD but much less (if at all) pronounced for MDD; (3) some rCNV loci, such as the PWAS
locus, may not adhere to these general statements; (4) the overall higher population prevalence
of duplications compared to deletions may in large part be driven by larger deletion-associated
effects on other (i.e. non-psychiatric) outcomes relevant to viability and/or reproductive fitness
(e.g., ID/DD/CM); (5) healthy volunteer bias and use of screened controls has led to an
overestimation of rCNV-associated risk of psychiatric disorders and an underestimation of rCNV
prevalence in the general population (especially deletions).

The iPSYCH2015 case-cohort, while optimal to accurately assess rCNV-associated risk of its
targeted psychiatric disorders, is less well suited to assess risk of other disorders. Also, the
relatively young age of participants limits study power for late-onset psychiatric illness, such as
BPD. Therefore, we have focussed on the four disorders with the largest case samples (ASD,
ADHD, MDD and SSD) and only briefly addressed other disorders (BPD, ID and epilepsy). Also,
as several rCNVs are extremely rare, estimates could not be derived for 12 out of 30 rCNVs
considered in the study. Finally, while having nation-wide coverage of hospital-based in- and
outpatient diagnoses, iPSYCH2015 does not include affected individuals who have been
diagnosed and treated solely outside the hospital regimen.

In conclusion, our study provides important insights into the impact of rCNVs on risk of common
psychiatric disorders. Population prevalence of rCNVs, especially deletions, is generally higher,
and associated risk of psychiatric disorders lower, than previously reported, most drastically so
for 22q11.2-del risk of SSD. Notably, we find no evidence of rCNV-associated risk of MDD. In an
era where genetics is increasingly being put to use in clinical practice, our results highlight the
need for accurate population-based risk estimates for rare genetic exposures such as rCNVs.
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Figure legends

Figure 1: Population-based rCNV prevalence in iPSYCH2015 and comparison with UKB.
a) Population-based prevalence in iPSYCH2015 of deletions (x-axis) and duplications (y-axis) at
18 rCNV loci. Dashed line indicates del-dup prevalence parity. The 8 loci with significant del-dup
prevalence disparity (PFDR<0.05) are indicated on the plot. b) Population-based rCNV
prevalence of deletions (left) and duplications (right) in iPSYCH2015 (full colour, above)
compared to that reported for the UKB12 (semi-transparent colour, below), with loci ordered from
top to bottom by decreasing sum LOEUF score28. In the UKB study, 22q11.2b (turquoise) was
not included as an independent locus and the prevalence of PWAS deletion was <1/100,00012.
Significant differences in prevalence between the two studies are indicated with asterisks
(PFDR<0.05 (*), <0.01 (**), and <0.001 (***), respectively). Error bars indicate the standard error
(SE) of the weighted population-based prevalence in iPSYCH2015 and observed prevalence in
UKB12, respectively. For detailed results see Supplementary Table 1.

Figure 2: rCNV-associated risk of psychiatric disorders in the iPSYCH2105 case-cohort.
rCNV-associated Hazard ratios (HR) and 95% confidence intervals (CI95%) were derived from
Cox proportional hazards (CPH) models using inverse probability of sampling (IPS) weights, and
are indicated for deletions and duplications by red and blue colour, respectively, for the 18 rCNV
loci assessed in this study. Associated HRs with P<0.05 (i.e. with CI95% not overlapping HR=1)
are bolded, and loci are ordered on the y-axis from top to bottom by decreasing sum LOEUF
score28. Abbreviations for the four most common psychiatric disorders targeted by the
iPSYCH2015 case-cohort design (depicted on plot) are as follows: ADHD; attention-deficit
hyperactivity disorder, ASD; autism spectrum disorder, MDD; major depressive disorder, SSD;
schizophrenia spectrum disorder. Full per-locus results, including estimates also for
Schizophrenia (SCZ), bipolar disorder (BPD), any affective disorder (AFF), any iPSYCH
disorder (ANY), intellectual disability (ID) and epilepsy, are provided in Extended Data Figure 2.

Figure 3: Contrasts in associated risk between main psychiatric outcomes across rCNVs.
a) Hazard ratios (HR) with error bars indicating standard errors (SE) for rCNV deletions (circle)
and duplications (triangle) are plotted in a pairwise comparison for ADHD-v-ASD (left),
SSD-v-ASD (middle), and SSD-v-ADHD (right), with estimates for each disorder on the x- and
y-axis, respectively. The dashed line indicates risk parity. On each pairwise comparison plot, we
have highlighted those rCNVs showing significant evidence of a rCNV-by-diagnosis interaction
in generalized estimating equations (GEE) predicting case status for two diagnoses at a time
(PFDR<0.05), with colours corresponding to the rCNV locus in Figure 1. b) We constructed a
heatmap of the coefficients from the rCNV-by-diagnosis interaction derived from GEE models for
each pairwise comparison across all rCNVs. Significant coefficients are indicated with asterisks
(PFDR<0.05 (*), PFDR<0.01 (**)). rCNV loci are ordered on the x-axis from left to right by
decreasing sum LOEUF score28, with coefficients for deletions and duplications shown in
separate rows for each pairwise diagnosis comparison. Only rCNVs with available HRs for both
compared diagnoses were included in each GEE analysis.
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Figure 4: Contrasts in associated risk by dosage change across rCNV loci. Hazard ratios
(HR) with error bars indicating standard errors (SE) for deletions and duplications are plotted on
the x-axis and y-axis, respectively for ADHD, ASD and SSD. The 16 loci with available HR
estimates for both deletions and duplications for at least one diagnosis are indicated by different
colours (see figure legend) corresponding to previous figures. The dashed line indicates risk
parity. We found no evidence of a locus-by-dosage interaction increasing prediction of case
status in an omnibus test across all loci and diagnoses between a GEE model with the
interaction term and a nested model without the interaction term (likelihood ratio test; P=0.16).

Figure 5: rCNV-associated risk as a function of locus properties and rCNV prevalence.
Hazard ratios (HR) with error bars indicating standard errors (SE) for deletions (light red) and
duplications (iris blue) associated with ADHD (left), ASD (middle), and SSD (right) are plotted
against a) locus size and b) sum LOEUF score28, as well as c) population prevalence in
iPSYCH2015 and d) the population prevalence ratio between iPSYCH2015 and UKB12.
PWAS-dup was excluded because of outlying locus size and imprinting mechanism, and
13q12.12-dup was excluded from d) owing to the outlying low iPSYCH2015/UKB prevalence
ratio. The plots include fitted trend lines (created with geom_smooth). The overall trend across
all three psychiatric outcomes for the two locus features and the two CNV prevalence-related
features was assessed with generalised estimating equation (GEE) models including all rCNV
carriers (Methods), and significant positive associations were found for locus size (P=0.0028)
and sum LOEUF score (P=0.0030) as well as the prevalence ratio between iPSYCH2015 and
UKB (P=0.0086), but not CNV prevalence in iPSYCH2015 (P=0.31).

Methods

Study design

The current study is based on the iPSYCH201523 case-cohort of 140,116 individuals from the
1,657,449 singletons born between May 1, 1981 and December 31, 2008, in Denmark, who
were residents in Denmark at 1 year of age and have a mother registered in the Danish Civil
Registration System34. The case-cohort is made up of two components: (1) Cases: All
individuals (n=92,531) who have been clinically diagnosed with major depressive disorder
(MDD; ICD10: F32-F33, and ICD-8 296.09, 296.29, 298.09, 300.49, n=37,555), affective
disorder (AFF; ICD10: F30-F39, n=40,482), autism spectrum disorder (ASD; ICD10: F84,
n=24,975), bipolar disorder (BPD; ICD10: F30-F31, n=3,819), schizophrenia spectrum disorder
(SSD; ICD10: F20-F29, n=16,008), schizophrenia (SCZ; ICD10: F20, n=8,113) or
attention-deficit/hyperactivity disorder (ADHD; ICD10: F90, n=29,668); according to inpatient
and outpatient discharge diagnoses from all Danish hospitals until December 31, 2015, obtained
from the Psychiatric Central Research Register (PCRR).35 (2) Population comparison Cohort:
50,615 individuals randomly drawn from the same birth cohort as the cases, corresponding to
roughly 3% of the entire population in Denmark born in 1981-2008. The total number of cases is
less than the sum of the subtotal for each diagnosis, as some individuals have more than one
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diagnosis; and the total number of samples in the study is smaller than the sum of cases and
cohort, as the cohort is a random sample of the population and therefore includes a small
number of cases (Extended Data Figure 1).

In addition to the psychiatric diagnosis groups specifically targeted in the iPSYCH2015
case-cohort design, the same information (date of diagnosis) was obtained through PCRR35 and
the Danish National Patient Registry (DNPR)36 for intellectual disability (ID, ICD10: F70-F79;
ICD8: 311-315, n=6,969) and epilepsy (ICD10: G40; ICD8: 345 (excl. 345.29), n=4,796).

Samples and genotyping

For all individuals within the iPSYCH case-cohort, DNA was extracted and whole-genome
amplified from available neonatal blood spots retrieved from the Danish Neonatal Screening
Biobank (DNSB)37, and genotyped with Illumina genotyping arrays (Illumina, San Diego, CA,
USA). The iPSYCH2015 case-cohort is an update and expansion of the study base of the
iPSYCH2012 case-cohort, described in detail elsewhere16. The sampling and genotyping of
additional samples (iPSYCH2015i, which when combined with iPSYCH2012 constitute the
complete iPSYCH2015 case-cohort) differed in several ways as detailed elsewhere;23 most
importantly, iPSYCH2015i samples were genotyped using the Global Screening Array v2,
whereas iPSYCH2012 samples had been genotyped using the PsychArray V1.016. Single
nucleotide polymorphism (SNP) genotype calling and quality control were performed using
Illumina’s GenTrain software tool for all samples that could be successfully identified and
extracted from DNSB (95.5%). The extraction of B-allele frequency as well as intensity for each
probe was performed using Illumina GenomeStudio. Samples with a genotyping call rate lower
than 95% or unexplained genotype-estimated sex discordance with the Danish Civil Registration
System35 were excluded from further analysis.23

CNV calling and quality control analysis

The selection of rCNV loci into this study was largely based on the 54 CNVs studied in the UKB
by Crawford et al.12 with the following exceptions: NRXN1, NPHP1, CRYL1 and CHRNA7, as we
considered these either too small to reliably detect in our dataset or to be CNVs of
diverse/non-recurrent nature. Also, we did not test duplications spanning BP3-BP5 on
15q11-q13 specifically, but instead applied a set of hierarchical rules to deal with rCNVs
overlapping more than one adjacent recurrent CNV loci (Supplementary Note 2). Thus, we
defined 30 distinct recurrent CNV loci, in which we searched for both deletions and duplications
spanning at least ⅔ of the defined boundaries, as further outlined in Supplementary Table 1 and
in Supplementary Note 2.

Processing and filtering of PennCNV24 calls was done using in-house developed R-package
QCtreeCNV,25 and the resulting putative calls visually inspected using in-house developed
graphical interface DeepEye.25 To filter samples of poor quality we applied similar threshold
values for the main sample-wide quality measures as applied in other large studies, e.g. of the
UKB12; LRR-SD ≥ 0.35, BAF-drift ≥ 0.005, and |GCWF| ≥ 0.02 (Extended Data Figure 4), which
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removed 3,130 samples. We assessed the quality of the visual inspection of the 11,862
inspected calls through intra- and inter-rater reliability (IRR, Supplementary Table 1) and tested
whether the latter, as well as the fraction of calls where carrier status could not be determined
(“unknown”), correlated with LRR-SD and/or with locus, array type or CNV type (Supplementary
Table 8). We then performed a series of analyses to determine whether sensitivity in CNV
detection and/or specificity of visual validation of putative CNV calls was affected by
measurement noise (Supplementary Table 9) or genotyping array (Supplementary Table 10).
The details of these analyses and their results are provided in Supplementary Note 2.

Statistical analysis

Estimating and comparing rCNV prevalence

We calculated population-based rCNV prevalence (with CI95%) from the full iPSYCH2015
case-cohort using the svydesign() and svyciprop() functions from the survey38 package in R,
with finite population correction (fpc) to account for oversampling of cases. Briefly, we divided
the post-QC number of (a) case individuals (79,535) and (b) individuals from the randomly
drawn population subcohort (43,311) with the total number of corresponding individuals in the
source population (92,531 and 1,657,449) to derive the sampled population fractions; 0.85955
and 0.02613, respectively. Samples from overlapping individuals (cases-in-subcohort) were
assigned the case population fraction (0.85955). This resulted in an effective population-based
sample size corresponding to 45,609 individuals. We compared the overall and per-locus
prevalence of deletions and duplications with a Welch’s test of difference between two
measures assuming unequal variance. Briefly, we defined the difference; d = abs(log(pDEL/pDUP)),
the standard error of the difference; SEd = √(SEDEL

2+SEDUP
2), and the p-value; P =

2*(1-pnorm(d/SEd)), where pDEL and SEDEL, and pDUP and SEDUP, indicate the prevalence and
standard error of prevalence retrieved with svyciprop() for deletions and duplications,
respectively. We calculated rCNV prevalence in the UKB directly from carrier counts provided in
Crawford et al.12 and CI95% calculated as follows: CI95% = qbeta(c(0.05/2,1-0.05/2),
nCarrier+0.5, nTotal-nCarrier+0.5), where nCarrier and nTotal indicate the number of carriers of
the rCNV and the total number of assessed samples (421,268), respectively. We then compared
the rCNV prevalence in iPSYCH2015 and UKB with a Welch’s test, as described above.
P-values were in both instances adjusted for multiple comparisons with a false discovery rate
(FDR) method, using the p.adjust function of the (default) stats package in R.

Estimating rCNV-associated risk of iPSYCH disorders with survival analysis

We used weighted Cox proportional hazard (CPH) models from the survival39 package in R to
estimate the rCNV-associated risk of the five psychiatric disorders targeted by the iPSYCH2015
case-cohort design (ADHD, ASD, BPD, MDD and SSD), as well as of the broader diagnosis
groups; any affective disorder and any iPSYCH disorder, and the narrower (compared to SSD)
diagnosis of schizophrenia (ICD10; F20). The outcome in the CPH models was the age at first
hospital diagnosis with the index disorder, age at censoring or age at death - whichever came
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first - and the exposure was carrier status (i.e. having deletion or duplication, respectively,
versus normal copy number) for the rCNV. All models were sex-stratified. Subjects were
censored if they had not received an index diagnosis by the end of the follow-up period
(December 31st 2015), emigrated or otherwise had been lost to follow-up. To obtain unbiased
population-based estimates, the inverse probability of sampling (IPS) weights were used as
introduced by Barlow et al.40 The SEs of regression coefficients were computed by a robust
estimator to derive CI95% and test for the significance of rCNV-associated HRs.

Estimating omnibus rCNV-associated risk of the four main iPSYCH2015 disorders

We used generalised linear models (GLMs) to assess the overall effect of rCNVs on the
prediction of each of the four main iPSYCH2015 disorders (ADHD, ASD, MDD and SSD)
separately. For this analysis we defined a categorical variable with separate levels for each
rCNV and “no rCNV” as reference (individuals carrying more than one rCNV were assigned the
level corresponding to the rCNV with a higher risk estimate for “any iPSYCH2015 disorder”).
Then for each disorder, a full model including this categorical rCNV carrier status as an
independent variable in addition to AEF and biological sex (as determined at birth), was
compared with a nested model including only AEF and biological sex. Both models included
only individuals either diagnosed with the respective diagnosis or belonging to the random
population subcohort. A likelihood ratio test (LRT) was used to test the omnibus rCNV effect by
comparing the full model with the nested one.

Comparison of rCNV-associated risk across diagnoses

We implemented generalised estimating equation (GEE) models using glmgee() function from
glmtoolbox41 in R to test for overall and/or rCNV-specific differences in associated risk between
pairs of diagnoses (ASD, ADHD and SSD). We limited each analysis to those individuals who
were part of the random population subcohort or diagnosed with either of the two compared
diagnoses, and allocated two lines to each sample ID in the data structure to account for the
possibility of having been diagnosed with both disorders. Thus, the binary case outcome in the
model was independent between diagnoses for each included study subject. For each pairwise
comparison, two GEE models (full and nested) were constructed, with case status as outcome
and clustering on sample ID. Independent categorical variables were rCNV and diagnosis (i.e.
indicating which of the two compared disorders each line’s outcome value belonged to for each
study subject, in each comparison the diagnosis with a larger case sample size was assigned
as reference level), along with sex and AEF. In the analysis of overall rCNV-associated
differences between diagnoses, rCNV status was defined as binary carrier status for “any
rCNV”, while in the analysis of rCNV-specific cross-diagnosis differences, a categorical variable
with separate levels for each rCNV was specified for rCNV status with “no rCNV” as the
reference (if individuals carried more than one rCNV, we assigned them the level of the rCNV
with higher associated estimate for “any iPSYCH disorder”). In addition to the variables
specified above, the full models included an interaction term between rCNV status (binary or
categorical) and diagnosis, whereas the nested models did not. We then used anova test from
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the glmtoolbox package (with test=”score” and varest=”model”) to compare each full model with
its respective nested model. Furthermore, to extract significant coefficient of interaction between
rCNVs and the diagnosis, we performed post hoc analysis on summary results of the GEE
models (i.e the model that included the interaction term) by applying FDR correction on the
p-values corresponding to all coefficients in the model outputs.

Analysis of locus type effect on rCNV-associated risk across the diagnoses

To investigate the rCNV dosage type effect (i.e., deletion v. duplication) on rCNV pathogenicity
across ASD, ADHD, and SSD, we again applied GEE models similarly as described above,
although only among rCNV carriers. To account for multi-diagnoses individuals, three rows were
assigned to each individual id in the data structure corresponding to the three included
diagnoses, and the binary case status was defined in each row independently based on whether
the rCNV carrier had any of the diagnoses. The GEE models included diagnosis, rCNV type (del
v. dup), and locus of the corresponding rCNV carrier as independent categorical variables, to
predict the case status as the model outcome (binary variable) , while adjusting for AEF and sex
and clustering on ids. The reference categories for rCNV type, locus, and diagnosis as
categorical variables were set as deletion, 15q11.2, and ADHD respectively in each model. To
evaluate overall locus type effect across three diagnoses, we compared the full model with a
nested model excluding rCNV type from the covariates by performing ANOVA test from the
same package and default mentioned above. Additionally, to test locus-specific rCNV type
effects, we built another model containing an interaction between rCNV type and locus and
compared it with the base model using ANOVA test.

Analysis of locus features and rCNV prevalence as predictors of penetrance

For analysis of locus features' effect on rCNV pathogenicity, we constructed two GEE models
among all rCNV carriers. The first model contained LOEUF score and locus size, while the
second model contained both rCNV iPSYCH prevalence and iPSYCH/UKB prevalence ratio as
independent variables to predict the case status (binary outcome) separately. Both models
included AEF and sex as covariates and sample ID as clustering variable. In both models the
test variables (LOEUF score and size, and iPSYCH prevalence and iPSYCH/UKB prevalence
ratio, respectively) were log-transformed.

Estimating rCNV-associated risk of ID and epilepsy with survival analysis

To study ID and epilepsy, we fitted weighted CPH models with age at the first hospital diagnosis
(otherwise censoring date) as the primary outcome on the entire case-cohort sample.
Considering the frequent comorbidity between ID and epilepsy with psychiatric outcomes, we
assigned IPS weights to the individuals depending on whether they belonged to the case or
cohort component of iPSYCH2015 in a similar way as for the primary outcomes40. All the
analyses included sex as the stratification variable and rCNV status as the independent

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.04.23294975doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.04.23294975
http://creativecommons.org/licenses/by-nc-nd/4.0/


variable, which was coded as described in primary analyses of iPSYCH outcomes.

Sensitivity analyses using generalised linear models for all the studied outcomes

Sensitivity analysis was performed utilising generalised linear models (GLMs) in parallel to CPH
models to compute rCNV-associated ORs for all the studied outcomes. When studying
psychiatric diagnoses, only the individuals who had the corresponding outcome or were in the
random cohort were included in the analyses, with the diagnosis as the binary outcome and
rCNV as independent variable in each model accounting for AEF and sex of the individuals and
genotyping array (i.e whether individual was genotyped on PsychArray or GSA). However, for ID
and epilepsy, GLMs were fitted on the entire case cohort, thus accounting for the 5 main
iPSYCH outcomes, AEF and sex of participants and genotypic array.

All statistical analyses were conducted in R42, version 4.2.3.
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