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Abstract  

Background: Idiopathic/Isolated rapid eye movement sleep behavior disorder (iRBD) is a 

prodromal stage of α-synucleinopathies and eventually phenoconverts to overt 

neurodegenerative diseases including Parkinson’s disease (PD), dementia with Lewy bodies 

(DLB) and multiple system atrophy (MSA). Associations of baseline resting-state 

electroencephalography (EEG) with phenoconversion have been reported. 

Objectives: In this study, we aimed to develop machine learning models to predict 

phenoconversion time and subtype using baseline EEG features in patients with iRBD. 

Methods: At baseline, resting-state EEG and neurological assessments were performed on 

patients with iRBD. Calculated EEG features included spectral power, weighted phase lag 

index and Shannon entropy. Three models were used for survival prediction, and four models 

were used for α-synucleinopathy subtype prediction. The models were externally validated 

using data from a different institution. 

Results: A total of 236 iRBD patients were followed-up for up to eight years (mean 3.5 

years), and 31 patients converted to α-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best 

model for survival prediction was the random survival forest model with an integrated Brier 

score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best 

model for subtype prediction with an area under the receiver operating characteristic curve of 

0.901. EEG slowing was an important feature for both models.  

Conclusions: Machine learning models using baseline EEG features can be used to predict 

phenoconversion time and its subtype in patients with iRBD. Further research including large 

sample data from many countries is needed to make a more robust model. 
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Introduction  

Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by dream 

enactment and loss of atonia during REM sleep.1 Idiopathic/Isolated RBD (iRBD) is known 

as a prodromal stage of α-synucleinopathies, specifically Parkinson’s disease (PD), dementia 

with Lewy bodies (DLB) and multiple system atrophy (MSA).2,3 The risk of developing α-

synucleinopathy among iRBD patients is approximately 18% after three years, 31% after five 

years and 74% after 12 years.2 In short, most iRBD patients eventually develop an α-

synucleinopathy, preceded by a decline in either motor or cognitive function.4 

Age, olfactory function, cognitive function and motor function have been reported as 

clinical biomarkers to predict phenoconversion with a hazard ratio up to 3.16.5,6 

Neuroimaging of dopamine transporters provides a promising biomarker to predict 

phenoconversion;7 however, it is expensive and has limited accessibility. 

Electroencephalography (EEG) is a safe and easy method to objectively measure brain 

activity. EEG in iRBD patients previously showed slowing in the occipital region, decreased 

delta-band weighted phase lag index (wPLI) in the frontal regions, and increased alpha wPLI 

with reduced delta orthogonalized Correlation Coefficient (oCC).8–11 Two longitudinal 

studies have evaluated the value of EEG in predicting phenoconversion in iRBD.12,13 These 

studies, however, described phenoconversion dichotically, i.e., converted or not converted.  

However, it is demanded for both patients and clinicians to predict when and how 

fast phenoconversion to α-synucleinopathy will occur and to which subtype of 

synucleinopathy the patient will phenoconvert. An individualized model that can predict the 

time from diagnosis until each patient develops a α-synucleinopathy is important in 

understanding their prognosis. Moreover, estimating whether the iRBD patients will first 

develop motor or cognitive symptoms is also crucial. 
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Machine learning is being extensively explored for potential applications in various 

diseases and has achieved excellent performance compared with conventional methods.14 

Thus, machine learning methods can be considered for the application of predicting the 

complex survival time and subtype of iRBD phenoconversion. The aim of this study was to 

propose EEG-based machine learning models that can predict the time to phenoconversion 

and the subtype of phenoconversion for each patient. Various survival analyses and 

classification models were compared to select the best model. 

 

Methods  

Participants  

Patients with iRBD who visited the sleep clinic of Seoul National University Hospital were 

enrolled and followed up every year. RBD was diagnosed according to the International 

Classification of Sleep Disorders - third edition (ICSD-3) criteria using overnight video-

polysomnography (vPSG).15 Two neurologists specialized in sleep disorders (JK) and 

movement disorders (KH) examined each patient at baseline to evaluate them for dementia, 

cerebellar ataxia, parkinsonism or other neurodegenerative diseases. 

Participants with a neurodegenerative disease, neurological disorder, severe medical 

illness or severe obstructive sleep apnea (apnea-hypopnea index � 30) were excluded. This 

study was authorized by the Institutional Review Board (IRB) of the Seoul National 

University Hospital (IRB Number 1406-100-589). Written informed consent was obtained 

from each participant. 

For external validation, we used clinical and EEG data of iRBD patients provided by 

the University Neurology Clinics at Policlinico San Martino in Genoa. Clinical and EEG data 
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has been described in detail elsewhere.11 In brief, inclusion/exclusion criteria, clinical and 

EEG assessments substantially overlapped with the Korean cohort. All patients completed 

routine clinical follow-ups during which systematic assessments for parkinsonism and 

dementia were performed, including a semistructured interview with patients and caregivers 

(IRB Number 703, from the Genoa IRB). 

 

Clinical evaluation 

The Korean version of the Mini-Mental Status Examination (K-MMSE) and the Korean 

version of the Montreal Cognitive Assessment (MoCA-K) were used to evaluate general 

cognitive function.16,17 The Korean version of the RBD Screening Questionnaire-Hong Kong 

(RBDQ-KR) was used to assess the RBD symptom severity.18 The Korean Version of 

Sniffing Sticks (KVSS) was applied to test olfactory symptoms.19 The Scales for Outcomes in 

Parkinson’s Disease for Autonomic Symptoms (SCOPA-AUT) questionnaire was used to 

examine the symptoms of autonomic dysfunction.20 The Movement Disorder Society — 

Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III was used to assess motor 

symptoms.21 Additionally, subjective sleep quality and excessive daytime sleepiness were 

assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Epworth Sleepiness Scale 

(ESS), respectively.22,23  

During follow-up, cognitive function (K-MMSE, MoCA-K), motor function (MDS-

UPDRS part III), autonomic function (SCOPA-AUT), self-reported sleep propensity and 

quality (PSQI, ESS), RBD symptom severity (RBDQ-KR) and olfactory function (KVSS) 

were evaluated every year. Phenoconversion in iRBD patients was assessed every 6 to 12 

months by the same two neurologists (JK and KH). Finally, patients with iRBD who 
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developed PD, DLB or MSA were classified as converters (iRBD-C), while the remaining 

patients were classified as nonconverters (iRBD-NC). The diagnoses of PD, DLB and MSA 

were made according to standard criteria.24–26  

 

EEG recordings and preprocessing  

Scalp EEGs were obtained using a 60-channel EEG cap (Wave-Guard EEG cap, Advanced 

NeuroTechnology, Enschede, Netherlands) arranged according to the international 10-10 

system. The reference electrode was positioned on an ear and the ground electrode was 

placed on the AFz. Impedances were kept under 10 kΩ. To detect and eliminate eye 

movement artifacts, two EOG electrodes were attached to the left and right outer canthi. The 

sampling rate was 400 Hz. The resting-state EEG was recorded for a total of 5 minutes in all 

patients while they were awake and alternating opening and closing their eyes every 30 

seconds. To preprocess the data, a 0.5 Hz high-pass filter and a 60 Hz notch filter were 

applied. Only the EEG data recorded while the participant’s eyes were closed were extracted 

and analyzed in this study. EEG segments with severe artifacts or poor signal quality were 

removed by visually inspecting the data. Then, independent component analysis (ICA) was 

applied, and the EEGLAB plugin ICLabel was used to automatically remove eye artifacts.27,28 

The threshold for eye artifact probability was set to 90%. 

EEG data for the external validation set used a system with 61 electrodes according to 

the international 10-10 system. The reference and the ground electrode were Fpz and Oz, 

respectively, and the signals were sampled at 512 Hz. We simultaneously recording 

electrooculogram to monitor eye-movements. The acquisition protocol consisted of 

approximately 25 resting states recordings subdivided into 2–3 minutes with eyes open, 3–4 
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minutes during hyperventilation and 17–18 minutes with eyes closed. Impedances were kept 

under 5 kΩ. The same preprocessing procedures used for our dataset were implemented for 

the external validation set. 

For both centers’ data, a total of 101 seconds of EEG data for each patient were 

eventually included in this study. EEG preprocessing was performed using the EEGLAB 

package (version 2019.1) for MATLAB (version 9.8.0, The MathWorks, Natick, MA, 

USA).29 

 

Experimental procedures  

EEG features  

To make the model more robust and reduce overfitting, data augmentation was performed for 

the training set. To augment the total data size the first 100 two-second EEG epochs were 

extracted by the sliding window method with 50% overlap. Thus, one patient’s EEG data was 

augmented to one hundred EEG epochs. 

For each EEG epoch, the fast Fourier transforms (FFT) using the Hanning window 

was applied with a frequency of interest range of 1–50 Hz in 0.5 Hz steps. In our study, four 

frequency bands were used: delta (2-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), beta (13-30 

Hz). Absolute power was averaged across all electrodes and converted decibels. Relative 

power was calculated by expressing the percentage of power for each frequency band over 

the total power in the 2–30 Hz range. The dominant occipital frequency (DOF) was defined 

as the averaged peak frequency with the maximum power between 4–14 Hz in the two 

occipital channels (O1, O2). The slow-to-fast power ratio (STF) was calculated using the 

absolute power values averaged for all electrodes as follows: [(delta + theta)/(beta)]. Recently 
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it has been suggested that metrics describing network interactions of large-scale inter-areal 

synchronization between brain oscillations could improve classification accuracy in iRBD 

patients.30 Accordingly, overall functional connectivity for each frequency band was 

extracted by averaging the wPLI values of all 1770 electrode pairs.8,31 Furthermore, Shannon 

entropy (SE) was defined with 10 bins of amplitude values.32 In total, 15 EEG features were 

calculated for analysis (Supplementary Table 1). All spectral analyses were performed using 

the FieldTrip toolbox version 20200607.33  

 

Modeling process (1) - prediction of phenoconversion time 

Eighty percent of the overall dataset was assigned as the training set, and the remaining 20% 

of the data were designated as the testing set. All iRBD patient data, which were divided into 

iRBD patients not phenoconverted at follow-up (iRBD-NC) and iRBD patients 

phenoconverted at follow-up (iRBD-C), were used in this survival prediction analysis. All 

duration information were calculated by the difference between the EEG acquisition date and 

the last visit date of the patient. To identify the most relevant features for predicting 

phenoconversion time, a two-step feature selection process was used. First, univariable Cox 

proportional hazard (CPH) regression was performed to identify features with a p value less 

than 0.1. Next, backward multivariable CPH regression was performed to eliminate features 

with a p value greater than 0.1. To address the imbalanced nature of the data, with a larger 

number of nonconverter samples, the synthetic minority oversampling technique (SMOTE) 

was applied to the training set.34  CPH, Weibull-accelerated failure time (wAFT) and random 

survival forest (RSF) models were used to train and test these data. To evaluate the models, 

stratified group 5-fold cross-validation was implemented for internal validation. Harrel’s 

concordance index (C-index) and the integrated Brier score (IBS) were used to evaluate the 
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performance of survival prediction analysis.35,36 The C-index is a commonly used metric in 

survival analysis that measures the ability of the model to correctly rank the survival times of 

patients.. The IBS, on the other hand, is a measure of the overall accuracy of the model’s 

predictions, considering both the predicted survival times and the observed survival times.. 

For all models, hyperparameter optimization was performed using the training set while the 

testing set was used for model performance. The final model was fitted with the augmented 

and resampled total dataset by using the best prediction model. As there were no MSA 

patients in the external validation set, we additionally fitted the model excluding the MSA 

patients. Permutation feature importance was employed to represent the importance of each 

variable in the model. All analyses were conducted using Python 3.8.5 (scikit-learn: v.1.1.1; 

lifelines: v.0.27.0; scikit-survival: v.0.18.0; hyperopt: v.0.2.7). 

 

Modeling process (2) - prediction of phenoconversion subtype 

Only iRBD-C data were used for subtype prediction analysis to classify subtypes of 

phenoconversion. A training set made up of 80% of the dataset and a testing set using the 

remaining 20% were assigned. Following a previous study, we classified phenoconversion 

into two subtypes according to the first presenting symptom: motor-first subtype, which 

includes PD and MSA, and cognition-first subtype, which includes DLB.13
 Recursive feature 

elimination (RFE) was applied using multiple models to select the most relevant and 

predictive features for subtype prediction. The features selected by RFE using XGBoost 

showed the best performance and were therefore used for the models. The other models were 

trained and tested on the selected features. Due to data imbalance, the SMOTE was applied in 

the training set. The data were trained and tested using the XGBoost, random forest (RF), 

logistic regression (LR) with elastic net regularization and k-nearest neighbor (KNN) models. 
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Hyperparameter optimization was performed using the training set for all models while 

evaluating by the testing set. A 10-fold cross-validation was performed 10 times for internal 

validation to obtain a robust estimate of the performance of the models. The area under the 

receiver operating characteristic curve (AUC), accuracy, precision, recall and F1 score were 

utilized to evaluate the performance of the subtype prediction analysis. The best prediction 

model was used to fit the final model to the augmented and resampled entire dataset. For the 

same reason described above for survival prediction, a dataset without data from MSA 

patients was additionally analyzed. Classification into PD, MSA and DLB was also 

performed. Python 3.8.5 was used to conduct each analysis (scikit-learn: v.1.1.1; xgboost: 

v.0.90; hyperopt: v.0.2.7). 

 

Statistical analysis  

All data are shown as the mean ± standard deviation [range]. The Kolmogorov�Smirnov test 

was used to test the normality of all variables before analysis. Independent sample t tests 

were employed to evaluate differences in continuous data. Categorical data were analyzed 

with Fisher’s exact test. Nonnormally distributed variables were compared using the 

Mann�Whitney U test. Survival curves were plotted using the Kaplan�Meier method. The 

log-rank test was used to compare survival distributions between our dataset and the external 

validation dataset. The Restricted Mean Survival Time (RMST) is obtained to estimate the 

average survival time up to 5.8 years, which is the last observed event time in our dataset.37 

The significance threshold was set to 0.05. All statistical evaluations were performed with 

Python 3.8.5 using the SciPy library (scipy: v.1.5.2).  
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Results  

Participant characteristics  

A total of 236 iRBD patients were included in the internal validation dataset.  During a mean 

follow-up duration of 3.5 years [range: 0.9–8.6 years], 31 patients converted to overt 

neurodegenerative diseases, and 205 remained in an isolated state of RBD (Figure 1A). The 

mean time to phenoconversion was 2.66 ± 1.48 years. 83 patients with no baseline EEG data, 

1 patient who phenoconverted within 6 months after EEG acquisition and 10 patients whose 

data were recorded with another EEG system were excluded from further analysis. Of the 

remaining 142 patients, 27 patients phenoconverted during follow-up (13 to PD, 8 to DLB, 

and 6 to MSA). All MSA patients were of the cerebellar type (MSA-C).  

There were no significant differences in sex, RBDQ-KR, K-MMSE, KVSS, SCOPA-

AUT, ESS and PSQI between the iRBD-NC and iRBD-C groups. However, the patients in 

the iRBD-C group were older, had lower education levels, lower MoCA-K scores and higher 

MDS-UPDRS-III scores (Table 1). When comparing motor- and cognition-first subtypes, the 

cognition-first group was older and had lower baseline K-MMSE and MoCA-K scores 

(Supplementary Table 2).  

The external validation dataset included 62 iRBD patients who were followed up for 

2.17 ± 1.53 years (Supplementary Table 3). Seven patients were excluded: 5 because of poor 

data quality, 1 because the data does not have conversion date information and 1 because the 

data were recorded after phenoconversion. Seventeen of the iRBD patients in the external 

validation dataset were phenoconverted during follow-up (7 to PD and 10 to DLB). 

Compared to our dataset, patients in the external validation dataset were older, were more 

likely to be male and had lower MMSE scores (Supplementary Table 4). In addition, the log-
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rank test showed that the two datasets showed significantly different survival rates (Figure 1B, 

p < 0.005). The RMST of our dataset was 5.067 years and the RMST of each patient was 

calculated from the survival curve. In addition, a positive correlation was shown between the 

RMST and time to conversion for the converted patients (Pearson correlation r = 0.525, p = 

0.005, Supplementary Figure 1). 

 

Phenoconversion time prediction  

Delta wPLI was excluded through univariable CPH regression, and DOF, relative delta power, 

relative beta power and SE were further excluded through multivariable CPH regression. 

Finally, 10 features were included in this survival prediction analysis. The power spectral 

densities of iRBD-NC and iRBD-C are shown in Figure 2B. 

We compared the three survival analysis methods using our dataset (Supplementary 

Table 5). For the internal validation using 5-fold cross-validation, the RSF model was the 

best, with an IBS of 0.114 and a C-index of 0.775. The five most important features of RSF 

were absolute theta power, absolute delta power, STF, beta wPLI and absolute alpha power 

(Figure 2A and Supplementary Table 6). The iRBD-C group showed higher absolute delta 

power and absolute theta power but also higher alpha power than the iRBD-NC group. For 

the external validation dataset, the RSF model showed an IBS of 0.128 and a C-index of 

0.561.  

Additionally, model results excluding data from MSA patients are listed in 

Supplementary Table 7.  
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Phenoconversion subtype prediction  

Through recursive feature elimination, eight features were excluded due to their low feature 

importance. As a result, seven features were used in this subtype prediction analysis. The 

selected features in subtype prediction were DOF, STF, absolute theta power, absolute beta 

power, relative beta power, beta wPLI and SE (Supplementary Table 8). The power spectral 

densities of the motor- and cognition-first subtypes are shown in Figure 2C. 

The scores for internal validation of motor- and cognition-first are shown in Table 2. 

For internal validation, the KNN model’s performance was the best among the models, with 

an AUC of 0.901, accuracy of 0.704, precision of 0.500, recall of 0.875 and F1 of 0.636 

(Figure 3). External validation of the KNN model resulted in an AUC of 0.536, accuracy of 

0.527, precision of 0.304, recall of 0.412 and F1 of 0.300.  

In addition, evaluation results without data from MSA patients and classification into 

PD, MSA and DLB are shown in Supplementary Tables 9 and 10, respectively. Example 

plots using both phenoconversion time and subtype prediction models are shown in 

Supplementary Figures 2 and 3. 

 

Discussion  

In this study, we aimed to predict phenoconversion time and subtype in iRBD patients using 

resting-state EEG features collected at baseline. Our models, which were based on machine 

learning algorithms, showed promising results in predicting phenoconversion time and 

subtype. The RSF model showed acceptable performance in predicting phenoconversion time, 

while the KNN model was able to predict the conversion subtype (motor-first or cognition-

first) with good AUC. Our models may provide a practical solution for predicting 

individualized phenoconversion time and subtype in iRBD patients. These predictions are 
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important for better management of the disease and to help patients to be better prepared for 

their future. 

Two previous studies have attempted to predict phenoconversion from iRBD patients 

using EEG. In the first, researchers used EEG slowing features to predict neurodegeneration 

in iRBD patients.13 The focus was to classify iRBD whether patients would phenoconvert 

without considering phenoconversion time or specific subtypes. Later, the same research 

group used deep learning techniques with EEG spectrograms recorded from iRBD patients to 

differentiate them from healthy controls.38 In contrast, our study aimed to predict not only the 

phenoconversion time but also the conversion subtype of iRBD patients. We predicted 

phenoconversion time in patients with iRBD using only baseline EEG features. Absolute 

theta power, absolute delta power, beta wPLI, STF and absolute alpha power were the most 

important features for phenoconversion time prediction. In previous studies, it was shown 

that the absolute EEG power of recordings during both sleep and resting-state was 

significantly different not only between iRBD patients and controls but also between iRBD 

patients who converted to neurodegenerative diseases and those who had not yet 

converted.12,13,38–41 In particular, the increases in absolute theta power and delta power were 

prominent in converted patients. Higher low-frequency power and lower high-frequency 

power, called EEG slowing, have already been shown in iRBD patients by various 

neurodegenerative studies.13,39,42–44 Therefore, EEG slowing is known to be common in iRBD 

patients, particularly in those who convert to neurodegenerative diseases. Our results 

demonstrate that EEG features can be applied as biomarkers for predicting phenoconversion 

time in iRBD patients.  

Phenoconversion subtype prediction from iRBD patients was also feasible using 

baseline EEG features. EEG differences between the motor- and cognition-first subtypes had 

been shown in a previous study. The cognition-first subtype (DLB patients) showed increased 
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delta and theta power, higher STF and lower DOF.45,46 Indeed, the selected features for 

subtype prediction in our study were DOF, STF, absolute theta and beta power, which are 

consistent with previous studies. Additionally, EEG slowing is correlated with cognitive 

impairment.47 In previous studies comparing the motor- and cognition-first subtypes, the 

main difference at baseline was cognitive function, which was significantly decreased in the 

cognition-first subtype.2,48,49  

Exclusion of MSA patients slightly improved the performance of the phenoconversion 

time prediction model (Supplementary Table 7). The reduced heterogeneity of the sample 

may have made it easier for the model to identify the relevant features for phenoconversion 

time prediction. However, it reduced the performance of the KNN model for 

phenoconversion subtype prediction. The decrease in the number of converters in the dataset 

from 27 to 21 following the exclusion of 6 MSA patients could have contributed to a 

significant decrease in the model performance. 

It is notable that the performance of external validation was not as good as expected 

for both survival prediction and subtype prediction. Significantly lower performance for the 

external validation dataset indicates that our model is overfitted to our dataset. Although we 

took measures to prevent overfitting by conducting cross-validation and adjusting parameters 

known to affect overfitting, we could not fully escape overfitting. Compared to the external 

validation dataset, our dataset showed a higher proportion of females, younger age, lower 

MDS-UPDRS-III scores and more MSA converted patients. Moreover, lower number of 

subjects in the external validation dataset may have also affected the performance of our 

model. These significant differences between the two cohorts might have contributed to the 

poor performance in the external validation in this study.  

Studies conducted in cohorts from Asian countries have found a slower 

phenoconversion rate than those from European and American cohorts, suggesting ethnic 
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differences in the prognosis of iRBD.50,51 If this is true, ethnic differences should be taken 

into consideration in the prediction model. Further study is mandatory to confirm any ethnic 

and/or regional differences in the prognosis of iRBD in the future.  

There are a few limitations to note. First, age and cognitive function scores, which 

may affect EEG findings were not accounted for.52,53 Second, due to the small sample size, 

we were forced to apply data augmentation. The number of iRBD patients in this study was 

143, which was relatively small for the use of machine learning methods. However, as many 

studies have used EEG sliding window data augmentation, this method of data augmentation 

is likely to be reliable enough to achieve the goal of our study.54–56  

In conclusion, we were able to create a useful RSF model and KNN model for 

predicting the time of phenoconversion and its subtype, respectively, in iRBD patients simply 

using resting-state EEG features at baseline. We believe our prediction model and method 

contribute to opening new horizons in the management and counseling of iRBD patients. 

Furthermore, our model can be implemented in clinical EEG machines or can be developed 

as a stand-alone device that can be used in outpatient clinics. A future multicenter study with 

a larger number of patients is needed to elucidate the predictive value of baseline EEG 

features. 
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Figure legends 

Figure 1. Flowchart and survival curve. (A) Flowchart. (B) Survival curves of Seoul 

National University Hospital and University of Genoa. Abbreviations: iRBD, isolated REM 

sleep behavior disorder; iRBD-C, iRBD converters; iRBD-NC, iRBD nonconverters; PD, 

Parkinson’s disease; DLB, dementia with Lewy bodies; MSA, multiple system atrophy; 

SNUH, Seoul National University Hospital; UniGe, University of Genoa. 

 

Figure 2. (A) Feature importance of random survival forest model and (B) comparison 

of power spectral densities between the iRBD-NC and iRBD-C groups, and (C) 

comparison of motor-first and cognition-first presentations. Abbreviations: _A, absolute 

power; STF, slow-to-fast power ratio; wPLI, weighted phase lag index; _R, relative power; 

SE, Shannon entropy; iRBD, isolated REM sleep behavior disorder; iRBD-C, converters to a 

neurodegenerative disorder from iRBD; iRBD-NC, nonconverters from iRBD. 

 

Figure 3. K-nearest neighbor model prediction results. These results are obtained by 

internal validation using repeated 10-fold cross-validation. (A) Confusion matrix. (B) 

Receiver operating characteristic curve. Abbreviations: ROC, receiver operating 

characteristic curve. 
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Table 1. Participant characteristics of iRBD patients who further converted or not from Seoul National University Hospital 

 

 
iRBD-NC (n = 115) iRBD-C (n = 27) p value 

Age (years) 66.61 � 6.44 [50-82] 69.85 � 7.30 [57-82] 0.023 

Sex (Male %) M: 75, F: 40 (65.2) M: 15, F: 12 (55.6) 0.380a 

Education (years) 12.83 � 4.08 [0-18] 10.89 � 4.28 [0-18] 0.029b 

RBDQ-KR 49.74 � 19.88 [4-100] (n = 106) 48.26 � 16.20 [5-70] (n = 23) 0.740 

Conversion duration (years) - 2.66 � 1.48 [0.7-5.8] 
 

K-MMSE 27.77 � 1.77 [21-30] 27.15 � 2.21 [20-30] 0.166b 

MoCA-K 25.83 � 2.79 [16-30] 23.15 � 4.64 [7-29] <0.001 

KVSS 17.43 � 5.32 [7-31] (n = 104) 17.74 � 6.08 [7-27] (n = 21) 0.815 

SCOPA-AUT 12.57 � 7.12 [1-30] (n = 107) 14.91 � 9.08 [2-39] (n = 23) 0.176 

MDS-UPDRS-III 0.91 � 1.95 [0-11] (n = 97) 2.35 � 2.85 [0-8] (n = 17) 0.008b 

ESS 5.62 � 3.50 [0-16] 5.96 � 4.19 [1-20] 0.658 

PSQI 7.02 � 4.23 [1-18] 6.04 � 4.12 [1-18] 0.274b 

Bold font indicates statistical significance. Abbreviations: iRBD, isolated REM sleep behavior disorder; iRBD-NC, iRBD nonconverters; iRBD-
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C, iRBD converters; RBDQ-KR, Korean version of the RBD screening Questionnaire-Hong Kong; K-MMSE, Korean version of the Mini-

Mental Status Examination; MoCA-K, Korean version of the Montreal Cognitive Assessment; KVSS, Korean Version of Sniffing Sticks; 

SCOPA-AUT, Scales for Outcomes in Parkinson’s Disease for Autonomic Symptoms; MDS-UPDRS-III, Movement Disorder Society — 

Unified Parkinson's Disease Rating Scale Part III; ESS, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index. 

a: Fisher’s exact test.  

b: Mann-Whitney U test.   

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted S

eptem
ber 5, 2023. 

; 
https://doi.org/10.1101/2023.09.04.23294964

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.09.04.23294964


Table 2. Subtype prediction results 

 
 AUC Accuracy Precision Recall F1 

XGBoost 0.717 0.741 0.556 0.625 0.588 

RF 0.737 0.704 0.500 0.750 0.600 

LR 0.770 0.778 0.667 0.500 0.571 

KNN 0.901 0.704 0.500 0.875 0.636 

Abbreviations: XGBoost, extreme gradient boosting; RF, random forest; LR, logistic regression; KNN, K-nearest neighbor; AUC, area under the 

receiver operating characteristic curve. 
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