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Abstract | Foundation models represent a recent paradigm shift in deep learning, where a single large-scale 24 

model trained on vast amounts of data can serve as the foundation for various downstream tasks. 25 

Foundation models are generally trained using self-supervised learning and excel in reducing the demand 26 

for training samples in downstream applications. This is especially important in medicine, where large 27 

labeled datasets are often scarce. Here, we developed a foundation model for imaging biomarker discovery 28 

by training a convolutional encoder through self-supervised learning using a comprehensive dataset of 29 

11,467 radiographic lesions. The foundation model was evaluated in distinct and clinically relevant 30 

applications of imaging-based biomarkers. We found that they facilitated better and more efficient learning 31 

of imaging biomarkers and yielded task-specific models that significantly outperformed their conventional 32 

supervised counterparts on downstream tasks. The performance gain was most prominent when training 33 

dataset sizes were very limited. Furthermore, foundation models were more stable to input and inter-reader 34 

variations and showed stronger associations with underlying biology. Our results demonstrate the 35 

tremendous potential of foundation models in discovering novel imaging biomarkers that may extend to 36 

other clinical use cases and can accelerate the widespread translation of imaging biomarkers into clinical 37 

settings.  38 

 39 

 40 

INTRODUCTION 41 

Foundation models present a paradigm shift in deep learning wherein a model trained on vast amounts of 42 

unannotated data can serve as the foundation of a wide range of downstream tasks. Recently foundation 43 

models have provided unprecedented performance gains in language, vision, and several other domains1. In 44 

the field of natural language processing (NLP), for example, foundation models drive the successes of 45 

applications such as ChatGPT2, BERT3, and CLIP4. Similarly, foundation models, such as SimCLR5 and DINO6, 46 

have reported considerable success in computer vision applications.  47 

Medicine represents a vast potential for foundation models as labeled data are scarce, while 48 

multimodal data, such as medical images, biologic, and clinical notes, are frequently collected in routine 49 

clinical care7. Indeed, different applications of foundation models, such as augmented surgical procedures, 50 

bedside decision support, interactive radiology reports, and note-taking, have been reported8.  51 

While many studies investigating imaging-based biomarkers incorporate supervised deep learning 52 

algorithms into their models9–11, they are typically applied in scenarios where large datasets are available for 53 

training and testing. The quantity and quality of annotated data are strongly linked to the robustness of deep 54 

learning models. Access to large amounts of annotated data for specialized applications is often challenging 55 

and demands expertise, time, and labor. In such scenarios, many investigators fall back on traditional 56 

handcrafted or engineered approaches based on defined mathematical and statistical algorithms that analyze 57 

attributes like the shape and texture of objects in images, which limit the scope of discovery. This caveat is 58 
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commonplace in many scenarios where insights from imaging-based biomarkers have great potential in 59 

informing clinical care.  60 

Foundation models are generally pre-trained using self-supervised learning (SSL), a set of methods 61 

that leverage innate information available within data by learning generalized, task-agnostic representations 62 

(features) from large amounts of unannotated samples. Existing literature12 has suggested several strategies 63 

to pre-train networks to learn these representations. Approaches such as defining pre-text tasks that distort 64 

an image and attempt to reconstruct the original or contrastively learning similar representations for 65 

augmented views of the same image have primarily been investigated. Following pre-training, foundation 66 

models can be applied to task-specific problems, improving generalization, especially in tasks with small 67 

datasets. The expanding literature on SSL in medical imaging13 focuses primarily on two-dimensional images 68 

(X-ray, whole slide images, dermatology images, fundus images, etc.) and diagnostic applications. There is still 69 

limited evidence investigating whether SSL can help train foundation models that learn general, robust, and 70 

transferrable representations that can act as imaging biomarkers, especially prognostic, for tasks of clinical 71 

relevance. 72 

In this study, we investigated whether foundation models pre-trained using self-supervised learning 73 

can improve the development of deep learning-based imaging biomarkers. The foundation model was pre-74 

trained on 11,467 diverse and annotated lesions identified on computed tomography (CT) imaging from 2,312 75 

unique patients14. The model was first technically validated on the classification of anatomical site lesions (use-76 

case 1). Subsequently, it was applied to two distinct clinically relevant applications: the development of a 77 

diagnostic biomarker that predicts the malignancy of lung nodules (use-case 2) and a prognostic biomarker for 78 

non-small cell lung cancer tumors in confirmed cancer cases (use-case 3). We evaluated two distinct 79 

approaches of how a pre-trained foundation model can be incorporated into training pipelines for 80 

downstream tasks, a direct approach of using the foundation model as a feature extractor combined with a 81 

linear classifier and another approach where the foundation model is fine-tuned through deep learning. The 82 

performance of the foundation model approaches was then evaluated and compared to conventional 83 

supervised approaches in the three clinical use cases. Our analysis delves into limited data scenarios, 84 

evaluating test-retest and inter-reader stability, determining explainability and interpretability through deep-85 

learning attribution methods, and exploring biological associations with gene expression data. Our results 86 

demonstrate the potential of foundation models in discovering novel imaging biomarkers and their particular 87 

strength in applications with limited datasets. This evidence may extend to other clinical use cases and imaging 88 

modalities and can accelerate the widespread development and translation of imaging biomarkers into clinical 89 

settings. To allow effortless incorporation, external evaluation, and validation, we are providing open access 90 

to the foundation model along with reproducible workflows. 91 

 92 

 93 
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RESULTS 95 

We developed a foundation deep learning model using SSL and tested the model's performance in three 96 

distinct use cases. The study design and the pre-training process are outlined in Fig. 1. We developed the 97 

foundation model using a dataset with 11,467 annotated CT lesions identified from 2,312 unique patients. 98 

Lesion findings were diverse and included multiple lesions, such as lung nodules, cysts, and breast lesions, 99 

among numerous others. A task-agnostic contrastive learning strategy was used to pre-train the model on 100 

these lesion findings (see Fig. 1a), which subsequently was evaluated in three diverse clinical applications and 101 

five distinct datasets (see Fig. 1b).  102 

 103 

Lesion anatomical site classification (Use-case 1). As a technical validation of the performance of the 104 

foundation model, we selected an in-distribution task (i.e., sourced from the same cohort as that of the 105 

foundation model pre-training) on 5,051 annotated lesions (see Use-case 1 in Fig. 1b). These specific lesions, 106 

however, were not included in the pre-training data. Classification models were developed to predict the 107 

correct anatomical site using a training and tuning dataset totaling 3,830 lesions. On an independent test set 108 

of 1,221 lesions, we evaluated the performance of two different implementations of the foundation model 109 

(see Fig. 1c).  110 

We found that the foundation model approaches significantly outperformed the current standard 111 

supervised approach using a randomly initialized model (i.e., random initialization of weights; see Fig. 1d) in 112 

terms of balanced accuracy (BA) and mean average precision (mAP) (see Fig. 2a, b). When comparing 113 

classification performances, the foundation features-based classifier (0.779 [95% CI 0.749-0.809], p<0.01) and 114 

the fine-tuned foundation model (0.804 [95% CI 0.773-0.834], p<0.01), significantly improved BA (p<0.01) over 115 

the supervised model (0.72, [95% CI 0.689-0.750], p<0.01) (see Fig. 2a). In terms of mAP, the fine-tuned 116 

foundation model (0.856, [95% CI 0.828-0.886], p<0.01) provided a significant (p<0.01) performance benefit 117 

over the supervised model (mAP=0.818 [95% CI 0.779-0.847], p<0.01) (see Fig. 2b) 118 

The performance advantage of the foundation model was even stronger in limited data scenarios (see 119 

Fig. 2a, b). When we reduced training data to 50% (n=2526), 20% (n=1010), and 10% (n=505), the foundation 120 

model as a feature extractor significantly improved BA and mAP over the supervised model. The fine-tuned 121 

foundation model also significantly improved over the supervised model but failed to improve when training 122 

data was reduced to 10%. Individual comparisons between each model at different data percentages can be 123 

found in the supplementary material (see Extended Data Table 1). 124 

To investigate feature separability, which indicates how well features can discriminate between 125 

anatomical sites, we used dimensionality reduction methods to visualize features generated on the test set by 126 

the foundation and the trained supervised models. The features from the foundation model produced 127 

semantically separable clusters for each anatomical site, while features from the supervised model showed 128 

poor separability (see Fig. 2c-d). Of note, unlike the supervised model, the foundation model was not exposed 129 

to anatomical site information during training. 130 
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 131 

Nodule malignancy prediction (Use case 2). To assess the robustness of the foundation model, we chose an 132 

out-of-distribution task (i.e., belonging to a different cohort than that of the foundation model training data) 133 

involving predicting the malignancy of lung nodules from the LUNA16 dataset (see Use-case II in Fig. 1b). We 134 

conducted our training on a labeled subset of 507 lung nodules with indications of malignancy suspicion. On 135 

an independent test set of 170 nodules, we evaluated the performance of the two foundation model 136 

implementations and two supervised learning approaches - random initialization and fine-tuning from another 137 

supervised model. The model trained in use case 1 was chosen for the supervised fine-tuning.  138 

The approach of fine-tuning the foundation model resulted in significant (p<0.01) superiority over 139 

both the supervised learning approaches (see Fig. 3a, b). The fine-tuned foundation model achieved an area-140 

under receiver operating curve (AUC) of 0.944 (95% CI 0.914-0.982, p<0.01) and mAP of 0.952 (95% CI 0.926-141 

0.986, p<0.01) compared to the fine-tuned supervised model's AUC of 0.857 (95% CI 0.806-0.918, p<0.01) and 142 

mAP of 0.874 (95% CI 0.822-0.936, p<0.01).  143 

When analyzing reduced data sizes, the fine-tuned foundation model significantly (p<0.01) 144 

outperformed the fine-tuned supervised model when data was reduced to 50% (n=254) and 20% (n=101). 145 

However, it did not significantly improve when data was reduced to 10% (n=51). In contrast, the foundation 146 

model as a feature-extractor improved significantly (p < 0.005) over all other models at 10%. Moreover, 147 

performance from the foundation model as a feature extractor remained relatively stable even when trained 148 

on 10% of the data, while all other models showed a significant drop in performance. Across the limited data 149 

evaluation, although fine-tuned supervised models showed a trend of improvement over randomly initialized 150 

supervised models, they were not found to be significant (p>0.05). Detailed comparisons can be found in the 151 

supplementary material (see Extended Data Table 2) 152 

We observed that representations from the foundation model demonstrated superior linear 153 

discrimination compared to the supervised model, where samples remained interspersed between the classes 154 

(see Fig. 3c, 3d). 155 

 156 

Prognostication performance for non-small cell lung cancer (NSCLC) tumors (Use case 3). 157 

In the last use case, we evaluated the ability of the foundation model to capture quantitative radiographic 158 

phenotypes of NSCLC tumors and consequently determine the prognosis of patients using three independent 159 

cohorts of patients treated with surgery or radiation, HarvardRT (n=291), LUNG1 (n=421) and RADIO (n=144) 160 

(see use-case 3 in Fig. 1b). We aimed to investigate the performance of foundation model implementations 161 

when trained and applied to cohorts with strong distribution shifts (cohorts from separate institutions with 162 

different standards of care). Therefore, we trained and tuned our prognostication models using data from the 163 

HarvardRT cohort to predict 2-year overall survival after treatment and then compared the performance of 164 

the foundation model and supervised approaches on the LUNG1 and RADIO cohorts. 165 

 166 
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In the LUNG1 cohort, foundation models outperformed both supervised methods, with statistical significance 167 

(p<0.05). Features extracted from the foundation model obtained an AUC of 0.637 (95% CI 0.583-0.691), and 168 

fine-tuning the foundation model resulted in an AUC of 0.619 (95% CI 0.564-0.674), as shown in Fig. 4a. In 169 

comparison, training supervised models with randomly initialized weights resulted in an AUC of 0.531 (95% CI 170 

0.475-0.587). Fine-tuning a supervised model trained on a different task (use-case 1) showed an AUC of 0.566 171 

(95% CI 0.510-0.622). The best-supervised model (supervised fine-tuned) and the foundation model (features 172 

+ linear classifier) were evaluated using Kaplan-Meier survival analysis, shown in Fig. 4c and 4e, respectively. 173 

The foundation model demonstrated higher prognostic power by better stratifying mortality, as shown by a 174 

lower p-value (p<0.0001) when split by the median on the tuning set, compared to the supervised model 175 

(p=0.03). Kaplan-Meier curves and univariate Cox regression for all of the models can be found in the 176 

supplementary (see Extended Data Fig. 1, Table 3) 177 

In the RADIO cohort, the foundation model as a feature extractor performed the best, with an AUC of 178 

0.61 (95% CI 0.501-0.720).  Supervised models trained with random initialization had an AUC of 0.532 (95% CI 179 

0.426-0.639) while fine-tuning a supervised model led to an AUC of 0.567 (95% CI 0.468-0.665). Fine-tuning 180 

the foundation model did not improve performance, yielding an AUC of 0.532 (95% CI 0.428-0.636), as shown 181 

in Fig. 4b. Using foundation model features was significantly better than the randomly initialized supervised 182 

model (p<0.05), but none of the other networks showed significant differences from the rest (p>0.05). Kaplan-183 

Meier survival analysis demonstrated significant stratification for the feature-extractor foundation model 184 

predictions (p=0.008) compared to the fine-tuned supervised model (p=0.138), as shown in Fig. 4d and 4f. 185 

Kaplan-Meier curves and univariate Cox regression for all of the models can be found in the supplementary 186 

material (see Extended Data Fig. 1, Table 3). 187 

 188 

Stability of the foundation model. We evaluated the stability of our foundation model and compared it against 189 

supervised approaches in two ways: through a test-retest scenario and an inter-reader variability analysis. To 190 

assess test-retest robustness, we used scans from 26 patients from the RIDER dataset15 taken within a 15-191 

minute interval using the same imaging protocol. We found that predictions from the best-performing models, 192 

feature-extractor foundation, and fine-tuned supervised had high stability with intraclass correlation 193 

coefficient (ICC) values of 0.98 and 0.97, respectively. Furthermore, the test-retest features for both networks 194 

were strongly correlated (as shown in Extended Data Fig. 2a and 2b). 195 

To evaluate stability against inter-reader variability, we used the LUNG1 dataset and perturbed the 196 

input seed point to extract the 3D volume, simulating variations among human readers. We found that the 197 

feature-extractor foundation models had higher stability against simulated inter-reader variations in 198 

prediction performance than the fine-tuned supervised models (see Extended Data Fig. 2c and 2d). 199 

 200 

Saliency maps for fine-tuned foundation models. To gain insight into the regions of the input volumes that 201 

contribute to a given prediction, we employed gradient-based saliency maps for foundation models fine-tuned 202 

on three selected use cases (as depicted in Fig. 5). We used smooth guided back-propagation16,17 to compute 203 
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the gradient of the output with respect to the input while keeping the model weights constant. This provided 204 

insight into the regions of the input that had the most significant influence on the output prediction. 205 

Our analysis revealed that fine-tuned foundation models for each use case focused on different 206 

regions but largely converged on tissues within or in proximity to the tumor. This is consistent with research 207 

demonstrating the tumor microenvironment's influence on cancer development18 and prognosis.  Specifically, 208 

lesion anatomical site classification models (as depicted in Fig. 5a) focused mainly on areas surrounding the 209 

lesions, such as the parenchyma and bone regions in the lung and the trachea in mediastinal lesions. On the 210 

other hand, nodule malignancy models (as depicted in Fig. 5b) primarily concentrated on the tissues of the 211 

nodule while avoiding high-density bone regions. In the case of prognosis networks (as depicted in Fig. 5c), 212 

the model predictions were primarily attributed to areas surrounding the center of mass of the tumor, with 213 

some contribution from high-density bone regions. Overall, these findings indicated that the areas that 214 

contribute to the networks' predictions varied in accordance with the specific use case, with the tumor and 215 

surrounding tissues playing a pivotal role.  216 

 217 

Underlying biological basis of the foundation model. Finally, we investigated the biological basis of our 218 

foundation model by analyzing gene expression data associated with model predictions for 130 subjects from 219 

the RADIO dataset. To identify relevant genes, we selected the top 500 genes and performed a correlation 220 

analysis, comparing the feature-extractor foundation and fine-tuned supervised model predictions with gene 221 

expression profiles. We found that absolute correlation coefficients between gene expression profiles and 222 

model predictions were significantly higher (p=0.008) for the foundation model, indicating a stronger 223 

association with underlying tumor biology (see Fig. 6a).  224 

Additionally, we examined the genes associated with these models through a gene set enrichment 225 

analysis (genes with a correlation coefficient> 0.1). Our analysis revealed that foundation models showed a 226 

pattern of enrichment of immune-associated pathways, including interferon signaling, interferon gamma 227 

signaling, MHC class II antigen presentation, and PD-1 signaling. Conversely, while the supervised model did 228 

show enrichment of individual pathways, no identifiable pattern was observed (see Fig. 6b). 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 
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DISCUSSION 239 

In this study, we demonstrated that our foundation model trained using self-supervised learning, provided 240 

robust quantitative biomarkers for predicting anatomical site, malignancy, and prognosis across three 241 

different use cases in four cohorts. Several studies19–21 have demonstrated the efficacy of self-supervised 242 

learning in medicine where only limited data might be available for training deep learning networks. Our 243 

findings complement and extend this for identifying reliable imaging biomarkers for cancer-associated use 244 

cases. We showed that our foundation model provided superior performance for anatomical lesion site and 245 

malignancy prediction. Modeling using features extracted from the foundation model was the most robust 246 

across tasks offering stable performance even when data sizes were considerably reduced to 51 samples (10% 247 

of use-case 2). These features could also categorize data from these tasks into semantically separable clusters 248 

corresponding strongly with target classes, although these features were learned independent of class 249 

information. Using these features provided the best performance on small cohorts in predicting prognosis and 250 

also demonstrated significant stratification of patients by their associated risk for each of the LUNG1 and 251 

RADIO cohorts (p<0.01). Additionally, predictions using the foundation model features were found to be highly 252 

stable against inter-reader (standard deviation=0.004) and test-retest variations (ICC=0.98). Regarding the 253 

interpretability of features, we observed that models focused on varying regions of the tumor and surrounding 254 

tissue relevant to the associated use case. To gain insight into the underlying biological associations of these 255 

features, RNA sequencing analysis combined with imaging data showed that these features correlated with 256 

immune-associated pathways.  257 

  Studies for predicting endpoints, such as overall survival on small cohorts largely rely on statistical 258 

feature extraction (engineered radiomics) and classical machine learning-based modeling. Precise three-259 

dimensional segmentations are required for extracting these statistical features from tumor volumes 260 

increasing the annotation burden associated with these studies. Moreover, these statistical features are 261 

affected by several confounders, such as inter-reader variability in segmentations 22 and acquisition settings 262 

of the scanners 23. Deep learning methods, in comparison, are robust to differences in acquisition and 263 

segmentation variability and provide improved performance over statistical features 10. However, they remain 264 

restricted in their applicability in such low-data scenarios due to their dependency on large amounts of data 265 

to provide robust performance. Training deep-learning models on small cohorts often lead to overfitting, 266 

which diminishes performance when external data is introduced11. Our foundation model approach has 267 

several innovations: first, we developed a deep-learning system on a large corpus of 3D lesion images with 268 

considerable diversity in their presentation. To our knowledge, our study is the first to pre-train a deep-269 

learning model using 11,467 3-dimensional lesion volumes. Second, we demonstrated that our pre-trained 270 

model learned generalizable features and improved performance across three tasks and associated endpoints. 271 

Our model also provided prognostic value when trained on small cohorts and applied to external validation 272 

cohorts. Third, our models showed high robustness to test-retest and inter-reader variations. Finally, we share 273 
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our validated foundation model with the public, allowing external testing and future studies to facilitate their 274 

adoption into external workflows.  275 

Several studies have investigated deep learning algorithms for identifying cancer imaging biomarkers 276 

in both small and large cohorts. Hosny et al.10 trained a deep learning model for lung cancer prognostication 277 

using several multi-institutional cohorts and demonstrated strong performance using deep learning methods 278 

over traditional radiomics features. Kumar et al.24 identified radiomic sequences using deep convolutional 279 

encoders for determining the malignancy of lung nodules from the LIDC-IDRI dataset considering 4306 lesions. 280 

Lao et al.25 proposed a deep-learning model-based radiomics signature for predicting survival in glioblastoma 281 

multiforme, trained and validated on relatively small cohorts. Haarburger et al.26 present a deep convolutional 282 

network-based approach to predict survival endpoints on the LUNG1 dataset. Cho et al.27 developed a 283 

radiomics-guided deep-learning model for stratifying the prognosis of lung adenocarcinoma and validated it 284 

in a local cohort and an external validation cohort. A general trend observed across these studies is that the 285 

performance of deep learning models is more robust when larger and multi-institutional cohorts are available 286 

for training. Validation is subsequently performed on cohorts smaller than the training cohort. A demonstrated 287 

strength of our approach is that training on smaller cohorts performs well in larger validation cohorts. For the 288 

prognostication use case, we performed well on two external validation cohorts with a combined size 289 

considerably larger than the training cohort. Our pre-trained foundation model shows strong generalization 290 

ability across our diverse use cases and may apply to several other cancer imaging use cases out of the box. 291 

Furthermore, extracting features from our model (inference only) followed by simple modeling methods is 292 

resource-efficient, alleviating the need for expensive hardware for training standard deep-learning models 293 

while providing on-par performance. 294 

In recent years, self-supervised pre-training has been applied to medical imaging with promising 295 

results19,21,28,29. Zhou et al.30 present an approach that constructs several pre-text tasks to train SSL networks 296 

and show that they outperform solely supervised networks trained across five clinically relevant tasks. A novel 297 

contrastive SSL strategy incorporating both global and local information captured within medical images and 298 

reporting their superior performance, especially in low-data settings, is proposed by Chaitanya et al.31. Azizi et 299 

al.19 demonstrate that grouping multiple images attributed to the same medical condition along with 300 

combining natural and medical images for contrastive SSL training improves performance. Specifically for deep 301 

radiomics applications, Li et al.32 propose targeting data imbalance in existing data and present a combined 302 

approach of traditional radiomic features and self-supervised learning representations, improving 303 

performance for discriminating tumor grade and tumor staging tasks. Li et al.33 proposed a novel self-304 

supervised collaborative approach for creating latent representations from radiomic features. Zhao and Yang34 305 

used self-supervised learning to pre-train models via a radiomic-deep feature correspondence task. Although 306 

these studies have investigated self-supervised learning for radiomics tasks, they lacked external validation or 307 

proposed limited evaluation of the generalizability of their approaches. Our study presents a foundation model 308 
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for radiomic discovery by pre-training on a large cohort of lesions. The examined tasks are independent of the 309 

pre-training cohort and demonstrate the increased generalizability of our proposed approach.  310 

Despite the strengths outlined in our study, we recognize several limitations that need to be addressed 311 

prior to the clinical applicability of our foundation model. Features from the foundation model followed by 312 

linear classifiers provided the most robust performance across all investigated tasks. However, linear classifiers 313 

might be sub-optimal in identifying complex relationships between feature representations to predict 314 

challenging endpoints. As we aimed to demonstrate the benefits of our foundation model compared to 315 

existing approaches, we have limited our exploration with fine-grained feature and model selection strategies. 316 

Comprehensive selection approaches similar to Parmar et al.35 might improve performance even further, 317 

strengthening our hypothesis for foundation models. 318 

Similarly, deep learning-based finetuning approaches employed in this study are representative of 319 

baseline performance. We observed that finetuning approaches for the foundation model in low data settings 320 

(especially 10%) and smaller cohorts (HarvardRT) resulted in suboptimal performance compared to using 321 

extracted features. We hypothesize that in lower data settings, models overfit the training data and 322 

demonstrate worse generalization as the number of parameters to tune increases. However, with the steady 323 

emergence of deep learning literature proposing improvements to handle aspects such as data imbalance, 324 

hyperparameter selection, and optimization objectives, the performance of these models can be pushed far 325 

above the current baseline. Our prognostication model is also limited in its performance due to our focus on 326 

solely imaging data; incorporating clinical features has a large potential to improve its effectiveness.  327 

Our foundation model's clinical applicability encounters challenges typically associated with deep 328 

learning, including generalizability, interpretability, and explainability. Given the retrospective nature of this 329 

study, our capacity to evaluate the real-world practicality of foundation model-based biomarkers is 330 

constrained. Deep learning models are notorious for being black boxes that offer little clarity on interpretable 331 

and explainable reasoning behind their predictions. Although we used well-established saliency attribution 332 

methods to interpret our foundation model's predictions, the broader applicability of these insights is 333 

hindered by the technical limitations of such methods 36,37. In addition to the limitations of deep learning 334 

methodology, the biological association analysis conducted to explain our model's predictions is preliminary 335 

and requires further investigation to generate a concrete understanding. We anticipate that future external 336 

validation of our open-access model will help confront these prevalent challenges. 337 

In conclusion, our foundation model offers a powerful and reliable framework for discovering cancer 338 

imaging biomarkers, even in small datasets. Furthermore, it surpasses current deep learning techniques in 339 

various tasks while fitting conveniently into existing radiomic research methods. This approach can potentially 340 

uncover new biomarkers that significantly contribute to research and medical practice. We share our 341 

foundation model and reproducible workflows so that more studies can investigate our methods, determine 342 

their generalizability, and incorporate them into their research studies.  343 
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METHODS 344 

Study Population. We utilize a total of five distinct datasets, four of which are publicly accessible, and one is 345 

an internal dataset. These were acquired from various institutions as components of separate investigations 346 

(see Extended Data Table 4).   347 

DeepLesion14 is a dataset comprising 32,735 lesions from 10,594 studies of 4,427 unique patients 348 

collected over two decades from the National Institute of Health Clinical Center PACS server. Various lesions, 349 

including kidney, bone, and liver lesions - as well as enlarged lymph nodes and lung nodules, are annotated. 350 

The lesions are identified through radiologist-bookmarked RECIST diameters across 32,120 CT slices. In our 351 

study, we excluded CT scans with a slice thickness exceeding 3mm, resulting in 16,518 remaining lesions. 352 

Subsequently, we divided this into 11,467 unlabelled lesions for contrastive training and 5,051 labeled lesions 353 

for anatomical site classification. The labeled lesion data were further separated randomly into training, 354 

tuning, and testing sets, containing 2,610, 1,220, and 1,221 lesions, respectively. 355 

LUNA1638 is a curated version of the LIDC-IDRI dataset of 888 diagnostic and lung cancer screening 356 

thoracic CT scans obtained from seven academic centers and eight medical imaging companies comprising 357 

1,186 nodules. The nodules are accompanied by annotations agreed upon by at least 3 out of 4 radiologists. 358 

Alongside nodule location annotations, radiologists also noted various observed attributes like internal 359 

composition, calcification, malignancy, suspiciousness, and more. For our evaluation, we chose nodules with 360 

at least one indication of malignancy suspicion, totaling 677. We randomly picked 338 nodules for training and 361 

169 for tuning the malignancy prediction networks. The final 170 nodules were utilized to assess the networks' 362 

performance. 363 

HarvardRT10 is a cohort of 317 patients with stage I-IIIB NSCLC treated with radiation therapy at the 364 

Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, US, between 2001 and 2015. 365 

All CT scans for this cohort were acquired with and without intravenous contrast on the GE Lightspeed CT 366 

scanner. The primary tumor site was contoured by radiation oncologists using soft tissue and lung windows. 367 

A subset of 291 patients with a follow-up of 2 years was selected for this study. We used 203 tumor volumes 368 

for training the prognostication networks and the remaining 88 tumor volumes for tuning.  369 

LUNG139 is a cohort of 422 patients with stage I-IIIB NSCLC treated with radiation therapy at MAASTRO 370 

Clinic, Maastricht, The Netherlands. FDG PET-CT scans were acquired with or without contrast on the Siemens 371 

Biograph Scanner. Radiation oncologists used PET and CT images to delineate the gross tumor volume. For our 372 

study, we selected CT scans of 421 patients with annotated primary gross tumor volumes and used these as 373 

an independent test set for prognostication networks.  374 

RADIO (NSCLC-Radiogenomics)40 dataset is a collection of 211 NSCLC stage I-IV patients recruited 375 

between 2008 and 2012 who were referred for surgical treatment and underwent preoperative CT and PET/CT 376 

scans. These patients were recruited from the Stanford University School of Medicine and the Palo Alto 377 

Veterans Affairs Healthcare System. Scan scans were obtained using various scanners and protocols depending 378 

on the institution and physician. A subset of 144 patients in the cohort has available tumor segmentations 379 
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independently reviewed by two thoracic radiologists. In addition to imaging data, the dataset includes 380 

molecular data from EGFR, KRAS, ALK mutational testing, gene expression microarrays, and RNA sequencing. 381 

For the current study, we utilized the subset of 144 patients with annotated gross tumor volumes as an 382 

independent test set for prognostication and also investigated the biological basis of our networks using this 383 

dataset. 384 

 385 

Data Preprocessing. CT scans were resampled using linear interpolation to achieve isotropic voxels with a 386 

1mm³ resolution to address variations in slice-thickness and in-plane resolutions across study populations. We 387 

extracted patches of 50 x 50 x 50 voxels from the scans centered around a seed point (refer to Extended Data 388 

Fig. 3). For the DeepLesion dataset, which provided annotations in the form of RECIST diameters, the seed 389 

point was determined by calculating the midpoint of the RECIST diameter. For the other datasets (i.e., LUNA16, 390 

HarvardRT, LUNG1, and RADIO), which supplied annotations as 3D contours, the seed point was obtained by 391 

computing the center of mass (CoM). This approach allows for significantly higher throughput than manual 392 

segmentation, which can be more tedious. We then normalized the voxel values in the patches by subtracting 393 

-1024 (lower-bound Hounsfield unit) and dividing by 3072 (upper-bound Hounsfield unit), ensuring the 394 

intensity values in the input data ranged between 0 and 1. 395 

 396 

Task-agnostic contrastive pre-training of the foundation model. We implemented contrastive pre-training 397 

using a modified version of the SimCLR framework5. The SimCLR framework's general principle involves 398 

transforming a single data piece (e.g., a patch taken from a CT scan) into two correlated and augmented 399 

samples (e.g., the same patch rotated 15 degrees clockwise and flipped horizontally). A convolutional encoder 400 

is then used to extract latent representations from these samples. Through a contrastive loss function41, the 401 

model learns to identify similar representations from the same data sample and dissimilar representations 402 

from different data samples. The framework emphasizes effective transformation choices, convolutional 403 

encoder architectures, and contrastive loss functions for optimal self-supervised learning performance. To 404 

effectively represent the nature of medical images, we made modifications to each of these components.  405 

Transformations proposed in the original SimCLR framework for natural world images, such as cutout 406 

augmentation, Sobel filtering, and color distortion, are unsuited for 3D medical images due to dynamic range 407 

and color depth differences. Therefore, our study applies different augmentations to replace these 408 

transformations. For instance, we substituted the random color jitter transform with a random histogram 409 

intensity shift transform, as they both induce variation in intensity distribution. 410 

To extract representations from the transformed 3D volumes, we selected the 3D ResNet50 411 

architecture as our deep convolutional encoder. While the SimCLR authors employed a 2D ResNet50 412 

architecture, we opted for its 3D counterpart, which has proven effective in handling 3D medical imaging 413 

data42. 414 
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Regarding loss functions, we extended normalized temperature-scaled cross-entropy loss (NT-Xent)43 415 

to support contrastive training for lesion volumes. The modifications include: 1) selecting positive pairs as 3D 416 

patches surrounding the lesion's seed point, 2) choosing negative pairs by randomly sampling 3D patches from 417 

the rest of the scan, and 3) computing the contrastive loss on these positive and negative pairs, with each 418 

iteration comprising N positive pairs and N*2(N-1) negative pairs. We also explored different temperature 419 

parameters for the NT-Xent loss. However, the original value of 0.1 proposed by the original paper was the 420 

most effective.  421 

Our model was pre-trained for 100 epochs using an effective batch size of 64 (32 x 2 training nodes) 422 

on two NVIDIA Quadro RTX 8000 GPUs taking approximately five days. We used Stochastic Gradient Descent 423 

(SGD) as the optimizer, with layer-wise adaptive rate control (LARC), momentum, and weight-decay enabled. 424 

To improve the optimization process, we employed learning rate schedulers that combined linear and cosine 425 

decay strategies and a warmup phase to modify the learning rate at the beginning of training gradually. While 426 

most specifications were consistent with the original SimCLR experiments, we experimented with different 427 

batch sizes, patch sizes (50mm³ and 64mm³), learning rates, transforms, and model architectures.  428 

 429 

Task-specific training of the foundation model. Our foundation model was adapted for a specific task through 430 

two approaches: 1) extracting features and fitting a linear classifier on top of them or 2) fine-tuning the pre-431 

trained ResNet50 for the given classification task. 432 

We extracted 4096 features from the foundation model for each data point and used them to train a 433 

logistic regression model using the scikit-learn framework44. A comprehensive parameter search for the 434 

logistic regression model was performed using the optuna hyper-parameter optimization framework45. No 435 

performance improvements were observed through feature selection strategies; therefore, all 4096 features 436 

were used in accordance with linear evaluation strategies prevalent in self-supervised learning (SSL) literature. 437 

Fine-tuning was carried out with all layers updated during training, utilizing cross-entropy loss. A series 438 

of randomly chosen augmentations—random flips, random 90-degree rotations, and random translations of 439 

±10 voxels across all axes—were applied throughout the training. SGD was employed for network training, 440 

with momentum enabled and step-wise learning rate decay. Following the original SimCLR experiments, 441 

configurations and similar parameters (including learning rate, transforms, and model architectures) were 442 

explored during hyperparameter tuning. Each network was trained for 100 epochs using a single NVIDIA 443 

Quadro RTX 8000 GPU, and the best-performing model checkpoints was chosen based on the tuning set. 444 

For supervised baseline models, their weights were initialized randomly, and they were trained using 445 

the same configuration that was adopted for fine-tuning the foundation model. The supervised models for use 446 

cases 2 and 3 were also fine-tuned, utilizing the same configuration as in the pre-trained fine-tuning process 447 

but by initializing them with the weights of the trained supervised baseline from use case 1. 448 

Task-specific training was conducted on reduced dataset sizes in addition to utilizing the entire 449 

dataset. We randomly sampled 50%, 20%, and 10% of the training and tuning datasets and constructed task-450 
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specific models using these samples with the same configuration as the entire dataset. As the training dataset 451 

sizes decreased, we considered training the models for a higher number of epochs; however, models 452 

frequently overfitted during extended training. The entire test dataset was employed to allow benchmarking 453 

across these splits. 454 

 455 

Performance Analysis. Validation of the foundation model was performed using several use-case-relevant 456 

metrics. Lesion anatomical site classification performance was assessed using balanced accuracy (BA) as a 457 

multi-label counting metric and mean average precision (mAP) as a multi-threshold metric. The multi-label 458 

metric, BA, adjusts class-wise accuracy based on the class distribution at a chosen threshold (0.5). The multi-459 

threshold metric, mAP, enables the examination of a given class's performance across a range of prediction 460 

thresholds. All classes other than the class of interest are considered negatives, and performance is averaged 461 

across all possible classes. We avoided using the area under the receiver operating curve (AUC-ROC) for this 462 

use case due to the high proportion of negatives relative to positives, which results in consistently low false-463 

positive rates and might overestimate the AUC. However, due to a more balanced class distribution, nodule 464 

malignancy prediction was evaluated using AUC-ROC. NSCLC prognostication networks also employed AUC-465 

ROC for evaluation, as it estimates the ranking of subjects based on their survival times. 466 

Models underwent pairwise comparison using permutation tests. N permutations (N=1000) were 467 

conducted for each pair, and new models were computed after permuting class labels. Metrics were 468 

recalculated after resampling, and a two-sided p-value was calculated to test the null hypothesis of 469 

observations from each pair originating from the same underlying distribution. Additionally, 95% confidence 470 

intervals were established for each model using a bootstrap test with N=9999 resamples. 471 

Kaplan-Meier (KM) curves were also used to determine the stratification of subjects based on their 472 

prediction scores for the prognostication models. Groups were selected based on prediction scores on the 473 

tuning set, and curves were plotted on the test set for these groups. Multivariate log-rank tests were used to 474 

examine the significance of the stratification. Univariate Cox regression models were built using the model 475 

predictions as the categorical variables of interest, grouped similarly to the KM curve. 476 

 477 

Feature visualization and saliency maps. We used the foundation and top-performing supervised models as 478 

feature extractors to obtain 4096 distinct features per data point. To enable visual interpretation of these 479 

high-dimensional features, we utilized t-SNE46 (t-Stochastic Neighbourhood Embeddings) to reduce their 480 

dimensionality to 2D. To arrive at the most interpretable visualization, we explored various parameter 481 

configurations, including perplexity, initialization, and learning rates. Points in the 2D visualization were color-482 

coded according to their respective target classes, despite dimensionality reduction being agnostic to these 483 

distinctions. Density contours were superimposed over the visualizations to enhance the understanding of 484 

group patterns, offering a more comprehensive representation of trends across data points. 485 
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In order to generate saliency maps for each task, the fine-tuned foundation model was used to 486 

generate predictions on randomly selected volumes from respective datasets. The fine-tuned foundation 487 

model with a single output prediction (corresponding to the predicted target class) was chosen in contrast to 488 

the feature extractor as computing saliency maps over 4096-dimensional outputs remains challenging in 489 

practice. We used a combination of 1) smooth gradient backpropagation, which averages gradients of the 490 

output with respect to several noisy inputs, and 2) guided back-propagation which combines deconvolution 491 

with backpropagation, mainly stopping the flow of negative gradients or neurons that decrease the activation 492 

signal. The method is termed smooth guided-backpropagation and is implemented in the MONAI framework 493 

47.  494 

 495 

Stability Testing. To test the stability of our models, we performed a test-retest stability and inter-reader 496 

variation evaluation. For the test-retest evaluation, we compared model predictions (of outcome) from the 497 

best foundation and supervised models generated on chest CT scans taken in a 15-minute interval for 32 498 

patients. Intraclass correlation coefficient (ICC) was computed using the interrater reliability and agreement 499 

package (irr) in R48. We also tested the stability of the flattened features computed by the models by 500 

calculating Spearman correlation and R2.  501 

 For the inter-reader variation evaluation, we used the LUNG1 dataset and generated 50 random 502 

perturbations sampled from a three-dimensional multivariate normal distribution with zero mean and 503 

diagonal covariance matrix for each seed point. Across each dimension, a variance of 16 voxels was used for 504 

generating samples. We generated predictions on perturbed seed points using the best foundation and 505 

supervised model,  resulting in 50 different prediction models for each. The mean and variance of the 50 506 

models were computed for each and compared.  507 

 508 

Biological Associations. The GSE103584 dataset contains 130 NSCLC (Non-Small Cell Lung Cancer) samples 509 

that consist of paired CT scans and gene expression profiles generated by RNA sequencing. To analyze gene 510 

expression profiles, we filtered them based on cohort mean expression and standard deviation. First, we took 511 

only the genes with a higher expression than the overall dataset mean and then picked the top 500 genes 512 

based on standard deviation. Next, we performed a correlation analysis comparing the best-supervised and 513 

foundation models. To further evaluate foundation model features’ association with tumor biology, we 514 

computed the absolute value of the correlation coefficients and performed a gene set enrichment analysis 515 

with all genes with a correlation coefficient above 0.1.  516 

 517 

 518 

 519 

 520 

 521 

 522 
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 672 

 673 

FIGURES 674 

675 

   676 

Figure 1 | General overview of the study. a. Foundation model pre-training. A foundation model, specifically a deep convolutional encoder model, 677 

was pre-trained by contrasting volumes with and without lesions. b. Clinical application of the foundation model. The foundation model was used to 678 

extract biomarkers and then evaluated for three classification tasks on diverse datasets. c. Foundation model implementation approaches  The 679 

foundation model was adapted to specific use cases by extracting features or through fine-tuning (left). d. Evaluation against supervised models with 680 

selected performance metrics. We compared the performance of the foundation models against conventional supervised implementations, trained 681 

from random intialization (left) and fine-tuned from a different task (right). The comparison was made through several criteria for the different use 682 
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cases, including quantitative performance, stability, and biological analysis. Biological, clinical, and stability analyses are limited to use case 2 due to 683 

the availability of associated data.  684 

 685 

 686 

Figure 2 | Performance of foundation model for lesion anatomical site classification. We compared foundation model adaptation approaches 687 

against a supervised model using balanced accuracy (a) and mean average precision (b).  We show performance on these metrics computed across the 688 

eight anatomical sites for the full training set and when the training data percentage is decreased to 50%, 20%, and 10%.  Error bars in (a) and (b) 689 

show 95% confidence intervals of the estimates. Visual representation of the features generated from the independent test-set for identifying lesion 690 

anatomical sites, using c the foundation model as a feature extractor, and d the supervised model. For (c) and (d), the x-axis corresponds to dimension 691 

1, and the y-axis to dimension 2 of the t-SNE dimensionality reduction. The density contours belonging to each class are underlaid for (c) and (d) to 692 

highlight separability between classes in the feature space.  693 
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 706 

 707 

Figure 3 | Performance comparison of the foundation model against supervised for nodule malignancy prediction. We compared the foundation 708 

model adaptation approaches against baseline supervised models using the full training dataset and on decreasing the training data percentages to 709 

50%, 20% and 10%. a Area under receiver operating curves (AUC-ROC) b Average precision (AP). Error bars in (a) and (b) show 95% confidence 710 

intervals of the estimates. Visual representation of the features generated from the independent test-set for the task of nodule malignancy prediction 711 

using, c the fine-tuned supervised model and d using the foundation model as a feature extractor.  For (c) and (d), the x-axis corresponds to dimension 712 

1, and the y-axis to dimension 2 of the t-SNE dimensionality reduction. The density contours belonging to each class are underlaid for (c) and (d) to 713 

highlight separability between classes in the feature space.  714 
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 715 
 716 

Figure 4 | Performance of the foundation model against supervised for prognostication of NSCLC tumors. We compared the foundation model 717 

against the baseline supervised models using the area under the receiver operating curve (AUC) for 2-year overall survival for a LUNG1 b RADIO.  718 

Kaplan-Meier (KM) curves for predictions generated from the foundation model as a feature-extractor for LUNG1 (c) and RADIO (d) as well as the fine-719 

tuned supervised method for LUNG1 (e) and RADIO (f).  To ensure a fair comparison, we calculated the threshold for the split between the KM groups 720 

on the tuning set for each network. Kaplan-Meier curves for the other approaches, fine-tuning the foundation model and training a supervised model 721 

from random initialization can be found in Fig. S1 in the supplementary.  722 
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 723 
 724 

Figure 5 | Saliency maps for fine-tuned foundation models. We generated gradient-based saliency maps for each of the fine-tuned foundation 725 

models from use cases I (a), II (b), and III (c) using smooth guided backpropagation and visualized salient regions on two samples from corresponding 726 

test datasets. The first and fourth columns show the central axial slice (50mm x 50mm) of the volume provided as input to the self-supervised network. 727 

The second and fifth columns show isolines for saliency contours. Finally, the third and sixth columns show saliency maps highlighting areas of the 728 

input volume that contribute the most to a change in the output prediction.  729 
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 730 
 731 

Figure 6 | Underlying biological basis of the foundation model. We compared the foundation and supervised model predictions with gene expression 732 

profiles. a Box plot of absolute correlation coefficients (y-axis) of selected genes against model predictions (x-axis). b Gene-set enrichment analysis of 733 

genes with correlation coefficient > 0.1 revealed for the foundation (left) and supervised model predictions (right). Genetic pathways are shown on the 734 

y-axis, and the gene ratio is shown on the x-axis. Gene count and adjusted p-values are also shown in the legend.  735 
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EXTENDED DATA 744 

 745 

Foundation Model 
Implementation 

Data 
percentage 

Increase in BA over 
supervised (95% CI, p-value) 

Increase in mAP 
over supervised 
(95% CI, p-value) 

Feature-extractor 
50% 

(n=2526) 
0.153  (0.123-0.186,  

p<0.005) 

0.135  
(0.104-0.168,   

p<0.005) 

Fine-tuned  
0.181 (0.147-0.214,  

p<0.005) 

0.127  
(0.097-0.162,  

p<0.005) 
    

Feature-extractor 
20% 

(n=1010) 
0.194 (0.159-0.228,  

p<0.005) 

0.177  
(0.142-0.216,  

 p<0.005) 

Fine-tuned  
0.130 (0.102-0.159,  

p<0.005) 

0.121  
(0.089-0.159,  

p<0.005) 
    

Feature-extractor 
10% 

(n=505) 
0.189 (0.148-0.228,  

p<0.005) 

0.149  
(0.112-0.189,   

p<0.005) 

Fine-tuned  
0.063  

 (0.028-0.098,  p<0.005) 

0.02  
(-0.011- 0.061,  

p=0.28) 

 

 746 
Extended Data Table 1 | Detailed comparison of the foundation model implementations against supervised methods in limited data settings for 747 
lesion anatomical site classification Comparison of the foundation model as a feature-extractor and fine-tuned against the randomly initialised 748 
supervised model at 50%, 20% and 10% training data. For each data percentage, the largest increase in performance between the two is shown italicised. 749 
Not significant results are shown in red    750 
 751 
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 771 

 772 

 773 

 774 

Foundation Model 
Implementation 

Data 
percentage 

Increase in AUC over 
supervised random 

initialization 
(95% CI, p-value) 

Increase in 
mAP over 
supervised 

random 
initialization 
(95% CI, p-

value) 

Increase in AUC 
over supervised 

fine-tuned 
(95% CI, p-

value) 

Increase in 
mAP over 
supervised 
fine-tuned 
(95% CI, p-

value) 

Feature-extractor 
50% 

(n=254) 

0.133 
(0.064 - 
0.207, 

p<0.005) 

0.15  
(0.068 - 
0.222 

p<0.005) 

0.07  
(0.021 - 0.167, 

p<0.05) 

0.089  
(0.024 - 0.153, 

p=0.063) 

Fine-tuned  
0.136  

(0.070-0.199,  
p<0.005) 

0.155 (0.083-
0.223, 

p<0.005) 

0.097 (0.035-
0.155366, 

p<0.05) 

0.095 (0.035-
0.148, 

p<0.005) 

      

Feature-extractor 
20% 

(n=101) 

0.285  
(0.193-0.370, 

 p<0.05) 

0.314 (0.227-
0.420, 

p<0.005) 

0.254 (0.173-
0.330, p<0.05) 

0.251 (0.164-
0.334, 

p<0.005) 

Fine-tuned  
0.20  

(0.092-0.308,  
p<0.005) 

0.24 (0.138-
0.35 

p<0.005) 

0.169 (0.093-
0.245, p<0.005) 

0.177 (0.089-
0.260, 

p<0.005) 

      

Feature-extractor 
10% 

(n=51) 

0.312  
(0.211-0.408,  

p<0.005) 

0.323 (0.238-
0.423, 

p<0.005) 

0.212 (0.128-
0.285, p<0.005) 

0.268 (0.179-
0.376, 

p<0.005) 

Fine-tuned  
0.008  

(-0.089 -0.101,  
p=0.919) 

-0.005 (-
0.095-0.08, 

p=0.869) 

-0.091  
(-0.015 - -
0.171481, 

p<0.05) 

-0.061 (-0.144 - 
0.023, 

p=0.322) 

  775 

 776 
Extended Data Table 2 | Detailed comparison of the foundation model implementations against supervised methods in limited data settings for 777 
nodule malignancy classification Comparison of the foundation model as a feature-extractor and fine-tuned against randomly initialised and fine-778 
tuned supervised models at 50%, 20% and 10% of the training data. For each data percentage, the largest increase in performance between the two is 779 
shown italicised. Not significant results are shown in red   780 
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 781 

 782 

Extended Data Figure 1 | Kaplan Meier curves for all models investigated Kaplan Meier curves for the LUNG1 and RADIO datasets for the foundation 783 

model as a feature-extractor (first row), fine-tuned foundation model (second row), fine-tuned supervised model (third row) and randomly initialised 784 

supervised model (last row) 785 

 786 
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 787 

 LUNG1 RADIO 

 beta HR (95% CI 
for HR) p.value beta HR (95% CI 

for HR) p.value 

Foundation 
model as 
feature 

extractor 

-0.44 0.65 (0.52-
0.81) <0.005 -0.84 0.43 (0.23-

0.82) 0.01 

Foundation 
model fine-

tuned 
-0.39 0.68 

(0.5-0.92) 0.01 -0.32 0.72 
(0.26-2.01) 0.53 

Supervised 
(fine-tuned) -0.24 0.79 

(0.64-0.98) 0.03 -0.43 0.65 
(0.37-1.15) 0.14 

Supervised  
(random 

initialization) 
-0.22 0.80 (0.65-

1.00) 0.05 0.20 1.22 
(0.59-2.53) 0.59 

 788 

 789 

Extended Data Table 3 | Univariate cox regression Results of univariate cox models showing the relationship between implementations of the 790 

foundation model and the supervised methods and survival on LUNG1 and RADIO datasets. The median split on the training dataset (HarvardRT) is used, 791 

also shown in Fig S4 in the Kaplan-Meier curves. 792 
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 818 
 819 

Extended Data Figure 2 | Stability of self-supervised learning networks. We analyzed the test-retest robustness on the RIDER dataset by comparing 820 

the correlation between features generated by a. the foundation model as a feature extractor and b. the fine-tuned supervised model. In c., the inter-821 

reader variability is simulated by adding perturbations from a sampling distribution. We perturb across x, y and z-axes although the distribution is 822 

shown only for x and y perturbations for simplicity.  d Prognostic stability of the feature extractor foundation model against the fine-tuned supervised 823 

model when the input seed point is perturbed, estimated through AUC for 2-year survival. 824 
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 828 
 829 

Extended Data Figure 3 | Diameter distribution of DeepLesion Distribution of diameters in the x and y axes for the DeepLesion training dataset based 830 

on RECIST bookmarks identified on key slices. Input dimensions of 50x50x50 mm3 were chosen as they covered 93% and 97% of the distribution in the x 831 

and y axes respectively. 832 
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 853 

 Pre-training 
Use-case 1: Lesion 

Anatomical Site 
Classification 

Use-case 2: 
Nodule 

Malignancy  
Classification 

Use-case 3: 
Classification of survival for NSCLC 

tumors 
Stability 

Cohorts  DeepLesion DeepLesion LUNA16 HarvardRT LUNG1 RADIO RIDER 

Institution NIH Clinical 
Center NIH Clinical Center Multi-center Dana-Farber 

Cancer Center 
MAASTRO 

Clinic 
Stanford &  

Palo Alto VA MSKCC 

Usage Pre-train Train Tune Test Train Tune Test Train Tune Test Test Test 

Scans 11,467 2610 1220 1221 338 169 170 203 88 421 144 52 

Patients 2,312 553 379 390 266 149 150 203 88 421 144 26 

 
 854 

 
Use-case 1: 

Lesion Anatomical 
Site Classification 

Use-case 2: 
Nodule Malignancy 

Classification 

Use-case 3: 
Classification of survival for NSCLC tumors 

HarvardRT LUNG1 RADIO 

Outcome 
Distribution 

bone 4.1% 

benign 51.7% alive (2-
year) 54.2% alive (2-

year) 59.8% alive (2-
year) 64.5% 

abdomen 16.3% 

mediastin
um 14.3% 

liver 9.7% 

lung 41.1% 

malignant 48.3% dead (2-
year) 45.7% dead (2-

year) 40.1% dead (2-
year) 35.4% 

kidney 3.6% 

soft  
tissue 4.6% 

pelvis 6.0% 

Sex 
M 58.5% 

na 
52.2% 68.8% 75% 

F 41.5% 47.7% 31.1% 25% 

Age 
(median) 58.0 na 69.6 68.69 69.0 

 855 

 856 

Extended Data Table 4 | Dataset breakdown Table showing the 6 different cohorts used in this study along with eligible scans and patients used. A 857 

secondary table shows the outcome, sex, and age distribution of each of the cohorts.  858 
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