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ABSTRACT 

The Mini-Mental State Examination (MMSE) is a widely employed assessment tool for measuring the 

severity of cognitive impairment. Among the MMSE items, the pentagon copying test (PCT) requires 

participants to accurately replicate a sample of two interlocking pentagons. While the PCT are traditionally 

scored on a binary scale, there has been limited developments of granular scoring scale to assess task 

performance. In this paper, we present a novel three-stage algorithm, called Quantification of Interlocking 

Pentagons (QIP), which quantifies PCT performance by computing the areas of individual pentagons and 

their intersection areas, and a balance ratio between the areas of the two individual pentagons. The three 

stages of the QIP algorithm include: (1) detection of line segments, (2) unraveling of the interlocking 

pentagons, and (3) quantification of areas. The QIP algorithm was applied to 497 cases from 84 participants. 

Analysis of the quantified data revealed a significant inverse relationship between age and balance ratio 

between two pentagon areas (beta = -0.49, p = 0.0033), indicating that older age was associated with a 

smaller balance ratio. The QIP algorithm enhanced the scoring of performance in the PCT. It can serve as 

a useful tool for granular level scoring of PCT. 

Keywords: Mini-Mental State Examination, Pentagon Copying Test, Aging 
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Introduction  

The Mini-Mental State Examination (MMSE), introduced by Folstein et al1. in 1975, is a widely utilized 

30-point evaluation for assessing delirium and cognitive impairment in clinical and research settings. One 

of the items in the MMSE is the pentagon copying test (PCT), which requires participants to replicate a 

sample of two interlocking pentagons on a paper. This test is used to measure visual-spatial abilities and 

provides psychomotor information about visual-spatial construction, fine motor coordination, and attention 

to detail.  

The traditional scoring of the PCT in the MMSE is binary; (correct=1) if their drawing has ten angles and 

two pentagons that intersect. A study was conducted to explore scoring at a more detailed level, using 

qualitative measures, where cases with a score of zero were further categorized into five classes based on 

the degree of deviation from the interlocking pentagon sample used for testing 2. A composite score, which 

was the sum of five domain scores based on the number of angles, distance/intersection between two 

pentagons, closure/opening of the image contour, rotation, and closing-in was proposed3. To enhance 

efficiency and objectivity, automatic scoring approaches utilizing Deep Learning (DL) techniques,  such as 

U-Net and convolutional neural networks, have been proposed 4-6. A study developed DL method for a 

mobile application, which employed a convolutional network known as U-net along with mobile sensor 

data4. Another study adopted a convolutional neural network utilizing an object detection model to generate 

an automatic standard binary score5. While two preceding studies focused on training deep learning models 

to automate two well-established scoring systems, a study devised a deep learning approach to explore an 

optimal scoring method for the interlocking pentagons test's correlation with cognition6.  Additionally, eight 

crucial drawing characteristics were identified through simulations using synthetic interlocking pentagon 

images including differences in sizes between two pentagons, overall pentagon size, and distance between 

the pentagons. 
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In this study, we selected three attributes as highlighted in Tasaki et al.6, and conducted quantification for 

the targeted attributes. We hypothesized that individuals with impaired visual construction skills, 

particularly older adults, may encounter difficulties accurately reproducing the sample interlocking 

pentagons. This difficulty could be reflected in several ways, including a smaller total area, a reduced 

proportion of intersecting area, and an imbalance in the area between the two pentagons.  

We developed a three-stage algorithm called Quantification of Interlocking Pentagon (QIP) to quantify 

specific metrics, including the areas of individual pentagons, the proportion of intersecting areas, and the 

balance ratios between the pentagon areas. To this end, the QIP algorithm specifically targeted PCTs that 

met the criteria for a "correct" condition (score=1) based on the standard binary scoring method. The 

algorithm comprises line segment detection, unraveling of the interlocking pentagons, and quantification 

of relevant areas. Figure 1 provides a visual representation of the QIP algorithm process. We applied the 

algorithm to a subset of 90 randomly selected participants from the Rush Memory and Aging Project 

(MAP), an ongoing cohort study investigating aging and dementia while cognitive status and MMSE scores, 

including the binary PCT scores, were blinded. We present the results of our study in Section 2, followed 

by a discussion in Section 3. Additionally, we provide detailed information about the materials, methods 

and statistical analysis used in Section 4. Supplementary Materials are also included to offer descriptions 

of the QIP algorithm components.  

Results  

Participants information 

We selected 557 PCTs from 90 participants randomly from MAP, an ongoing cohort study investigating 

aging and dementia while cognitive status and MMSE scores, including the binary PCT scores, were 

blinded. Average age at baseline was 82 years old (SD 6.2), education 15 years (SD 2.8), men 25 (27.8%), 

non-Latino White 89 (98.9%). Participants had follow-up visits on average 6.6 years (SD= 3.4). 

Demographic data of participants are described in Table 1. 
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PCT cases incorporated for quantification employing the QIP algorithm  

Of 557 PCTs, 56 were scored zero based on the standard binary scoring and were excluded from 

quantification using the QIP algorithm. The excluded images exhibited arbitrary shapes, including single 

pentagons, two interlocking rectangles, no intersection between the two pentagons, or images with 

unintentional movements. Supplementary Figure 1 presents examples of these excluded cases. A total of 

501 PCTs with a score of 1 from 85 participants were included for quantification using the QIP algorithm. 

We evaluated the QIP algorithm’s performances with the original images manually. Among the 501 PCTs, 

the algorithm failed in quantification for 4 PCTs. These challenges were attributed to very low scan quality 

(n=3), where lines were not distinguishable from the background that led to failure of detection of lines 

from the image at Stage 1 of the QIP, or highly wavy drawings that led to failure of accurate estimation of 

pentagon areas at Stage 3 of the QIP (n=1). Consequently, a total of 497 PCTs from 84 participants were 

successfully quantified. 

Association of three metrics from the QIP with demographic variables 

At baseline, we examined the distribution of three metrics obtained from the QIP algorithm. On average, 

the proportion of intersection to the total area was 9.8% (SD=4.4%). The balance ratio, which represents 

the ratio of the smaller pentagon to the larger pentagon, was 82.2% (SD=12.2%). The ratio of the total area 

to the sample interlocking pentagon administered for PCT was 138% (SD=78%) (Table 2). As a reference, 

the sample interlocking pentagon displayed a proportion of intersection of 6.2% and a balance ratio of 

99.0%. We observed a positive correlation between the balance ratio and the proportion of intersecting area 

(Spearman Correlation=0.274, p=0.0117), indicating that a higher balance ratio was associated with a 

greater proportion of intersection (Table 3 and Figure 2). 

Figure 3 illustrates the distribution of the three measures (total area, proportion of intersection, and balance 

ratio) among three age groups at baseline based on tertiles (age <79, 79≤ age <82, age ≥82). Spaghetti plots 

depicting the longitudinal measures against age are presented in Figure 4. Linear mixed-effects models 

were employed to analyze the relationship between each longitudinal measure and age at baseline, sex, 
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years of education, lag (in years) since enrollment of the study, and the interaction between lag and the 

three demographic measures with 497 PCT cases from 84 participants. We assessed the normality 

assumption of each QIP metric as an outcome of the mixed effects model, and determined that all three 

metrics were acceptable for normality assumption7, 8. The results showed a significant inverse relationship 

between age and the balance ratio (beta = -0.49, p = 0.0033), indicating that a two-year increase in age at 

baseline was associated with approximately a 1% decrease in the balance ratio. Furthermore, the balance 

ratio exhibited a decline over the follow-up visits (beta = -5.44, p = 0.0394), suggesting an annual decrease 

of approximately 5.4%. Furthermore, we observed significant interaction effects between age and lag (beta 

= 0.07, p = 0.0372) as well as between sex and lag (beta = -1.06, p = 0.0104), indicating that the associations 

of balance ratio with age at baseline and sex change over the course of follow-up visits. Additionally, 

education was found to be associated with the proportion of intersecting area, with every 2-year increase in 

education being associated with a 1% decrease in the proportion of intersecting area (beta = -0.53, p = 

0.0005). However, no significant relationship was found between the total area and any of the three 

demographic variables. A summary of these results can be found in Table 4. 

Discussion  

We found that the developed QIP algorithm was successful in quantifying three metrics from the PCTs. 

The QIP approach provides a more detailed quantification compared to the standard binary scoring, which 

only assesses the presence of ten angles and the intersection of two pentagons. The QIP algorithm was 

specifically designed to quantify PCTs that scored correct based on the standard binary scoring, and it 

provides three metrics: total area, intersecting area, and balance ratio. Among these metrics, we found that 

balance ratio showed a significant association with age at baseline and duration (in years) since enrollment 

of the study, proportion of intersection with years of education.  

The most common method for quantifying PCT is a straightforward binary scoring system, possibly 

due to the intricate nature of analyzing interlocking shapes. A more detailed scoring system was proposed, 
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involving the aggregation of five domain scores based on aspects such as angle count, distance/intersection 

between pentagons, closure/opening of image contours, rotation, and closing-in 3. However, this method of 

quantification could exhibit variation among different raters. To improve efficiency and objectivity, 

automated scoring approaches employing Deep Learning (DL) techniques have been adopted 4. On the 

other hand, Tasaki et al. 6 developed a deep learning model correlating with cognitive scores and introduced 

eight features, several of which were novel features for PCT characteristics. The QIP algorithm presents a 

methodology for quantifying three features out of the aforementioned eight proposed by Tasaki et al.6. 

Another noteworthy aspect of the QIP algorithm is its applicability to interlocking polygons beyond 

pentagons, such as rectangles or triangles as long as objects maintain convexity. However, drawings other 

than pentagons are indicative of cognitive impairment and receive a score of zero based on standard binary 

scoring, thus we excluded the application of the QIP algorithm to such cases. 

The algorithm encountered difficulties when processing images of poor scan quality, highly 

waviness or instances of overshooting. In cases of low scan quality, the lines often blended with the 

background, causing Stage 1 to fail in detecting the lines. Drawings with high waviness or overshooting 

resulted in the inaccurate calculation of pentagon areas during Stage 3 of the QIP, owing to disparities 

between the original image and the reconstructed image based on the convex hull approach. It's worth 

noting that low scan quality could stem from ongoing neurodegeneration as studied in Tasaki et al.6 

manifesting as reduced hand strength. On the other hand, overshoots might be reflective of an individual's 

distinctive drawing style. For interlocking pentagon images with low scan quality and high waviness, we 

classified them as failures of the algorithm. Meanwhile, to address overshoots, we introduced an extra 

manual step between Stage 2 and 3 for images exhibiting this trait. In this step, nodes forming overshoots 

were removed to rectify the issue. 

However, this study has certain limitations. Our developed algorithm is specifically designed to 

quantify PCTs that meet the requirements for the good condition based on the binary scoring, excluding 

cases with a score of zero that indicate the severity of cognitive impairment. Subsequent research should 
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emphasize the integration of pre-existing DL methods4-6 with the QIP, enabling a comprehensive approach 

for both classifying and quantifying PCTs. Additionally, the computational complexity of Stage 2 of the 

QIP algorithm, which incorporates random permutation, warrants further improvements for enhanced 

efficiency. In this study, we did not examine the associations between the three QIP metrics and cognitive 

or motor measurements, as our primary focus was on detailing the QIP algorithm. Future studies should 

investigate how these area metrics are associated with the cognitive and motor abilities of older individuals. 

Materials and Methods  

Ethical statement 

All studies were approved by an Institutional Review Board of Rush University Medical Center. Written 

informed consent was obtained from each participant. 

Materials  

The MMSE has been administered for cognitive tests for all cohort studies at Rush Alzheimer’s Disease 

Center. Common eligibility criteria in both studies included: age > 65 years, absence of known dementia at 

the time of enrollment, and agreement to annual clinical evaluations. Of over 5000 participants tested with 

the MMSE at least once, we selected 90 participants blinded with participants’ cognitive status.  

Methods  

The PCT was administered on paper, the paper was scanned, and then saved in the portable network 

graphics (png) format. The digital image was the input for the algorithm. Each digital image was first 

transformed into a binary image, where pixels are with zero for background and a positive constant for 

participant’ drawing. We, instead of using a massive number of individual nonzero pixels in each digital 

image for analysis, utilize line segments each of which is a collection of nonzero pixels.  

The algorithm consists of three stages: (1) line segment detection from the image, (2) unraveling of two 

interlocking pentagons, and (3) quantification of the areas of interest. The first stage of detecting line 
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segment is preceded by edge detection for which we applied the Canny edge detection 9 that skeletonizes 

image. Once the edges are detected, the Hough transformation 10  was applied to detect line segments, each 

of which is characterized by their starting and ending points in Euclidean space. In the second stage, to 

unravel two interlocking pentagons, we clustered the Hough line segments into individual pentagons based 

on connectivity matrix using the algorithm we developed. The third stage quantifies areas of individual 

pentagons using the Monte Carlo integration11. Flow of the algorithm is shown in Figure 1. For the purpose 

of demonstrating the QIP algorithm, we chose three PCTs comprising the sample interlocking pentagon 

and two additional PCTs from different participants, whose ages ranged from their 70s to their 90s. These 

three PCTs are illustrated in Supplementary Figure 2. 

Stage 1. Detection of edges and line segments  

1.1 The Canny edge detection  

The Canny edge detection algorithm 9 simplifies the image by keeping only boundaries of the input image. 

The Canny edge detection algorithm detects pixels in digital image that display a sharp change in intensity, 

often referred to as edges. Output from the Canny edge detection algorithm is a binary image with a positive 

value for detected edges. Edges contain shape information and thus are the most important features for 

image recognition and classification. Keeping only edges in image reduces the amount of data to be 

processed. Using the image containing only edges from the Canny edge detection algorithm, we identified 

line segments which resulted in a further reduction of image data into a collection of two end points for 

each line segment. We demonstrated the Canny edge detection with the three example PCTs in 

Supplementary Figure 3. Details of the Canny edge detection algorithm are shown in Supplementary 

Material A. 

1.2 The Hough transformation  

In two-dimensional Euclidean space, a line can be parameterized by the y-intercept ( ) and slope ( ) . 

Although this parameterization is most extensively adopted, it is not able to represent vertical lines for 

which the slopes are infinity, i.e.,  . For this reason, the Hough transformation10 is a useful alternative 
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parametrization of lines that enables to detect lines in image using a pair of parameters ( , )r  : the angle ( )  

between a line perpendicular to the line ( l ) and the positive x-axis; the shortest distance ( )r  from the origin 

(0,0) to the line l . Each image from the Canny edge detection algorithm 9 was processed by the Hough 

transformation 10 to identify line segments. The pair of parameters ( , )r   is referred to as the Hough 

parameters. That is, a line in the Euclidean space is transformed to a point in the Hough space with (x-axis: 

θ, y-axis: r). Any points ( , )x y  on a line in Euclidean space is thus alternatively represented by a pair of 

( , )r   in the Hough space as follows. 

                                        cos sinr x y   , where 2 2
    .          

Images were reconstructed with line segments identified from the Hough transformation 10. To keep line 

segments with higher authenticity, three thresholds were applied. Those are threshold for (a) minimal 

number of points sharing the Hough parameters, (b) minimal length of a line, and (c) minimal gap allowed 

between two distinct line segments. Two Hough lines with a gap less than the minimal gap were merged. 

Higher the number of points sharing the same Hough parameters and longer length of a line signify more 

authenticity of a line. We demonstrated the Hough transformation 10 with the three example PCTs in 

Supplementary Figure 4 and the estimated line segments in Supplementary Figure 5. Details of the Hough 

transformation 10 are shown in Supplementary Material B.  

Stage 2. Separation of two interlocking pentagons 

Because two pentagons intersect, quantifying the areas of individual pentagons and their intersection can 

be complex and challenging. To simplify the computation process, we first aimed to separate the two 

pentagons. This was done using the line segments acquired in Stage 1, where the line segments were 

grouped into two individual pentagons. Each line segment detected from the Hough transformation has two 

endpoints. We call each of the endpoints of a line segment a node so that each line segment has two nodes. 

It is important to note that assigning the nodes around the centroid, which represents the gravity of all nodes, 

to their respective pentagons poses a higher level of complexity due to the intersection occurring near the 
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centroid. To address this, we implemented a cut-off distance from the centroid, designating nodes in close 

proximity as inner nodes, and those further away as outer nodes. We provided further details on cut-off 

distance in Supplementary Material C. To cluster the nodes into their respective pentagons, we employed 

different approaches. For the outer nodes, we utilized hierarchical clustering, while for the inner nodes, 

which required more computational intensity due to their proximity to the centroid, we adopted a hybrid 

approach combining hierarchical clustering and random permutation methods. 

                         

 

1 1

1 1

 centroid , , where

{ }, ,  1, , ,   total number of the nodesi i

N N

i iN N

i i
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   

 
  
 
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2.1 Connectivity matrix of nodes from line segments  

A hierarchical clustering algorithm requires distance metric between nodes. To meet the need, we 

developed a connectivity matrix using nodes from the line segments. We start by defining the first-order 

connectivity (C1) among the nodes. It is noteworthy that two nodes of a Hough line segment were trivially 

connected. We sought connectivity beyond such a trivial connection to have complete connectivity in the 

method described below. Specifically, we draw an extended line (
ije ) connecting arbitrary two nodes (i) 

and (j), and examine presence of any line segments that are found between two designated nodes or being 

in a proximity to 
ije within tolerance levels based on angle and distance. In addition, we allowed gap 

between two nodes that any two nodes within a tolerance were marked as connected. Allowance of gap was 

necessary for enhanced connectivity between two nodes particularly located around corners because angles 

between the extended line (
ije ) and nearby line segments were beyond a tolerance. In addition, we defined 

connectivity of a node to itself as zero. The first-order connectivity matrix is a square and symmetric matrix, 

which  is an adjacency matrix with undirected edges in graph theory 12. The first-order connectivity was 

defined in Eq. (1). Details of construction of the first-order connectivity is presented in Supplementary 

Figure 6. The first-order connectivity matrix was then transformed into higher-order connectivity. 

Specifically, the second-order connectivity was defined as the result of multiplying the first-order 
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connectivity matrix by itself, indicating the connectivity between two nodes through an intermediate node. 

Similarly, the m-th order connectivity (m > 1) was defined as the result of multiplying the first-order 

connectivity matrix m times, as shown in Eq. (2). We defined a total connectivity using connectivity matrix 

up to m-th order where m was set empirically to give entire connectivity of the nodes considered (m ≤5) in 

Eq. (3). The connectivity matrix was subsequently converted into a distance metric by taking the inverse of 

the exponentiated connectivity matrix, as described in Eq. (4). 

          

1
1, if line segements exsit between  and or gap( , ) tol,

( , ; )
0, otherwise                                          

and                                                                        

i j i jn n n n
i j i j


 


C

1

                                                           

( , ) 0.i i C

(1) 

                                                  
1 1

m times

m



  C C C                                                               (2) 

                                                      
1

m
i

i

TC C                                                                       (3) 

                                                ( , ) exp ( , )i j i j D TC                                                             (4) 

 

2.2 Clustering of line segments to each pentagon  

Using the distance matrix D in Eq. (4), we initiated clustering with the outer nodes. For the outer nodes, we 

applied a hierarchical clustering method using Wald's minimum within-cluster variance criterion 13 and the 

distance metric described in Eq. (4). Additional details regarding the hierarchical clustering procedure can 

be found in Supplementary Material D. Following this step, each node was assigned a label indicating 

whether it belongs to pentagon 1 or pentagon 2.  

To assign the inner nodes to their respective pentagons, we employed a random permutation 

approach in conjunction with hierarchical clustering. The inner nodes were initially grouped together based 
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on their connectivity according to the distance matrix using hierarchical clustering. Subsequently, the 

classification of inner clusters into individual pentagons was achieved by randomly permuting the class 

labels (1 or 2) assigned to each inner cluster. The total number of random permutations, considering the 

number of inner clusters, increased exponentially. Each clustering result obtained with the inner nodes was 

paired with the clustering results obtained with the outer nodes to create a comprehensive clustering 

outcome. A diagram illustrating the combined clustering of outer and inner nodes is presented in 

Supplementary Figure 7. 

                                      Total number of permutation = 2#{IC},  

where #{IC} is the number of inner clusters. The total number of whole clustering results therefore is as 

much as the total number of permutations with the number of inner clusters.  

2.3 Determination of the best clustering outcome 

Considering that a pentagon is a convex polygon, we aimed to reconstruct the entire PCT by combining  

two reconstructed individual pentagons. Each pentagon was reconstructed by applying a convex hull with 

the set of nodes assigned. We expected that the reconstructed PCT would exhibit minimal deviation from 

the original PCT if clustering of nodes to respective pentagon was done correctly. Therefore, the best 

clustering result was determined based on the minimum difference between the original image and the 

reconstructed image. To achieve this, we reconstructed a PCT by applying a convex hull to each of the 

comprehensive clustering results. The best clustering result was determined by evaluating the mean square 

error (MSE) of the residual image, which represents the deviation between the reconstructed PCT and the 

original image. Denoting the original image and the reconstructed image as I and Io r
, respectively, MSE 

was calculated over a rectangle Ω that covers both images, as defined in Eq. (5). A diagram illustrating this 

selection procedure was provided in Supplementary Figures 8 and 9. The best clustering result with a 

convex hull applied for each pentagon overlaid on original image is demonstrated in Figure 10.  
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Stage 3. Quantification of areas of interest 

We quantify each area of pentagon using a built-in function of MATLAB (name: polyarea), which counts 

the number of pixels in a 2D polygon image. We quantify the areas of intersection using the Monte Carlo 

Integration 11, where we randomly draw samples (x, y) from a rectangle covering the intersecting area, and 

count the random samples falling inside the area of intersection as in Eq. (6). We denote the region of 

intersection of two pentagons as I12.  

                                12 12

1

1
AREA(I ) AREA( ) ( , )

L

i i

i

f x y
L 

    ,                                                (6) 

where (xi,yi), i = 1,2,…, L, are random samples selected from the inside of a rectangle Ω that covers the 

entire PCT images I1 and I2., The function f12 is defined as 

  12  
1, if ( )is located inside theintersection area

0, otherwise                                        
,

 

,x y
f x y





 i i
i i

. 

 Using the measures of the areas of individual pentagons and their intersection, we quantify the total area 

of two interlocking pentagon, the proportion of the intersection as,  

1 2 12total AREA AREA(I ) AREA(I ) AREA(I )   , 

12AREA(I )
0 Proportion of Intersection 1

total AREA
    , 

and a balance ratio of the two pentagon areas in terms of smaller area to larger area as follows.

1 2

1 2

min(AREA(I ), AREA(I ))
0 Balance ratio 1

max(AREA(I ),AREA(I ))
    . 
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Computation time 

We measured the computation time using the sample pentagon, running on a 64-bit Linux system with a 

quad-core processor (with two threads per core) and 126 GB of random access memory. The computation 

time for the sample interlocking pentagon was 73 seconds. However, it's worth noting that cases requiring 

manual corrections or exploration of non-default parameters set for the QIP which depends on the shapes 

of individual PCT may take longer time to process. 

Statistical Analysis 

We adopted Python, R, and MATLAB at different stages and functions of the QIP algorithm. We fitted 

linear mixed effects model to longitudinal measurements of each quantification using age at baseline, sex, 

education, and lag (elapsed time at follow-up since baseline visit) as fixed covariates as well as subject 

intercept and slope as random effects to assess change over visits. The mixed effects model was executed 

using SAS 9.4. 
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Figure legend 

Figure 1. The diagram of the QIP algorithm. (a) Image of an interlocking pentagon, (b) Output of edge 

detection using the Canny edge detection algorithm, (c) Line segments detected through the Hough 

transformation, (d) Disentangled pentagons by clustering algorithms, and (e) Quantification of areas using 

the Monte Carlo integration. 

 

Figure 2. Association among three area measures from the QIP algorithm. Pairwise associations were 

examined among three quantified measures: total area, proportion of intersecting area, and balance ratio. 

The associations were demonstrated as follows: (a) the association between proportion of intersecting area 

and total area, (b) the association between balance ratio and total area, and (c) the association between 

balance ratio and proportion of intersecting area. 

 

Figure 3. Distribution of three metrics from the QIP algorithm.  The distribution of the three measures (total 

area, proportion of intersection, and balance ratio) was compared among three age groups at baseline, 

categorized by age tertiles (age < 79, 79 ≤ age < 82, age ≥ 82). 

 

 

Figure 4. Longitudinal patterns of three metrics from the QIP algorithm. Spaghetti plots of the three area 

measures derived from the QIP algorithm were presented as follows: (a) Total area, (b) Proportion of 

intersection area, and (c) Balance ratio. 

 

Supplementary Figure 1. Examples of PCTs that failed the binary scoring criteria. Eight PCT images 

received a score of zero based on the binary scoring method. 

 

Supplementary Figure 2. Three PCT images for demonstration.  Three PCTs comprising the sample 

interlocking pentagon and two additional PCTs from different participants, whose ages ranged from their 

70s to their 90s. 

 

Supplementary Figure 3. The Canny Edge Detection. The Canny edge detection method was applied to 

delineate the edges of each original PCT image shown in Supplementary Figure 2. 

 

 

Supplementary Figure 4. The Hough transformation. The Hough transformation with three demonstrated 

examples are represented graphically, where the x-axis corresponds to the angle (θ) between the 

perpendicular line to each line segment and the positive x-axis, and the y-axis represents the distance 

between the perpendicular line and the point (0, 0). 

 

Supplementary Figure 5. Line segments obtained from the Hough transformation. Line segments from the 

Hough transformation for three PCTs in Supplementary Figure2 were demonstrated. 
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Supplementary Figure 6. First-order Connectivity matrix. We demonstrated a first-order connectivity 

matrix consisting of six nodes. 

 

Supplementary Figure 7. Clustering. A demonstration of complete clustering incorporating both outer and 

inner clustering results was performed. The outer nodes were clustered into their respective pentagons (red, 

blue). Subsequently, the inner nodes were clustered, and the resulting clusters were combined with the outer 

node clusters. 

 

 

Supplementary Figure 8. Reconstructed pentagons using convex hull after clustering. Demonstrations of 

the process showing reconstruction of pentagons by applying convex hull with clustering outputs. 

 

 

Supplementary Figure 9. Residual images from the reconstructed and the original PCTs. The residual image 

was generated by subtracting the original PCT image from the reconstructed pentagons shown in Figure 

10. 

 

Supplementary Figure 10. The best clustering results for the three demonstrated examples and the 

reconstructed pentagons using convex hull. The reconstructed pentagons, obtained using the convex hull 

with the best clustering result, were superimposed on each of the three presented examples. 

 

Supplementary Figure 11. Line segments generated with two sets of thresholds from the Hough 

transformation. We present the differences in line segments using two sets of thresholds: stringent and 

lenient. The first row displays the line segments obtained using a set of stringent thresholds (10, 10, 4), 

while the second row shows the line segments obtained using a set of lenient thresholds (1, 2, 4). In these 

thresholds, the first component represents the minimal number of points sharing the Hough parameters, the 

second component denotes the minimal length of a line, and the third component indicates the minimal 

allowed gap between two distinct line segments. 
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Table 1. Baseline demographic distribution and total number of visits from all participants (n=90) 

Variable           Mean       SD or % Min 25th  75th  Max 

Age at baseline 81.9 6.2 68.1 77.2 85.6 99.8 

Education 15.0 2.8 6.0 13.0 16.0 23.0 

Male (n, %) 

Non-Latino White (n, %) 

25 

89 

27.8 

98.9 

- 

- 

- 

- 

- 

- 

- 

- 

N of total visits 6.1 3.5 1 4 9 13 

 

Table 2. Summary of PCT quantification at baseline (n=84) 

 Mean SD Min 25% 75% Max 

Total Area (%) 139 78 25 91 162 456 

Prop. Intersection (%) 9.8 4.4 1.7 6.5 12.7 22.5 

Balance Ratio (%) 82.2 12.2 55.4 71.9 93.5 99.9 

Note: Total area was divided by the total area of the sample interlocking pentagon  administered for PCT. 

Table 3. Spearman Correlation among three metrics of PCT at baseline (n=84) 

 Prop. Intersection Area Balance Ratio 

Total Area 0.0244 (p=0.8536) 0.06637 (p= 0.5486) 

Prop. Intersection Area                       1.0 0.27387 (p= 0.0117) 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.04.23294134doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.04.23294134
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Table 4. Linear mixed effects model with three longitudinal PCT measures 

 

  Effect Estimate SE Pr > |t| 

Total Area  

(%) 

Age 0.62 1.20 0.6070 

Sex 9.92 15.84 0.5318 

Education -1.51 2.62 0.5643 

Lag 5.50 15.11 0.7170 

Age*Lag -0.07 0.19 0.7115 

Sex*Lag 0.06 2.34 0.9789 

Education*Lag -0.23 0.37 0.5320 

Proportion of 

Intersection 

(%) 

Age -0.06 0.07 0.3524 

Sex 0.43 0.92 0.6413 

Education -0.53 0.15 0.0005*** 

Lag 0.18 0.99 0.8601 

Age*Lag 0.00 0.01 0.8753 

Sex*Lag 0.03 0.16 0.8706 

Education*Lag 0.01 0.02 0.5745 

Balance Ratio 

(%) 

Age -0.49 0.17 0.0033** 

Sex 2.89 2.21 0.1909 

education -0.17 0.35 0.6265 

Lag -5.44 2.56 0.0370* 

Age*Lag 0.07 0.03 0.0372* 

Sex*Lag -1.06 0.41 0.0104* 

Education*Lag 0.07 0.06 0.2730 

Age: Age at baseline; *- p-value <0.05; ** p value < 0.01 *** p value < 0.001 
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Supplementary Figures
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Supplementary Figure 1

Supplementary Figure 1. Examples of PCTs that failed the binary scoring criteria. Eight PCT images

received a score of zero based on the binary scoring method.
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(a) The sample             (b) Participant A        (c) Participant B

Supplementary Figure 2

Supplementary Figure 2. Three PCT images for demonstration. Three PCTs comprising the sample

interlocking pentagon and two additional PCTs from different participants, whose ages ranged from

their 70s to their 90s.
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(a) Sample             (b) Participant A        (c) Participant B

Supplementary Figure 3

Supplementary Figure 3. The Canny Edge Detection. The Canny edge detection method was applied to

delineate the edges of each original PCT image shown in Supplementary Figure 2.
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(a) Sample             (b) Participant A        (c) Participant B

Supplementary Figure 4

Supplementary Figure 4. The Hough transformation. The Hough transformation with three

demonstrated examples are represented graphically, where the x-axis corresponds to the angle (θ)

between the perpendicular line to each line segment and the positive x-axis, and the y-axis represents

the distance between the perpendicular line and the point (0, 0).
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(a) Sample             (b) Participant A        (c) Participant B

Supplementary Figure 5

Supplementary Figure 5. Line segments obtained from the Hough transformation. Line segments from

the Hough transformation for three PCTs in Supplementary Figure2 were demonstrated.
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Supplementary Figure 6

Supplementary Figure 6. First-order Connectivity matrix. We demonstrated a first-order connectivity

matrix consisting of six nodes.
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Supplementary Figure 7

Supplementary Figure 7. Clustering. A demonstration of complete clustering incorporating both outer

and inner clustering results was performed. The outer nodes were clustered into their respective

pentagons (red, blue). Subsequently, the inner nodes were clustered, and the resulting clusters were

combined with the outer node clusters.
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Supplementary Figure 8

Supplementary Figure 8. Reconstructed pentagons using convex hull after clustering. Demonstrations

of the process showing reconstruction of pentagons by applying convex hull with clustering outputs.
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Supplementary Figure 9

Supplementary Figure 9. Residual images from the reconstructed and the original PCTs. The residual

image was generated by subtracting the original PCT image from the reconstructed pentagons shown in

Supplementary Figure 8.
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Original image                        

Separated pentagons 

Supplementary Figure 10

Supplementary Figure 10. The best clustering results for the three demonstrated examples and the

reconstructed pentagons using convex hull. The reconstructed pentagons, obtained using the convex

hull with the best clustering result, were superimposed on each of the three presented examples.
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Supplementary Figure 11

Supplementary Figure 11. Line segments generated with two sets of thresholds from the Hough transformation. We

present the differences in line segments using two sets of thresholds: stringent and lenient. The first row displays

the line segments obtained using a set of stringent thresholds (10, 10, 4), while the second row shows the line

segments obtained using a set of lenient thresholds (1, 2, 4). In these thresholds, the first component represents the

minimal number of points sharing the Hough parameters, the second component denotes the minimal length of a

line, and the third component indicates the minimal allowed gap between two distinct line segments.
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