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Abstract 
 

P-glycoprotein, encoded by the MDR1 gene, is an ATP-dependent pump that exports various substances 

out of cells. Its overexpression is related to multi drug resistance in many cancers. Numerous studies 

explored the effects of MDR1 variants on p-glycoprotein expression and function, and on patient 

survivability. T1236C, T2677C and T3435C are prevalent MDR1 variants that are the most widely 

studied, typically in-vitro and in-vivo, with remarkably inconsistent results. In this paper we perform 

computational, data-driven analyses to assess the effects of these variants using a different approach. We 

use knowledge of gene expression regulation to elucidate the variants’ mechanism of action. Results 

indicate that T1236C increases MDR1 levels by 2-fold and is correlated with worse patient prognosis. 

Additionally, examination of MDR1 folding strength suggests that T3435C potentially modifies co-

translational folding. Furthermore, all three variants reside in potential translation bottlenecks and likely 

cause increased translation rates. These results support several hypotheses suggested by previous studies. 

To the best of our knowledge, this study is the first to apply a computational approach to examine the 

effects of MDR1 variants.  
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Introduction 
 
P-glycoprotein (p-gp) was first discovered in 1976, where it was shown to alter drug permeability in 

Chinese hamster ovary cells1. Ensuing extensive studies unveiled ample information about the structure 

and function of this transmembrane protein; P-gp is a member of the ATP-binding cassette transporter 

superfamily2. It is a 170 KDa molecule that is comprised of two halves with high homology, each 

containing six transmembrane domains (TMD) and a single nucleotide-binding domain (NBD)3. P-gp is 

interleaved in the cell’s membrane and functions as an ATP-dependent efflux pump, exporting diverse 

substances out of the cell. Lipids, steroids, xenobiotics, various drugs and chemotherapy agents are some 

of the molecules transferred by this protein4. P-gp is normally highly expressed in the kidneys, liver, the 

gastro-intestinal tract and the blood-brain barrier5. It protects the body from deleterious substances by 

excreting them to the gut lumen, urine and bile, and by reducing permeability of sensitive tissues6. P-gp is 

also highly expressed in many cancer cells. Its ability to export substrates that vary greatly in chemical 

structure and size makes it fundamental for the multi-drug resistance (MDR) mechanism7 of cancer cells.  

 

P-gp is encoded by the MDR1 gene, also frequently called ABCB1. It is located on chromosome 7 and 

encodes for a protein of 1,280 amino acids8. MDR1 is highly polymorphic, with over 50 single nucleotide 

polymorphisms (SNP) currently discovered in its coding region9. Three variants are the most extensively 

studied - T1236C, T2677G and T3435C. T1236C is a synonymous variant that occurs in the first NBD (at 

position 1236 of the coding sequence), changing the codon GGT to GGC (both encode for Glycine). 

T2677G is a non-synonymous variant that occurs between the tenth and eleventh TMDs. It changes the 

codon TCT to GCT, resulting in Serine being replaced by Alanine. Finally, T3435C is a synonymous 

variant that occurs in the second NBD, causing the codon ATT to be changed to ATC but keeping the 

encoded amino acid Isoleucine10. All three variants occur in intracellular parts of the protein8. Though the 

frequencies vary for different ethnicities, they are common in the general population; In fact, the 

alternative allele is present in 57%, 55% and 49% of genotypes for T1236C, T2677G and T3435C 

respectively11. The three also make a common haplotype, occurring in 33% of individuals12.  

 

Variants, particularly ones defined as  "silent " such as synonymous alterations, can modify the gene 

expression process. They can affect transcription through changing transcription-factor binding sites 

(TFBS)13; they can impact translation and co-translational folding through changing codon usage14,15; they 

can also accelerate mRNA degradation by changing affinity to miRNA binding sites16 or lead to mis-

spliced proteins by modifying the nucleotides in the vicinity of donor or acceptor sites17. Altogether, they 

can impact all phases of gene expression. Though these three variants are widely studied, conclusions 

regarding their effects have been exceptionally inconsistent18. Some studies suggest they change mRNA 

or protein expression19–23 while others claim they do not24–29 and associate their presence with 

modifications in protein structure24,29. Some find them to significantly impact patients’ response to 

chemotherapy and survivability while others do not30–46. Remarkably, controversy is also found among 

those who claim that the variants do affect survivability47; whether the variants are detrimental or 

advantageous for patient survival remains a matter of disagreement.  

 

The effects of these MDR1 variants on p-gp expression, function and on chemotherapy resistance have 

been studied mostly in clinical trials and in-vitro cell line experiments.  Each method has inherent 

disadvantages; results of clinical trials are affected by factors such as cohort size, patient ethnicity, tumor 

type and conducted chemotherapy regimen.  In-vitro experiments cannot fully mimic the symbiosis of a 

cell with its natural environment and substantially differ from the corresponding cell type in-vivo48. Even 

though the effects of the variants may vary under different conditions, it is possible that some of the 

contradictions emerge not due to biological complexity but rather due to impediments in scientific 

methods. The objective of this paper is to examine, for the first time, the effects of T1236C, T2677G and 

T3435C on all phases of the gene expression process using various computational approaches. We aim to 
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gain a better understanding of the mechanism of action of this three MDR1 variants, endeavoring to 

propose plausible explanations and validate some of the previously proposed effects.  

 

Methods 
 

Data sources 
For performing the various analyses, we utilized data of several known databases: 

 

TCGA 

The Cancer Genome Atlas holds genetic, epigenetic, clinical and gene expression data of tens of 

thousands of cancer patients. The data was downloaded from TCGA (https://www.cancer.gov/tcga) on 

November 2021. Specifically, data of simple nucleotide variation (SNVs – small nucleotide variations), of 

MDR1 mRNA expression and clinical records regarding patients’ vital status were used for this study.  

Note that the patients’ genotypes are confidential. Therefore, we know whether a patient acquired a 

mutation or not but we do not know the patient’s second allele. For example, we know whether a patient 

is T1236C positive or not but the second unmutated allele could contain either a “C” or a “T”.  

 

ENSEMBL 

Ensembl49 provides a centralized platform for the storage, analysis, and visualization of genomic data. For 

CAI and MFE measurements, the complete human CDS was downloaded from ENSEMBL 

(https://ftp.ensembl.org/pub/release-109/fasta/homo_sapiens/cds/) on 2020.  

 

PaxDb  

PaxDb50 is a protein abundance database that contains whole genome protein abundance information 

across organisms and tissues.  For the CAI calculation the protein levels of human (whole organism and 

from integrated experiments) were downloaded from the PaxDb website on 2020 (https://pax-

db.org/dataset/9606/1502934799/).  

 

MDR1 expression 

 
TCGA 

To examine the effect of T1236C, T2677C, T3435C and all their possible combinations on MDR1 levels 

of cancer patients we used TCGA SNVs and expression data. At the time of data curation there were 

15,500 patients with both available SNV information and MDR1 mRNA expression levels. For each 

variant or haplotype we performed the following –  

- Split the patients to two categories: those who acquired the variant/haplotype in their cancerous 

tissue sample and to those who did not. The first group (carriers) contains several dozens of 

individuals or less (depending on the variant) and the latter (non-carriers) contains more than 

10,000 individuals.  

- Randomly chose a sub-group from the non-carriers group. The size of the sub-group is the size of 

the carriers group.  

- Repeated the random sampling for 100,000 times to get 100,000 sub-groups of non-carriers.  

- For each of the non-carriers’ sub-groups and the carriers’ group, obtained the mean MDR1 

expression (in FPKM) of the group.  

- Obtained an empirical p-value by comparing the mean MDR1 expression of the carriers group to 

the distribution of mean MDR1 expression on the non-carriers groups. 
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To assert that the results are not caused by differences in tumor mutational burden (TMB), we repeated 

the analysis when controlling for this confounder; the balance of the TMB between the mutated and 

control groups was tested using a two sample KS test51. While T1236C mutated and control groups were 

balanced, restriction was used to balance The T2677G and T3435C mutated and control groups. 

Controlling for TMB did not change the outcomes of the analysis.  

 

Enformer 

To examine the effect of T1236C, T2677C, T3435C on MDR1 levels we used Enformer52. The input of 

the model is a sequence of length 393,216 nucleotides and the variant is positioned in the middle 

(nucleotide 196,608). The centered 114,688 nucleotides are in the prediction range and the rest are 

provided as context. The output of the model is a matrix with 5,313 rows that represent experiment tracks 

and 896 columns that represent bins. Each track in the output matrix is the prediction of gene expression 

under specific conditions (for example, CAGE measurements from liver tissue or DNASE measurements 

from the brain tissue). Each bin represents 128 nucleotides, allowing the 896 bins to represent expression 

for the full prediction range. For each variant we used Enformer four times; We input the reference and 

mutated sequence for both the forward and reverse strands, all centered around the position of the variant. 

Multiple approaches were taken to derive a single score from the Enformer output, such that the score will 

capture the difference in MDR1 expression that is caused by the variant. The following steps were 

performed: 

- The absolute difference in expression was calculated for each strand using the following formula:  

1. 𝐷𝑠 = |
𝑜𝑢𝑡𝑝𝑢𝑡𝑚𝑢𝑡_𝑠− 𝑜𝑢𝑡𝑝𝑢𝑡𝑟𝑒𝑓_𝑠

𝑜𝑢𝑡𝑝𝑢𝑡𝑟𝑒𝑓_𝑠
| 

 

Where 𝑜𝑢𝑡𝑝𝑢𝑡𝑚𝑢𝑡_𝑠 is the Enformer output matrix given the mutated sequence of strand 𝑠, 

𝑜𝑢𝑡𝑝𝑢𝑡𝑟𝑒𝑓_𝑠 is the Enformer output matrix given the reference sequence of strand 𝑠 and 𝐷𝑠 is the 

matrix of absolute differences of strand 𝐷𝑠. The output of this step is comprised of two matrices of 

size (5313, 896), one for each strand.  

- An average across all bins was performed. The output of this step is comprised of two matrices of 

size (5313, 1).  

- Merging across tracks was performed using several methods –  

- An average across all tracks 

- An average across all CAGE tracks  

- An average across tracks associated with tissues where MDR1 is highly expressed 

- An average across CAGE tracks associated with tissues where MDR1 is highly expressed 

The output of this step (for each method separately) is comprised of two scores, one for each strand.  

- An average across both strands was performed. The output of this step is the final score 

representing the change in expression caused by the variant.  

 

The same process was performed for random variants with similar characteristics (explained in the 

“Empirical p-values” section) and the scores of the original and random variants were compared. If the 

score of the variant was larger than the scores of 95% of the random variants it was deemed to 

significantly change MDR1 expression.   

 

Splicing events 
To examine the effect of T1236C, T2677C, T3435C on the occurrence of splicing events we used 

SpliceAI53. The input of the model is a sequence the length of 11,001 nucleotides; the position of the 

variant is in the middle of the sequence, the proximal 500 nucleotides from each side are in the range of 
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the prediction and the distal 5000 nucleotides from each side are provided as context. For each nucleotide 

that is in the prediction range, the model predicts its probability of being a donor site and its probability of 

being an acceptor site. We perform the prediction for both the original sequence and mutated sequence, 

centered around each of the three variants. For each position in the prediction range, we calculated the 

difference in the probability of it being a donor/acceptor site that was caused by the variant.  We searched 

for positions for which the probability of being a donor or acceptor site changed by more than 50% . 

Positions exhibiting an increment of more than 50% are considered new prospective donor/acceptor sites, 

whereas positions for which the probability decreases by more than 50% are regarded as potentially 

abolished donor/acceptor sites.  

 

Translation rates 
To examine the effect of T1236C, T2677C and T3435C on translation rates we utilized several measures 

positively correlated with it - MFE, CAI, FPTC and tAI.  We calculated these measures for both the 

original and mutated MDR1 CDS sequences and examined the difference in these measures at the 

position of the variant.  

 

MFE 

A per-position MFE score was computed using ViennaRNA54; first, a sliding window (length = 39 

nucleotides, stride = 1 nucleotide) was used to obtain a per-window MFE score. Then, the MFE score of a 

specific position in the CDS was set as the average of all MFE scores of the windows that the position is 

in.  

CAI 

Human CAI weights were computed as suggested in the original paper55. The set of highly expressed 

genes (15% most highly expressed) was curated using human protein expression levels from PAXdb50.  

FPTC 

Human FPTC weights were downloaded from the Kazusa website56. 

tAI 

tAI tissue-specific weights were taken from Hernandez-Alias et al.57 and the s weights were optimized as 

depicted in Sabi et al.58  

 

Co-translational folding 
To examine the effect of T1236C, T2677C and T3435C on the co-translational folding of p-gp, a 

computational model that assesses which positions in the CDS are important for correct protein folding 

was deployed. The model is yet to be published and therefore we will provide much detail about the 

model’s methodology. The analysis is based on the basic assumption that co-translational folding is 

governed by local translation rates, and that this rate would be evolutionary conserved for a position that 

is crucial for correct folding59 . Thus, it searches for positions with both evolutionarily conserved low and 

evolutionarily conserved high MFE (a measure correlated with translation rate) across orthologous 

versions of a gene. For a given gene (MDR1 for example) the conserved positions are found in the 

following manner-  

- The human CDS sequence, along with all available orthologous CDS sequences are downloaded 

from Ensembl (https://rest.ensembl.org/documentation/info/homology_ensemblgene). Both the 

nucleotide and respective amino-acid sequences are downloaded for each ortholog.  Specifically, 

for MDR1 - 383 orthologs were found.  

- Using the nucleotide sequences, an MFE score is calculated for each position in each orthologous 

sequence as was depicted in the “Translation rates” section.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2023. ; https://doi.org/10.1101/2023.09.02.23294978doi: medRxiv preprint 

https://rest.ensembl.org/documentation/info/homology_ensemblgene
https://doi.org/10.1101/2023.09.02.23294978
http://creativecommons.org/licenses/by-nc/4.0/


 7 

- To find conserved positions we must first align them; the orthologues amino-acid sequences are 

aligned using Clustal Omega60 to create a multiple sequence alignment (MSA) for the gene.  

- According to the amino-acid alignment, the nucleotide sequences are also aligned with 

Pal2NAl61.   

- The MFE scores that were obtained for each position in each nucleotide sequence are now 

mapped to their appropriate location in the nucleotide alignment.  

- An average MFE score across orthologs is calculated per CDS position. Currently, we get a single 

MFE score for each position in the CDS, indicating the average MFE at this position across the 

different organisms.  

- Computing significance- to find the MFE scores that are significantly lower or higher than 

expected by chance we create permuted versions of the MSA, calculate the average MFE per 

position for the permuted versions and compare them to the scores of the original version.  

- In the first type of permuted version of the MSA, called “vertical permutation”, we 

shuffle synonymous codons within the same MSA column. In the second type of 

permuted version of the MSA, called “horizontal permutation”, we horizontally swap 

between synonymous codons of pairs of columns. Both methods affect the MFE scores 

while keeping basic characteristics of the MSA such as the amino-acid, codon and 

nucleotide content. One hundred permutations of the MSA are created for each kind. 

- We calculate the per-position MFE score averaged across orthologs for each permuted 

MSA in the same manner as was done for the original MSA. At this point, for each CDS 

position we have a single true MFE score and 100 scores from each of the permuted 

versions. 

- For each position we obtain a z-score and respective p-value for each permutation type.  

- We perform an FDR correction for the p-values.   

- Finally, we intersect the results to get positions that had significantly low MFE and 

positions that had significantly high MFE when compared to both kinds of permuted 

versions of the MSA. We require both the vertical and horizontal p values to be equal or 

smaller than 0.05.  

 

Survivability of TCGA patients 
To examine the effect of T1236C, T2677C, T3435C and all their possible combinations on the survival of 

cancer patients we used TCGA SNV and clinical data. At the time of data curation there were 11,086 

patients with relevant clinical information. We used the vital status of the patients and a matching time-

stamp in order to create Kaplan-Meier survival curves62 for the carriers and non-carriers groups. The 

time-stamp was derived from the maximum value of the following attributes (not all attributes were 

available for each patient)-  

- Days from the initial diagnosis to current follow-up 

- Days from the initial diagnosis to the current confirmation of vital status 

- Days from the initial diagnosis to patient death 

The logrank test63 was used to assess whether the survival curves of the carriers and non-carriers group 

significantly differ.  

 

As in the MDR1 expression analysis, balancing the TMB did not affect the outcome for either of the three 

variants.  

 

 

Empirical p-values 
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To infer the significance of the changes caused by T1236C, T2677C and T3435C in several of the 

analyses, they were compared to changes caused by random variants with similar characteristics. T2677G 

is a non-synonymous variant and therefore its effect was compared to other, randomly sampled, T->G 

non-synonymous variants in the MDR1 CDS. T1236C and T3435C are synonymous variants and 

therefore were both compared to randomly sampled synonymous T->C variants in the MDR1 CDS. Each 

original variant was compared to 100 randomized sequences.  

 

TCGA variants correlated with T1236C 
We investigated the associations between the occurrence of somatic variants T1236C, T2677G, and 

T3435C in the genomes of TCGA cancer patients, with regards to both MDR1 expression and survival 

outcomes. Significant correlations were found for T1236C. To investigate the possibility of a causal 

relationship, we further examined the influence of other variants highly correlated with T1236C on 

MDR1 expression and patient survival, aiming to eliminate their potential effects. Highly correlated 

variants were defined as variants that are detected in the genomes of more than 75% of T1236C positive 

patients. 

 

 

 

Results 
 

Diverse computational models were deployed aiming to assess whether T1236C, T2677G and T3435C 

could modify different phases of the gene expression process (figure S1). Additionally, genetic, clinical 

and expression data from The Cancer Genome Atlas (TCGA) were analyzed for this purpose. It is 

important to mind the difference between a germline variant, a genetic variation that is inherited and may 

be prevalent in the population, and a somatic variant which is a genetic variation that is acquired during 

one’s lifetime. Note that when analyzing TCGA data we evaluate the effect of somatic variants in 

cancerous tissues, whereas the computational models can be used to interpret the effects of both somatic 

and germline variants.  

  

T1236C potentially increases mRNA levels via an undetected mechanism. 
 

MDR1 abundance was compared between TCGA patients that acquired any of the three somatic variants 

and patients who did not (see Methods). Results, shown in figure 1, indicate marginal association between 

T1236C and MDR1 expression, with a two-fold increase (3.26±8.4 FPKM for the non-carriers and 

6.54±12.98 FPKM for the carriers, p = 0.07). This suggests that the presence of a “C” allele in position 

1236 is correlated with increased expression of MDR1. When examining the effects of other TCGA 

variants that are highly correlated with the presence of T1236C (see Methods) on MDR1 expression, the 

increase is much smaller (fold change ranges between 1.01 to 1.05. See figure S2), implying that these 

variants are not the cause for the detected two-fold increase. Additionally, all the variants that are highly 

correlated with T1236C were found to be in MUC6, a gene that is prevalently mutated in cancer patients 

and is not known to be related to MDR1 regulation. Differences in mRNA abundance between carriers of 

the haplotypes and non-carriers were found non-significant (0.11 < p < 0.24) (figure S3). However, this 

could be due to the loss of statistical power (20 patients carry the T1236C variants whereas only five  

carry all three variants).   

 

 
T1236C, T2677G and T3435C are far from the transcription start site (TSS) with a distance of 50.6, 59.5 

and 91.5 kilobases respectively. Additionally, they are not located in known enhancers. Therefore, they 
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are not expected to impact transcription. If T1236C does cause an increase in MDR1 expression it is more 

likely due to modifications in mRNA stability and degradation.  

 

We used Enformer52 to computationally assess whether the variants are likely to cause a change in MDR1 

expression. Enformer is a transformer-based neural network that is trained on thousands of epigenetic and 

transcriptional datasets to predict gene expression. It identifies complicated genomic patterns related to 

gene expression regulation such as TSSs, TFBSs, histone modifications sites and miRNA binding sites. 

With an input sequence of 393,216 nucleotides, it is currently the gene expression predictor with the 

widest receptive field. For each variant we ran Enformer four times – on the reference sequence and on 

the mutated sequence, for both strands (see Methods). The predicted change in MDR1 expression was not 

significant for any of the variants, including T1236C. It is possible that T1236C does not cause the 

detected increase in MDR1 expression but is simply correlated with it. Another possibility is that T1236C 

does affect MDR1 expression through a mechanism that is not detected by Enformer (e.g. mRNA 

stability). Perhaps, due to the variant’s large distance from the TSS64,65.  

 

T1236C, T2677G and T3435C do not seem to affect mRNA splicing 
 

SpliceAI53 was used to assess whether the variants change MDR1 splicing. Given a sequence, the output 

of spliceAI is a matrix of probabilities, indicating the probability of each position in the sequence to be a 

donor or acceptor site (see Methods). For each variant we ran SpliceAI twice – on the reference sequence 

and on the mutated sequence. Using the difference between probabilities we searched for canceled or 

newly generated donor and acceptors sites, as these events could lead to alternative splicing.  

None of the variants were found to cause significant changes.  

 

T1236C, T2677G and T3435C potentially increase p-gp levels through raising 

global translation rates. 

 
The rate of translation is a key component that shapes protein abundance. A change in the translation rate 

of a single codon can impact protein abundance if it is located in a translation bottleneck. The translation 

rate varies throughout the mRNA sequence and is dependent on multiple cellular conditions such as 

accessibility of the mRNA to the ribosome, codon usage bias and availability of tRNAs. In this section we 

examine several measures correlated with the translation rate and evaluate whether the three variants are 

expected to change it, locally or globally.  

 

T1236C, T2677G and T3435C all decrease mRNA folding strength. T1236C and T3435C 

potentially increase global translation rates due to this decrease.   

Minimum Free Energy (MFE) is a measure derived from predictions of the secondary structure of an 

mRNA sequence; a lower MFE value indicates a structure that is tightly packed and less accessible for 

translation. Therefore, lower MFE values are correlated with lower translation rates66. We computed MFE 

scores for the region surrounding each of the three variants (see Methods) and predicted the instigated 

change in MFE. The results (figure 2) demonstrate that all three variants cause an increase in MFE. This 

increase is significantly larger (p = 0.01, p = 0.02 and p = 0.04 for T1236C, T2677G and T3435C 

respectively) than the increase caused by random variants with similar characteristics in the MDR1 gene 

(see Methods). Moreover, positions 1236 and 3435 have relatively low MFE scores compared to all 

coding sequence (CDS) positions (19th and 12th percentile respectively) and therefore make constitute 

possible translation bottlenecks (figure S4), suggesting that T1236C and T3435C could increase global 

translation rates.  
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T1236C, T2677G and T3435C increase the optimality of codon usage. T1236C potentially increases 

global translation rates due to this increase.  

We compute Codon Adaptation Index (CAI) and Frequency Per 1000 codons (FPTC) to measure the 

change in codon usage bias (CUB) caused by the three variants, where CAI is computed for the 

synonymous variants and FPTC for the non-synonymous variant. Higher CUB suggests better adaptation 

of the sequence to the cellular translation machinery and resources and is correlated with faster 

translation67. Results (figure 3) indicate that all three variants cause a less prevalent codon to be replaced 

by a more prevalent codon, suggesting an increase in local translation rate. Moreover, T1236C substitutes 

the least prevalent codon of Glycine to the most common one. When comparing to random variants with 

similar characteristics in the MDR1 gene, the increase in CAI caused by T1236C is marginally significant 

(p = 0.08). Also, the CAI score of codon 412 (in which position 1236 resides) is in the 16th percentile of 

CAI scores compared to all the codons in the CDS, further strengthening the possibility that it is a 

translational bottleneck and that T1236C could increase global translation rate. 

 

 

 

T1236C and T2677G improve adaptation to the tRNA pool in tissues where MDR1 is expressed. 

T2677G potentially increases global translation rates due to the improvement in adaptation.  

The tRNA Adaptation Index (tAI) is a measure of translational efficiency which considers the 

intracellular concentration of tRNA molecules and the efficiencies of each codon–anticodon pairing68. 

Higher tAI scores are given to codons with better tRNA availability and are correlated with a higher 

translation rate69. The tRNA availability changes substantially between different tissues and organs. We 

examine the effect of the variants on the tAI profile in tissues where the MDR1 gene is typically 

expressed (see Methods) – liver, kidney, colon and brain tissues. Figure 4 demonstrates the effect of the 

variants on the tAI profile in the liver tissue, but it is similar for all other examined tissues (figures S5-

S7). The results of this analysis show that both T1236C and T2677G cause an increase in tAI. Moreover, 

T2677G replaces a codon with an extremely low tRNA availability to a codon with much higher tRNA 

availability, in all examined tissues. When comparing the tAI change caused by T2677G to changes 

caused by random variants with similar characteristics in the MDR1 gene, the former is found either 

significantly or marginally significantly larger in all relevant tissues (p <= 0.1). Moreover, the tAI score 

of the codon affected by T2677G is in the 1st-5th (depending on the tissue) percentile of the tAI scores of 

all the codons in the CDS,  strengthening the indication that the position could be a translation bottleneck 

and that T2667G could increase global translation speed.    

 

 

 

To conclude, the variants are in positions that are potential translation bottlenecks as they all obtain scores 

that are close to the minimal score of the entire CDS in at least one of the examined measures. All three 

variants lead to an increase of MFE and CUB scores, the increase in MFE being significantly larger than 

expected by chance. Additionally, T1236C and T2677G cause an increase in tAI scores in tissues where 

MDR1 is expressed, with T2677G leading to an extreme and significant tAI change. These results suggest 

that the variants likely increase local translation rates in their vicinity, and possibly increase global 

translation rates and protein levels.   

 

T3435C potentially modifies co-translational protein folding through raising 

local translation rate in a conserved slowly translated region. 
 

Co-translational folding is the mechanism in which the nascent protein begins to fold during its 

translation70. This process was shown to be governed by local translation rates59. To examine whether 

T1236C, T2677G and T3435C influence co-translational folding we deployed a model which detects 
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positions that have evolutionary conserved extreme MFE scores. The rationale being that MFE scores can 

be used as proxies for translation rates and that positions with evolutionary conserved extreme translation 

rates (especially slow rates) are largely conserved as such due to their importance for optimal co-

translational folding.  Therefore, it is possible that variants in these positions interfere with the co-

translational folding mechanism. In order to find positions in the CDS of MDR1 with conserved extreme 

MFE scores, the model utilizes orthologous MDR1 genes from hundreds of organisms, calculates their 

MFE profiles and compares them to the MFE profiles of permuted versions of these genes (see Methods).  

Model output (figure 5) indicates that T3435C is in a position with evolutionary conserved low MFE, 

surrounded by a stretch of positions with conserved low MFE (6 nucleotides upstream of T3435C and 17 

downstream of it). Combining the results of this model and the results of the previous analysis which 

suggests that T3435C causes a local increase in translation rate, we deduce that it is possible that T3435C 

causes an increase in translation rate in a region of conserved low translation rates, and thus modifies co-

translational folding. Both T1236C and T2677G were not found to be in a position of evolutionary 

conserved extreme MFE.  

 

 

 

T1236C potentially decreases patient survivability 
 

Clinical data of TCGA patients were used to assess the variants’ effect on survivability. Kaplan Meier 

curves62 were compared between patients that acquired one or more of the three variants in their 

cancerous tissue and those who did not (see Methods). Results (figure 6, figure S8) suggest that T1236C 

decreases survival probability (p = 0.02) whereas T2677G and T3435C do not. Other TCGA variants that 

are highly correlated with the presence of T1236C (see Methods) are not correlated with decreased 

survivability (figure S9), enhancing the likelihood that T1236C is the causal variant.   

 

Due to p-gp’s role in chemotherapy resistance, we hypothesized that the effect of T1236C on survivability 

would be even more significant in patients that have undergone chemotherapy treatments, but this signal 

was not detected (figure S10). However, it is possible that the signal is not detected due to a reduction of 

statistical power. To conclude, the computational results support a hypothesis that T1236C could decrease 

patient survivability.   

 

 

Discussion 

 
Since the discovery of MDR1 and its many variants, numerous in-vitro and in-vivo studies have 

attempted to understand their mechanisms of action and contribution to chemotherapy resistance and 

cancer prognosis. Due to contradictory findings and the lack of success of MDR1 inhibitors in clinical 

trials71, research of MDR1 and its variants has gradually diminished. However, the current surge in 

genomic data and evolving technology enables the examination of this case from a new, data-driven, 

perspective.  

 

Our analyses aid to paint a clearer image, providing evidence of multiple accumulating effects. T1236C 

seems to significantly increase MDR1 expression. Additionally, it causes an increase in CAI, tAI and 

MFE, all positively correlated with translation rates. Because it is in a region of low MFE and CAI, this 

increase could lead to a rise in global translation rates and p-gp over-expression. Moreover, T1236C was 

found to be correlative with worse patient prognosis, which can be explained by overexpression of the 

protein. T2677G Also causes an increase in measures correlated in translation rates and most significantly 

effects tAI. It causes a codon that is extremely rare in tissues where MDR1 is expressed to be replaced 
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with a common codon. T3435C also increases MFE and CAI in a region of very low MFE. Additionally, 

it possibly modifies p-gp structure through changing local translation rate. Altogether, when exploring the 

mechanism of action of T1236C, T2677G and T3435C, it is much more likely that they cause an increase 

in p-gp expression rather than a decrease, providing an advantage for the cancer cell.  

 

Though the findings of previous research on the matter are inconsistent, our analyses support the 

conclusions of several major studies. Kimchey-Zarfaty at el. demonstrated that T3435C, combined with 

either T1236C or T2677C, changes MDR1 substrate specificity24. They hypothesized that T3435C 

modifies co-translational folding (and therefore protein conformation) because it changes the local 

translation rate in a slowly translated region, important for correct co-translational folding. They 

supported their hypothesis by identifying a cluster of non-prevalent codons in the vicinity of T3435C (as 

seen in sub-figure 3c). Our model, which utilizes MFE and assesses which positions are evolutionarily 

conserved for slow or fast translation, indeed detects 3435 in a region that is likely conserved for slow 

translation, supporting their findings. Moreover, we demonstrated that T3435C increases both MFE and 

CAI scores, suggesting that it could increase the local translation rate in this slowly translated region and 

thus modify co-translational folding. Kimchey-Zarfaty et al. also examined mRNA expression, protein 

expression and aberrant splicing events in wild-type and polymorphic p-gp and report no aberrant splicing 

events. To the best of our knowledge, no prior study has suggested that T1236C, T2677G or T3435C 

cause alternative splicing. Our results, obtained using SpliceAI53, support the consensus. As for mRNA 

and protein expression, Kimchey-Zarfaty et al. report equivalent levels for wild type and polymorphic 

variants. In fact, most in-vitro studies do not report a significant change, while some in-vivo studies do. 

This could be due to a complicated mechanism of action, that cannot be detected out of the natural 

cellular environment. Nevertheless, reports of the in-vivo studies are also controversial, perhaps due to 

the tremendous variability in MDR1 expression between patients, small cohorts and difference in patient 

ethnicities, genetic backgrounds and tumor types. Combining the results of our analyses, we assess that if 

the variants do modify mRNA and protein levels, they should cause an increase rather than a decrease. In 

another comprehensive study, Johnatty SE et al.72 examine 4,616 ovarian cancer patients from the 

Ovarian Cancer Association Consortium (OVAC) and TCGA, that have received chemotherapy 

treatments. They found a marginal association of T1236C with worse overall survival and did not find 

association between T2677G or T3435C and survival parameters. These findings are supported by our 

pan-cancer survival analysis on TCGA data, shown in figure 6.   

 

When reviewing the analyses described in this study, we must remember the limitations of in-silico 

models as well; It is challenging to create models that capture all relevant processes and interactions in 

highly complex biological mechanisms such as gene expression regulation.  Additionally, some of the 

models were trained on data obtained from wet lab experiments and thus are also subjected to noise. 

Nonetheless, computational models have many advantages; they are often less expensive, faster and can 

incorporate larger quantities of data than in-vitro experiments. We believe the incorporation of 

computational, data-driven models is both essential and highly beneficial when analyzing the complex 

effects of variants on gene expression regulation, generally and specifically for the case of MDR1.  

 

 

Data Availability 
The code is available at https://github.com/Talgutman/MDR1_variants 
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Figures Captions 

 

 
Figure 1: MDR1 expression levels of carriers vs. non-carriers of the three variants in the TCGA 

database.  a: T1236C ; b: T2677G ; c: T3435C .Comparison of the mean MDR1 expression of the 

carriers group (vertical line) to the mean MDR1 expression levels of 100,000 groups of randomly chosen 

non-carriers (distribution). Size of the carriers’ group and non-carriers’ groups are the same. 
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Figure 2: Effect of the three variants on MFE in their vicinity. a: T1236C ; b: T2677G ; c: T3435C . x 

axis: the nucleotide position in the coding sequence (CDS); y axis:  MFE score. The vertical line 

indicates the position of the variant, and the curves depict the MFE scores of the nucleotides proximal to 

the position of the variant, with (pink) or without it (green). 
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Figure 3: Effect of the three variants on CUB. a: T1236C ; b: T2677G ; c: T3435C . x axis: the amino-

acid position in the protein sequence; y axis: the CUB score (CAI/FPTC). The vertical line indicates the 

position of the variant. Black dots indicate the CUB scores in the vicinity of the variant and the dots on 

the vertical line indicate the CUB score of the mutated position, before (green) and after (pink). 
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Figure 4: Effect of the three variants on tAI. a: T1236C ; b: T2677G ; c: T3435C .x axis: the amino-

acid position in the protein sequence; y axis: the tAI score. The vertical line indicates the position of the 

variant. Black dots indicate the tAI scores in the vicinity of the variant and the dots on the vertical line 

indicate the tAI score of the mutated position, before (green) and after (pink). 
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Figure 5: Regions of evolutionary conserved low or high MFE in the vicinity of the three variants. a: 

T1236C ; b: T2677G ; c: T3435C . x axis: the nucleotide position on the CDS of the MDR1 gene. y axis: 

the MFE score, which is used by this model as the proxy for translation rate. The purple curve indicates 

the mean MFE score of the true MDR1 CDS across 383 orthologs. The orange and brown curves indicate 

the mean MFE score of a permuted MDR1 CDS, using two different kinds of permutations – vertical 

permutations (VP) and horizontal permutations (HP). Green dots are nucleotide positions for which the 

MFE of the true MDR1 was significantly higher than the MFE of both permutated versions, across 

organisms. Red dots are nucleotide positions for which the MFE of the true MDR1 was significantly 

lower than the MFE of both randomized versions, across organisms. 
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Figure 6: Effect of the three variants on patient survivability. a: T1236C; b:  T2677G; c: T3435C.  

Comparison of the Kaplan-Meier survival curves of the carriers’ group and the non-carriers group of the 

three variants. 
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