Effect of post-activation potentiation on the sports 1

performance of athletes: a systematic review 2

- 3 Jiazhe Li¹, Kim Goek Soh^{1*}, Su Peng Loh², Shengyao Luo¹, Marrium Bashir¹, Xiao
- 4 Yu^1
- 5 ¹Department of Sports Studies, Faculty of Educational Studies, Universiti Putra

6 Malaysia, Serdang, Malaysia, ²Department of Nutrition, Faculty of Medicine and

7 Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia

* Correspondence: 8

- 9 **Kim Goek Soh**
- 10 kims@upm.edu.my

Keywords: post-activation potentiation, sports performance, athletes, sport, power 11

12 Background: This study aimed to investigate the effects of post-activation potentiation (PAP) on sport performance. 13

14

15 Methods: The data used in this study were reported according to the Preferred 16 Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. 17 Researchers extracted relevant randomized controlled trials from the available literature 18 using prominent scientific indexing databases such as EBSCOhost, PubMed, Scopus, 19 Web of Science, as well as Google Scholar. Ten of the 125 studies that met the inclusion

criteria were included. The overall quality of each study was determined using the
PEDro scale. Ten studies had scores ranging from 3 to 5.

22

Results: In PAP interventions, power (n = 4) was the primary aspect of sports
performance, followed by endurance (n = 1), speed (n = 2), and jumping ability (n = 2).
Meanwhile, PAP significantly affects the power, endurance, speed, and jumping
abilities of athletes in basketball, volleyball, track and field, and soccer.

27

28 **Conclusion:** Compared with conventional training, PAP is a relatively novel dynamic 29 warm-up routine that can greatly enhance the sports performance of athletes in terms of 30 endurance, power, speed, and jumping ability. As a phenomenon of rapid increase in 31 muscle strength and power caused by high-intensity warm-up activities, PAP can help 32 athletes quickly adjust the physical condition to the best state in the pre-match warm-33 up. However, since some study findings did not reflect the effect of PAP on the sports 34 performance of athletes, more high-quality randomized controlled trials are required to 35 further prove the effect of PAP. Additionally, the existing evidence does not consider 36 the effect of PAP on agility and flexibility performance. In formulating the PAP 37 induction program, it is also necessary to consider the impact of the gender and age of 38 the inducer, exercise level, pre-stimulation load, and interval time on PAP. 39 Systematic Review Registration: [https://inplasy.com/], identifier: [INPLASY202330120].

40

41 1 Introduction

Tian et al. referred to the abilities of athletes in competitions or training sports performances¹. This includes the physical fitness, technical and tactical abilities, and mentality of athletes. Optimal physical fitness is the key to improving technical and tactical levels and the requirements of athletes in physical training². Zhang reported that the quality of physical fitness directly determines sports performance, therefore, enhancing physical fitness is essential for enhanced sports performance by athletes³.

Physical fitness refers to the essential abilities comprehensively reflected by the 48 49 functionality of different organs in muscle activity, including five aspects of quality 50 such as speed, strength, endurance, agility, and flexibility⁴. Generally speaking, power 51 can reflect the sports performance of athletes^{5–7}, and jumping ability is not only usually 52 uesd to measure athlete's power⁸, but also the most reliable and valid way to evaluate 53 the power of athlete's lower limb⁹. Excellent power of athlete's lower limbs is crucial 54 to the result of a basketball game as it helps the athletes achieve strong jumping ability 55 and acceleration during the game¹⁰.

56 There are many ways to enhance sports performance, such as plyometric training, core 57 training and integrative neuromuscular training, etc. PAP is one of the most effective. Post-activation potentiation (PAP) is a phenomenon where voluntary maximal muscular 58 action induces an acute enhancement of previous exercise^{11,12}. This activation enhances 59 60 muscle contraction and potentially increases the performance of solid muscles, 61 particularly in explosion-led sports such as running, jumping, and shooting¹³. The 62 physiological mechanism underlying PAP remains unclear. Nevertheless, previous 63 studies have suggested that PAP has three physiological mechanisms: myosin regulating

the enhanced phosphorylation of light chain proteins^{14,15}, the nervous system promoting
higher-order exercise by increasing unit recruitment, and alterations in muscle fiber
pinnate angles^{11,16,17}.

The results show that improved phosphorylation of light chain proteins after maximal (and even submaximal) stimulation results in improved muscle contraction ability ^{18,19}. This mechanism regulating light chain phosphorylation can make myosin-actin interactions more sensitive to calcium ions. The myosin light-chain-activating enzyme produces more adenosine triphosphate in the myosin complex. The frequency of myosin cross-bridge oscillations then increases; thus, pre-stimulation increases the cross-bridge power output, which improves exercise performance¹⁴.

74 Another possible mechanism for the development of PAP is the increased involvement of the nervous system in skeletal muscle activity, which increases the degree of 75 76 synchronous motor fiber contraction and the number of higher-order motor units involved in the movement^{16,20}. Enhanced neural activity may result from increased 77 78 motor-unit recruitment, improved motor-unit synchronization, reduced synaptic inhibition, or increased central nerve impulse inputs^{21,22}. Fewer motor neurons control 79 80 slow-twitch muscle fibers during pre-stimulation and low-load stimulation exercises. 81 As the pre-stimulus load increases, higher-order motor units (fast muscles) controlled by large motor neurons are recruited. 82

Tillin and Bishop suggested that recruiting many higher-order motor units and acting on
the nervous system may be one of the mechanisms of post-activation enhancement¹¹.

85 However, changes in the pinnate angle of the muscle fibers may also contribute to the 86 promotion of PAP. Folland and Williams showed that the pinnate angle affects the force transmitted by the muscle to the tendons and bones²³. Because a smaller pinnate angle 87 88 decreases force transmission, muscle contraction torque increases as the pinnate angle 89 decreases. Mahlfeld et al. reported that static maximal voluntary contraction, including 90 stimulation, can promote pinnate angle reduction²⁴. Kumagai et al. suggested that 91 narrowing the feature angle could enhance sprint speeds in athletes²⁵. However, a previous study showed that a larger feature angle can improve power performance²⁶. 92 93 Benefits of PAP stimulation, such as enhancing sprint performance, jumping ability, and other strength-related movements, have been reported by several studies²⁷⁻³⁴. 94 95 Therefore, for a particular individual, the optimal duration and intensity of PAP 96 stimulation should be considered, combined with subsequent rest periods, because 97 fatigue may outweigh the potential benefits if not properly prescribed. 98 PAP is affected by numerous factors during the induction process, such as the pre-99 stimulation approach and load, interval time, participant characteristics, and evaluation 100 techniques^{35–38}. Currently, there are many studies on PAP and its influencing factors, 101 but some studies remain controversial regarding whether PAP can effectively improve 102 the sports performances of athletes. Additionally, there is still a need for a clear 103 conclusion on how to effectively induce and maximize the effects of PAP. Liang et al. 104 suggested that accurate control of the interval time is the key to achieving the best 105 effect³⁹. The window time occurs when PAP is greater than the fatigue effect. Motor 106 performance improvement caused by PAP appears during two window-opening periods

107 during induction exercises. At the beginning of the induction exercise, there is usually 108 a window-opening period (first); however, the enhancement effect of PAP is not apparent due to the current small amount of exercise and intensity, and the duration of 109 110 PAP is relatively short. As the exercise load increases, the fatigue effect gradually 111 increases, which can reduce sports performance when explosive activity is performed. 112 A few minutes after the end of the induction exercise, as the fatigue effect gradually 113 subsides, PAP becomes more significant than the fatigue effect. The second window-114 opening period is when sports performance improves most significantly. 115 As shown in Fig 1, the enhancement effect of PAP in the second window-opening period 116 is more evident than that in the first, and the second window also lasts longer than the 117 first window¹¹. Tillin and Bishop suggested that PAP was the "potential difference" 118 between the enhancement and fatigue effects after the induced exercise stimulated the 119 muscle¹¹. Only when the PAP is higher than the fatigue effect will the muscle 120 contraction traces significantly improve the subsequent performances of athletes. The 121 timing, duration, and intensity of PAP depend on the balance between enhancement and fatigue effects, which affects a series of factors. Therefore, this study adopted a 122 123 systematic review method to analyze experimental research reports on the impact of 124 PAP on the sports performance of professional or amateur athletes. This study also aims 125 to test the exact effect of PAP on the different performance indicators of the athletes' 126 sports performance and provide a reference for the training practices of athletes in 127 different sports.

128

- 129 Fig 1. Relationship of post-activation potentiation with fatigue¹¹. Descriptive text : Fig1 provides a model that
- 130 introduces the hypothesized relationship between PAP and fatigue, with PAP dominating more than fatigue when the pre-
- 131 activation(condition) intensity is low, followed by a rapid increase in muscle movement during subsequent reinforcemen (post/pre)
- 132 (window 1). As the pre-activation intensity increases, fatigue becomes dominant, negatively affecting subsequent sports performance.
- 133 Following the pre-activation, fatigue dissipates at a faster rate than PAP, and a potentiation of subsequent enhanced performance can
- be realized at some point during the recovery phase (window 2).

135

136 2 Materials and Methods

137 **2.1 Protocol and Registration**

138 TABLE 1 | PICOS Eligibility criteria.

PICOS	Detailed Information
Population	Healthy players
Intervention	Post-activation potentiation
Comparison	Single-group trials, Two groups, and Three groups
Outcome	Include post-activation potentiation with various kinds of sports performance among players
Study Design	Single-group Trials or Randomized Controlled Trials

139

This study used the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) framework to gather and assess data. It was registered in
INPLASY (registration number: INPLASY202330120, DOI number: 10.37766/inplasy
2023.3. 0120)⁴⁰.

144 **2.2 Search Strategy**

145 Popular scientific databases were used to search for relevant literature, including 146 Ebscohost, PubMed, Scopus, Web of Sciences, as well as Google Scholar, up to October 147 10, 2022. For each independent search engine, the title and abstract were used as 148 strategic search queries. The main keywords used for collecting relevant research works 149 were: ("PAP" OR "Post-activation potentiation" OR "Pre-activation" OR "Pre-150 conditioning") AND ("Sports Performance" OR "Athletic Performance" OR "Power" OR "Endurance" OR "Jumping Ability" OR "Agility" OR "Speed" OR "Flexibility") 151 AND ("Athlete*" OR "Player*" OR "Sportsman*" OR "Sportswoman*" OR 152 "Sportsperson*" OR "Jock*"). 153

154 **2.3 Eligibility Criteria**

The population (P), intervention (I), comparison (C), outcome (O), and study design (S) 155 156 (PICOS) model was used in the literature. Each PICOS factor was used as an inclusion 157 criterion for the retrieved publications. We included studies that met the following 158 inclusion criteria: (P) The study population consisted of professionally trained and 159 untrained healthy personnel, regardless of gender or age; (I) PAP should be isolated and 160 expressly discussed, with PAP in the experimental group and other training methods 161 compared to no training in the control group; (C) The comparisons in this study involved 162 both single- and multiple-group trials; (O) The findings of this study revealed at least 163 one post-activation performance enhancement effect in athletes; and (S) All 164 experimental designs included in the literature were randomized controlled trials.

165 **2.4 Study Selection**

166 Two authors individually selected the studies that met the inclusion criteria. The 167 abstracts and titles of studies were assessed to identify those that could be incorporated 168 into the study. In response to a debate between the two authors regarding the selection 169 of a paper, an additional author was requested to assess the entire work before arriving 170 at a definitive conclusion.

171 **2.5 Data Extraction and Quality Assessment**

172 After the screening, we acquired the following crucial data from several eligible studies:

(1) author name and publication year; (2) demographic characteristics such as the
number, type, gender, and age of the participants; (3) intervention characteristics such
as the type and measurement indicators, interval time, and duration; and (4) study
results.

177 The PEDro scale is a valid indicator of the methodological quality of systematic reviews

178 owing to its high validity and reliability⁴¹. There were 11 items on the scale, with scores

179 ranging from 0 to 10. Two independent raters scored the 11 items as "yes" (1 point) or

180 "no" (0 point). A third rater addressed any discrepancies in the rating procedure.

181 However, eligibility criteria were not factored into the overall external validity scores.

182 The total PEDro score ranged from 0 to 10. The higher the grade, the higher the quality

183 of the method. The quality of the method is proportional to its PEDro score. Studies

- 184 rated 8 to 10 were regarded as methodologically superior. Studies rated 5 to 7 were of
- 185 high quality, those rated 3 to 4 were of average quality, and those ranked below 3 were

- 186 of poor quality⁴². Overall, the scientific evidence was evaluated based on three levels:
- 187 quantity, methodological quality, and consistency of research findings.
- 188 Generally, substantial evidence provides consistent information regarding the number
- and results of multiple studies. Moderate evidence when a single study exists or when
- 190 information from multiple studies is inconsistent. There is no evidence when there are
- 191 no case-control studies available.

192

193 **3 Results**

194 **3.1 Study Selection**

195 Fig 2 illustrates the literature filtering technique. After the initial evaluation, 120 studies 196 were retrieved. This number was determined after Endnote software deleted duplicate 197 studies, followed by a second round of removal that included three non-full-text papers, 198 two non-English studies, and nine non-journal studies. In the third screening phase, 106 full-text studies were evaluated for eligibility. Of these, 89 were excluded because they 199 200 did not satisfy the inclusion criteria for the randomized controlled trial; four were 201 excluded because they were irrelevant to the topic; and three were discarded. The 202 qualitative analysis examined ten relevant publications that met the inclusion criteria. 203 Fig 2. The search, screening and selection processes for suitable studies-based on 204 PRISMA⁴³. Descriptive text: Fig 2 depicts the literature review process.

205

206 3.2 Study Quality Assessment

207	The PEDro scale scores for each study are presented in Table 2. All study data were
208	evaluated on a 3- to 5-point PEDro scale, penalizing for assignment concealment,
209	blinding the evaluator, participants, therapists, and intent-to-analyze criteria. The
210	intervention in this study involved resistance training, which can be challenging for
211	blind participants, evaluators, and clinicians and carries the risk of sports injuries and
212	professional misconduct. However, our study ensured that all participants were treated
213	equally. Two studies with scores of less than four were disqualified ^{44,45} .
214	
215	
216	
017	

- 217
- 218

Study	Eligibility Criteria	Random Allocation	Allocation Concealment	Baseline Comparability	Blind Participants	Blind Therapist	Blind Assessor	Follow- Up	Intention to Treat Analysis	Between Group Comparisons	Point Measure and Variability	Total PEDro Score
Marco et al. (2019)	0	0	0	0	0	0	0	1	0	1	1	3
Lamberto et al. (2022)	1	1	0	1	0	0	0	1	0	1	1	5
Jonathan et al. (2019)	0	0	0	1	0	0	0	1	0	1	1	4
Danny et al. (2017)	0	0	0	0	0	0	0	1	0	1	1	3
Mariola et al. (2020)	0	0	0	1	0	0	0	1	0	1	1	4
Joseph et al. (2010)	0	0	0	1	0	0	0	1	0	1	1	4
Matthew et al. (2010)	1	1	0	1	0	0	0	1	0	1	1	5
Jameson et al. (2014)	1	1	0	1	0	0	0	1	0	1	1	5
Mauro et al. (2018)	1	0	0	1	0	0	0	1	0	1	1	4
Ceith et al. (2017)	1	1	0	0	0	0	0	1	0	1	1	4

219 TABLE 2 | Summary of methodological quality assessment scores.

	Population			Inter	vention			
Study	N	Type of athletes	Gender	Age (y)	Туре	Skill measured index	Interval Time	Main outcome
Jonathan et al. (2019)	12	Endurance-trained athletes	Male	28.3 ±1.37	EG: Band-resisted squat jumps or Running- specific warm-up (control condition)	ITT, EMG, Evoked contractile properties, Potentiated Twitch Force Properties, DJ, HR, RPE, MVIC plantar flexor force	Omin	ITT↔, EMG↔, Evoked contractile properties↔, MVIC plantar flexor force↔, DJ↔, RPE↔, HR↑
Mariola et al. (2020)	16	Basketball player	-	23.6 ± 4.4	EG: 5% of body mass- resisted or assisted conditioning	5m slide-step movement performance	6min	5m slide-step movement performance↑
Matthew et al. (2010)	16	Volleyball athletes	Mixed	Female: 19.14 ± 0.38 Male: 20.86 ± 1.77	EG1~4: Back squat or hang clean	VJ GRF	4 and 5 min	VJ↑, GRF↔
Joseph et al. (2011)	10	Rugby players	Male	20.4 ±0.8	EG: Isometric (ISO), concentric (CON), eccentric (ECC), or concentric–eccentric (DYN) conditioning contractions	PP PF Dmax RFD	12min	PP↔, PF↔, Dmax↔, RFD↔
Lamberto et al. (2022)	11	volleyball players	-	22.6 ±3.5	EG: Back squat CG: Routine warm-up	CMJ height	8min	CMJ height↑

222 TABLE 3 | Population, Intervention and Main outcome.

Ceith et al. (2017)	10	Track and field Athletes	Male	19.3 ±1.25	EG: Plyometric exercise	20m sprint 40m sprint	5min	20m sprint↑, 40m sprint↑
Jameson et al. (2014)	22	Soccer players	-	23 ±4.5	EG: Squat CG: Routine warm-	CMJ PP Jump height	4min	CMJ PP \leftrightarrow , Jump height \leftrightarrow
Mauro et al. (2013)	12	Soccer players	Male	23 ±5	EG: plyometric and sled towing exercise	CMJ height	2min	CMJ height ↑

↑, significant within-group improvement from pretest to post-test; ↔, non-significant within-group change from pretest to post-test; M, Male; yr, year; Mixed, Male and Female; NR, not reported; CG, control group; EG, experimental group; CMJ, vertical counter movement jump; VJ, vertical jump; Dmax, maximum distance; RFD, rate of force development; PP, peak power; PF, peak force; RPE, Rating of perceived exertion; HR, Heart rate; GRF, Ground reaction force; ITT, interpolated twitch technique; EMG, Electromyograph; Evoked contractile properties, Potentiated Twitch Force Properties, MVIC, maximum voluntary isometric contractions; plantar flexor force, DJ, 30-cm Drop jump; EOL, eccentric overload; ISO, Isometric; CO, concentric; ECC, eccentric; DYN, concentric–eccentric

224 **3.3 Participant Characteristics**

- Table 3 provides the details of the participants in the studies that met the inclusion criteria.
- Classification of athletes. Among the 8 studies, two were on soccer
 players^{46,47}; two on volleyball players^{48,49}; one on basketball players⁵⁰; and
 the remaining five on rugby⁵¹, track and field⁵² and endurance-trained
 athletes⁵³.
- 231 2. Gender, Number, and Age. The study included a total of 109 participants,
 232 including 52 males and eight females, with gender details not provided for
 233 the remaining 49 participants^{46,48,50}. The studies reported the age range of the
 234 participants as being between 16 and 29 years old.
- **3.4 Intervention Characteristics**

The eight included intervention characteristics were reported based on severalproperties:

Mode of pre-stimulus. Three studies selected back squats^{46,48,49}; one study
 used a squatted jump⁵³; and another study used a bench press as pre-stimulus
 modes⁵¹. The plate jump method was used for pre-stimulation⁵². The pre stimulus mode chosen by Mauro et al. was more complicated, combining
 plyometric exercises and sled towing, whereas Mariola et al. adopted a

consistent pre-stimulus mode with the test method^{47,50}.

244	2.	Pre-stimulus intensity. Lamberto et al. chose a high-intensity load of three
245		sets of 90% repetition maximum (RM) (1RM), and two studies chose a
246		relevant load intensity: four sets of 5RM, three sets of 3RM, and one set of
247		3RM ^{48,51,53} . Matthews et al. reported a mixture of moderate- and maximum-
248		intensity stimulations consisting of five sets of 50% 5RM and five sets of
249		80% 5RM back squats ⁴⁹ . Additionally, two studies reported stimulation with
250		lower loads: one set of 3RM and a mass of 11.2 kilograms, respectively ^{46,52} .
251		Another study reported that the pre-stimulation modality is relatively
252		complicated. The conditioning stimulus comprised two sets of 15 ankle
253		hops, three sets of five hurdle hops, and three sets of 20-meter sprints and
254		sled towing, amounting to 45 jumps and 60 meters of sprinting with an
255		external load ⁴⁷ .
256	3.	Interval time. These studies tested the measures every 2 minutes, 4 minutes,

257

258

4 and 5 minutes and 5 minutes, 6 minute, 8 minutes, 12 minutes after prestimulation. Notably, only one study reported no rest interval $(0 \text{ minute})^{46-53}$.

259

3.5 Outcome

The results of this study were grouped according to the impact of PAP on athletic performance. The authors of this study independently categorized studies based on other research areas. The staging was passed, and discussions between the authors were resolved until a consensus was reached through consultation.

265 **3.5.1 Effect of PAP on Power**

Among the eight studies included in this review, six reported^{46–49,51,53}. The aspects 266 valued and assessment tools used were the reactive strength index test, power 267 268 performance test (peak power $[P_{peak}]$, maximum distance $[D_{max}]$, peak force $[F_{peak}]$, and 269 rate of force development [RFD]), and countermovement jump test (jump height, ground reaction force [GRF], and P_{peak})^{46,49,51,53}. The participants included 12 healthy 270 271 endurance-trained athletes, ten male competitive rugby athletes, 16 mixed-gender volleyball athletes, 11national Superliga-2 volleyball players, 12 professional male 272 soccer players, and 22 senior professional soccer players^{46–49,51,53}. 273

On the one hand, two studies examined the effect of post-activation potentiation on power among 27 volleyball athletes^{48,49}. The result of the first group investigated the condition that produced the greatest increase in vertical jump height, which resulted in an average increase of 5.7% (2.72 ± 1.21 cm; p <0.001), but there was no significant difference in peak GRF (p >0.05)⁴⁹. Meanwhile, another study revealed that there was a significant improvement among the control group and experimental group from PAP (35.40 ± 3.69 vs. 29.61 ± 4.10 cm; p <0.05), pre-Match (37.10 ± 4.09 vs. 31.38 ± 3.99

281 cm; p <0.05), Set 1 (38.84 \pm 4.74 vs. 31.22 \pm 2.61 cm; p <0.05), Set 2 (41.37 \pm 4.91 vs.

 32.75 ± 4.47 cm; p <0.05). Additionally, a significant improvement was observed in the

283 countermovement jump test in the experimental group between baseline (pre-PAPE)

and all the following tests: post-PAPE (+1.3 cm), pre-match (+3.0 cm), Set 1 (+4.8 cm),

285 Set 2 (+7.3 cm), Set 3 (+5.1 cm), Set 4 (+3.6 cm), and Set 5 (+4.0 cm). The jump height

in the control group was lower than that in the experimental group⁴⁸.

287 On the other hand, two studies were related to soccer power performance, involving 34 professional soccer players^{46,47}. The first group of studies investigated the impact of 288 289 PAP on power by using a countermovement jump test on 12 professional male soccer 290 players⁴⁷. The authors concluded that PAP could significantly improve 291 countermovement jump height in soccer athletes at T1, T3, and T5 (expressed in minutes) under caffeine conditions (5.07%, 5.75%, and 5.40% increase, respectively; p 292 293 < 0.01) compared to baseline.

294 In addition, one study found no statistically significant differences in the 295 countermovement leap test (P_{neak} , p >0.05 and jump height, p >0.05)⁴⁶. Meanwhile, in a 296 different study, PAP produced by isometric (ISO) training was substantially greater (587 297 \pm 116 and 605 \pm 126 W for pre- and post-ballistic bench press throw, respectively; p 298 >0.05). And there was no significant differences in P_{peak} for concentric (CON), eccentric(ECC), and concentric-eccentric(DYN)(p>0.05), and there were no significant 299 300 differences existed in F_{peak} , D_{max} , and RFD (p >0.05) for ISO, CON, ECC, and DYN. 301 And no significant improvement in EMG were found between pre- and post-BBPT for

all of the pre-activation mode⁵¹. In addition, One study revealed that PAP had a positive effect on the reactive strength index (p = 0.035; 3.6%) compared with control conditioning⁵³.

305

306 **3.5.2 Effect of PAP on Speed**

307 Speed was considered in two of the eight studies included in this review^{50,52}. The 308 measurement tools were a 5-meter slide-step movement test and 20- and 40-meter sprint 309 tests. The participants included 16 basketball players and ten male track and field 310 athletes ^{50,52}. One study investigated two exercise protocols, namely, assisted and resisted conditioning ability (CA), each comprising four sets of 10-meter slide-step 311 312 movement with a body mass external load of 5% and one-minute rest intervals. The 313 result indicated a statistically significant difference between baseline and post-assisted 314 post-activation performance enhancement for the experiment group in the 5-meter slide-315 step movement time $(3.09 \pm 0.16 \text{ vs}, 3.24 \pm 0.15 \text{ s}; p < 0.05)$. However, the other exercise 316 protocol reported no significant difference between baseline and post-intervention after 317 the resistance CA $(3.23 \pm 0.15 \text{ vs.} 3.17 \pm 0.13 \text{ s}; p = 0.230)^{50}$. Additionally, Ceith et al. 318 observed a decrease in sprint time when PAP in the form of a plyometric was performed 319 during warm-up for both 20-meter sprints (3.134 vs. 3.172 s; p <0.05) and 40-meter sprints (5.337 vs. 5.405 s; p < 0.01)⁵². 320

321 **3.5.3 Effect of PAP on Endurance**

322	Only one study included in this systematic review investigated the relationship between
323	PAP and endurance performance ⁵³ . The time it took 12 endurance-trained male athletes
324	$(28.33 \pm 1.37 \text{ years})$ to complete the time-trial test determined their endurance. Jonathan
325	et al. reported that PAP stimulus decreased the time required to run by 3.6% (p = 0.07)
326	and 8% (p = 0.014) over a distance of one kilometer ⁵³ .
327	

328 4 Discussion

329 4.1 Effect of PAP on Power

Power determines sports performance⁵⁴. Meanwhile, in studies of power performance, 330 331 jumping performance is a measure method that frequently is used⁵⁵. Studies have shown 332 that PAP can be generated through induction training, thereby improving performance 333 in explosive sports. Based on the six studies that analyzed the effectiveness of PAP in 334 improving the power performance of athletes, we draw firm conclusions. Three studies indicated that PAP can improve the power performance of athletes, which is consistent 335 with the findings of Gourgoulis et al. and Webber et al.^{47,48,53,56,57}. However, further 336 studies are required to support the idea that PAP can improve the power performance of 337 athletes. 338

339	Joseph et al. proposed several power evaluation methods, such as P_{peak} , F_{peak} , D_{max} , and
340	RFD ⁵¹ . Several different PAP activation methods such as ISO, CON, ECC, or DYN
341	conditioning contractions were used, in which the effects of PAP produced by ISO
342	conditioning contractions showed a significant increase in P_{peak} , but no significant
343	differences in P_{peak} were found for CON, ECC, or DYN conditioning contractions. F_{peak} ,
344	$D_{\text{max}},$ and RFD did not differ significantly among the ISO, CON, ECC, and DYN
345	groups. This result may be primarily attributable to the time interval and pre-stimulus
346	interaction of PAP ^{58,59} . Matthews et al. found a significant increase in vertical leap
347	height but no difference in peak GRF ⁴⁹ . This result may be due to the various training
348	experiences and pre-stimulation load intensities of the participants ^{60,61} .

349 In addition, Jameson et al. reported that no effect was observed for P_{peak} or jump 350 height during experimental group trials⁴⁶. Baechle and Earle reported that this was likely 351 due to the determination by 3RM of the participants and testing within the same day, 352 which resulted in fatigue of the central nervous system⁶². At the same time, this result 353 is similar to that of Khamoui et al., who suggested that PAP did not significantly 354 improve sports performance⁶³. The reason for this may be that when the activation 355 method is inconsistent with the specific movement of the athlete, it destroys the neuromuscular contraction memory of the particular exercise in the previous session, 356 which adversely affects subsequent sports performance and fails to activate PAP⁶³. 357

358

359 4.2 Effect of PAP on Speed

360	Of the eight studies included in this review, two involved speed tests, and both
361	consistently suggest that PAP can improve the speed performance of athletes ^{50,52} .
362	Studies have also shown that PAP can improve rapid skeletal muscle strength, and
363	increased neural activation of motor units during the potentiation phase may be the
364	primary reason for the enhanced speed performance, which is consistent with the
365	findings of Healy and Comyns and Lesinski et al. ^{64,65} . Notably, Mariola et al. reported
366	a new finding that only 5% of body mass-assisted CA significantly enhanced the overall
367	performance of the slide-step movement ⁵⁰ . However, some previous studies, including
368	Comyns et al., Crewther et al., and McBride et al., concluded that lower stimulus loads
369	were not effective in increasing sprint speed ^{66–68} . In contrast, some other studies have
370	reported that light-resistance-assisted conditioning can effectively elicit potentiation ^{69–}
371	71_

In response to this change, Ceith et al. suggested that low-intensity pre-stimulation would produce sufficient central nervous system stimulation without leading to a high degree of fatigue⁵². PAP is a personalized and complex phenomenon. Although two studies have shown that PAP can improve speed performance in athletes, due to the absence of physiological analysis, the cause of these changes has yet to be identified or explained. PAP can be affected by the gender, age, muscle fiber type, and training experience of the participants^{72–74}. Moreover, the electromyograph of stimulated

muscles has not been studied with kinematic and kinetic data analysis. The assessment of performance changes based on a single resistive value makes it difficult to draw definitive conclusions. Therefore, when formulating a PAP plan, individual differences among athletes and the diversity of various movements should be considered. The activation method and load intensity should be arranged according to the characteristics of the athletes and special projects to minimize the factors that may negatively affect PAP.

386 **4.3 Effect of PAP on Endurance**

According to a study by Jonathan et al., PAP may help endurance athletes improve their endurance performance and neuromuscular properties during long-distance running, which is supported by Silva et al. and Feros et al.^{53,75,76}. Both studies confirmed that PAP significantly affected endurance performance. Several studies have shown that the skeletal muscles can adjust peripherally to reduce fatigue and improve exercise performance^{77,77,78}. This adjustment may explain why PAP improves endurance performance in athletes.

394 It should be noted that the participants in this study were endurance-trained athletes, so 395 the difference in PAP or fatigue effect among muscle phenotypes can be more 396 pronounced since only slow-twitch fibers can maintain Ca^{2+} sensitivity after prolonged 397 endurance activity and after appropriate CA^{79} . The more potent antifatigue properties 398 of long-term skeletal muscle training may produce a more intense strengthening effect.

399	Therefore, the included studies only reported the effects of PAP on athletes with
400	endurance training experience, which is an essential gap in the literature. Athletes with
401	different characteristics have different effects due to the influence of PAP. Therefore, it
402	is necessary to consider individual differences among athletes in research on the effects
403	of PAP on endurance performance and to develop specific PAP programs.

404

405 **5 Limitation**

406	Although this study offers evidence to assess the effects of PAP on sports performance,
407	some of the weaknesses revealed by its limitations are as follows: First, according to the
408	currently retrieved studies, this work on the effect of PAP on the sports performance of
409	athletes can only be limited to the effect of PAP on their physical fitness and does not
410	involve studies on their skill performance or performance throughout the game. Second,
411	the training level of athletes is often evaluated as a moderating factor affecting the effect
412	of PAP. The data from PAP studies in the existing literature is all based on the training
413	experience of the athletes to reflect their training level, never considering aerobic or
414	anaerobic capacity. Jones et al. suggested that recovery from fatigue after pre-
415	stimulation is an aerobic phenomenon, creating a gap in existing research ⁸⁰ . Third,
416	studies have demonstrated that PAP stimulation leads to fatigue. Skeletal muscle fatigue
417	and strength enhancement coexisted during PAP induction. A short interval produces a
418	good effect of PAP only if the degree of fatigue is within the enhancement effect ^{81,82} .

419 Fourth, the content of each training objective in the included literature varied, and the 420 evaluation methods were diverse, making it impossible to conduct an in-depth analysis of the intensity and quantity of the intervention. Fifth, as the existing literature is based 421 422 on athletes with training experience, the results of these studies cannot provide a 423 reference for untrained participants. The existing literature is based on male athletes, and there is only one study with mixed genders; therefore, the results of these studies 424 425 lack research on the impact of female athletes on sports performance. In addition, existing literature does not consider the effect of PAP on agility and flexibility 426 427 performance. Whether PAP improves the agility and flexibility of athletes requires 428 further research.

429 6 Conclusion

430 This review reported that PAP can be effectively induced by either high-intensity or 431 medium- and low-intensity induction, and rest intervals between 2 to 8 minutes can 432 significantly improve the sports performance of the subjects.

In addition, existing studies provides evidences that PAP can improve athletic power,
speed and endurance performance. Traditional warm-up methods such as jogging and
stretching have been proven to have limited effects on improving athletes' sports
performance. Adding PAP to the pre-match warm-up can enhance the muscle working
ability of athletes in a specific time period and improve sports performance. However,
PAP improves sports performance, the outcomes could be a result of factors like gender

439	and age, type of muscle fiber, training status, and the training level of the athletes. At
440	the same time, the optimal interval time for PAP has yet to be determined. Therefore,
441	different intervals lead to different conclusions in the existing literatures.
442	When formulating an induction PAP program, it is crucial to investigate the influence
443	of individual differences in participants on the effect of PAP. Therefore, researchers
444	must continue to explore these gaps to develop more scientific training plans. This study
445	recommends that trainers and researchers consider the effects of the motor
446	characteristics of the individuals and their differences in PAP when designing pre-
447	stimulation protocols for PAP.

448 **7 Conflict of Interest**

- 449 The authors declare that the research was conducted in the absence of any commercial
- 450 or financial relationships that could be construed as a potential conflict of interest.

451 8 Author Contributions

JL drafted the article. JL and KS provided data interpretation. KS critically revised the
article and gave the final approval. All the authors read and approved the finial
manuscript.

455 **References**

456 1. Tian M. Sports Training. Beijing: Beijing Sport University Press, 2000

457 2. Li C. Design and implementation of physical training for Chinese national badminton team in preparation for 2012

458		London Olympic Games. Journal of Beijing Sport University. 2016; 39(5):86-91. doi: 10.19582/j.cnki.11-378
459		5/g8.2016.05.015
460	3.	Zhang, F. (2020). Strengthening flexibility and improving physical function-research on flexibility training methods for
461		adolescent track and field athletes. Track and Field. (08), 55-56. Available at: https://www.cnki.co
462		m.cn/Article/CJFDTOTAL-TJTJ202008040.htm
463	4.	Yuan, W. Sports science dictionary. Beijing: Higher Education Press. 2000; 12:237
464	5.	Carlock JM, Smith SL, Hartman MJ, et al. The Relationship Between Vertical Jump Power Estimates and Weightlifting
465		Ability: A Field-Test Approach. The Journal of Strength & Conditioning Research. 2004;18(3): 534. doi: 10.1519/R-
466		13213.1
467	6.	Boullosa DA, Abreu L., Beltrame LGN, and Behm DG. The acute effect of different half squat set configurations on
468		jump potentiation. The Journal of Strength & Conditioning Research, 2013; 27(8):2059 – 2066. doi: 10.1519/J
469		SC.0b013e31827ddf15.
470	7.	Shalfawi SA, Sabbah A, Kailani G, Tønnessen E, & Enoksen E. The relationship between running speed and measures
471		of vertical jump in professional basketball players: a field-test approach. The Journal of Strength & Conditioning
472		Research. 2011; 25(11):3088 - 3092. doi: 10.1519/JSC.0b01
473		3e318212db0e
474	8.	Slinde F, Suber C, Suber L, Edw \acute{e} n CE, Svantesson U. Test-retest reliability of three different countermovement
475		jumping tests. The Journal of Strength & Conditioning Research. 2008; 22(2):640-644. doi :10.1519/JSC.0b013e3181
476		660475
477	9.	Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump
478		tests. The Journal of Strength & Conditioning Research. 2004; 18(3): 551-555.

479	10.	Castagna C, Chaouachi A, Rampinini E, Chamari K, Impellizzeri F. Aerobic and explosive power performance of elite
480		Italian regional-level basketball players. The Journal of Strength & Conditioning Research. 2009; 23(7): 1982
481		-1987. doi: 10.1519/JSC.0b013e3181b7f941
482	11.	Tillin NA, Bishop D. Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent
483		Explosive Activities: Sports Medicine. 2009; 39(2):147-166. doi: 10.2165/00007256-200939020-00004
484	12.	Reardon D, Hoffman JR, Mangine GT, et al. Do Changes in Muscle Architecture Affect Post-Activation Potentiation?
485		Journal of Sports Science & Medicine. 2014; 13 (3), 483 - 492. PMID: 25178394
486	13.	Liu M., and Guo L. The Post-activation Potentiation Effect on Muscle Activiation of Athletes at Different Training
487		Levels. China Sport Science and Technology. 2019; (55)7:30-36. doi: 10. 16470/j. csst. 2019109
488	14.	Moore RL, Stull JT. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. American Journal of
489		Physiology-Cell Physiology. 1984; 247(5):C462-C471. doi: 10.1152/ajpcell.1984.247.5.C462
490	15.	Houston ME, Grange RW. Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle.
491		Canadian Journal of Physiology and Pharmacology. 1990; 68(7): 908-913. doi: 10.1139/y90-139
492	16.	Chiu LZ, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL. Postactivation potentiation response in athletic and
493		recreationally trained individuals. The Journal of Strength & Conditioning Research. 2003; 17(4): 671-677.
494	17.	Wang A. and Zhang X. Theroretical exploration and practical process of strength training: physiology mechanism of
495		post-activation potentiation. China School Physical Education(Higher Education). 2014; 1(10): 80-83. Available at:
496		https://www.cnki.com.cn/Article/CJFDTotal-TYGJ201410017.htm
497	18.	Rassier DE, Macintosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Brazilian Journal of Medical
498		and Biological Research. 2000; 33:499-508. doi: 10.1590/S0100-879X2000000500003
499	19.	PaÈaÈsuke M, Ereline J, Gapeyeva H. Twitch contractile properties of plantar flexor muscles in power and endurance

500		trained athletes. European journal of applied physiology and occupational physiology. 1999; 80:448- 451. doi:
501		10.1007/s004210050616
502	20.	GÜllich A, Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. New studies in athletics. 1996;
503		11:67-84.
504	21.	Aagaard P. Training-induced changes in neural function. Exercise and sport sciences reviews. 2003; 31(2):61-67. doi:
505		10.1097/00003677-200304000- 00002
506	22.	Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training:
507		changes in evoked V-wave and H-reflex responses. Journal of applied physiology. 2002; 92(6):2309-2318. doi:
508		10.1152/japplphysiol.01185.2001
509	23.	Folland JP, Williams AG. The Adaptations to Strength Training: Morphological and Neurological Contributions to
510		Increased Strength. Sports Medicine. 2007; 37(2):145-168. doi: 10.2165/00007256-200737020-00004
511	24.	Mahlfeld K, Franke J, Awiszus F. Postcontraction changes of muscle architecture in human quadriceps muscle. Muscle
512		Nerve. 2004; 29(4):597- 600. doi: 10.1002/mus.20021
513	25.	Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle
514		length in male 100-m sprinters. Journal of applied physiology. Published online 2000. doi: 10.1152/jappl. 2000.88.3.811
515	26.	Earp JE, Kraemer WJ, Newton RU, et al. Lower-Body Muscle Structure and Its Role in Jump Performance During
516		Squat, Countermovement, and Depth Drop Jumps. Journal of Strength and Conditioning Research. 2010; 24(3): 722-
517		729. doi: 10.1519/JSC.0b013e3181d32c04
518	27.	Weber KR, Brown LE, Coburn JW, Zinder SM. Acute Effects of Heavy-Load Squats on Consecutive Squat Jump
519		Performance. Journal of Strength and Conditioning Research. 2008; 22(3):726-730. doi: 10.1519/JSC.
520		0b013e3181660899

521	28.	French D N, Kraemer W J, Cooke C B. Changes in dynamic exercise performance following a sequence of
522		preconditioning isometric muscle actions. The Journal of Strength & Conditioning Research, 2003, 17(4): 678-685.
523		doi: 10.1519/1533-4287(2003)017<0678:cidepf>2.0.co;2
524	29.	McBride JM, Nuzzo JL, Dayne AM, Israetel MA, Nieman DC, Triplett NT. Effect of an acute bout of whole body
525		vibration exercise on muscle force output and motor neuron excitability. The Journal of Strength & Conditioning
526		Research. 2010; 24(1):184-189. doi: 10.1519/JSC.0b013e3 181
527		9b79cf
528	30.	Esformes JI, Bampouras TM. Effect of back squat depth on lower-body postactivation potentiation. The Journal of
529		Strength & Conditioning Research. 2013; 27(11): 2997-3000. doi: 10.1519/JSC.0b013e31828d4465
530	31.	Bevan HR, Cunningham DJ, Tooley EP, Owen NJ, Cook CJ, Kilduff LP. Influence of postactivation potentiation on
531		sprinting performance in professional rugby players. The Journal of Strength & Conditioning Research. 2010;
532		24(3):701-705. doi: 10.1519/JSC.0b013e3181c7b68a
533	32.	Batista MA, Roschel H, Barroso R, Ugrinowitsch C, Tricoli V. Influence of strength training background on
534		postactivation potentiation response. The Journal of Strength & Conditioning Research. 2011; 25(9):2496-2502. doi:
535		10.1519/JSC.0b013e318200181b
536	33.	Matthews MJ, Matthews HP, Snook B. The acute effects of a resistance training warmup on sprint performance.
537		Research in Sports Medicine. 2004; 12(2):151-159. doi: 10.1080/15438620490460503
538	34.	Crum AJ, Kawamori N, Stone MH, Haff GG. The acute effects of moderately loaded concentric-only quarter squats on
539		vertical jump performance. The Journal of Strength & Conditioning Research. 2012; 26(4):
540		914-925. doi: 10.1519/JSC.0b013e318248d79c
541	35.	Tsolakis C, Bogdanis G C. Acute effects of two different warm-up protocols on flexibility and lower limb explosive

542		performance in male and female high level athletes. Journal of sports science & medicine, 2012; 11(4): 669. PMID:
543		24150077
544	36.	Izquierdo M, Häkkinen K, Gonzalez-Badillo J, IbÓñez J, Gorostiaga E. Effects of long-term training specificity on
545		maximal strength and power of the upper and lower extremities in athletes from different sports. European Journal of
546		Applied Physiology. 2002; 87(3):264-271. doi: 10.1007/s004 21-0
547		02-0628-у
548	37.	Babault N, Maffiuletti NA, Pousson M. Postactivation Potentiation in Human Knee Extensors during Dynamic Passive
549		Movements. Medicine & Science in Sports & Exercise. 2008; 40(4):735-743. doi: 10.1249/MSS.0b013e31816 0ba54
550	38.	Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction
551		time in human knee extensor muscles. Journal of applied physiology. 2000; 88(6):2131-2137. doi: 10.
552		1152/jappl.2000.88.6.2131
553	39.	Liang M, Guo W, Kong Z, and Qu S. Effects of post-activation potentiation intermittent time on counter movement
554		jump height: a meta-analysis. Journal of Wuhan Institute of Physical Education. 2018; 52(2),49-56. Available at:
555		xuebao.whsu.edu.cn/CN/abstract/abstract13200.shtml
556	41.	Markovic G, Simek S, Bradic A. Are acute effects of maximal dynamic contractions on upper-body ballistic
557		performance load specific? The Journal of Strength & Conditioning Research. 2008; 22(6):1811-1815. doi: 10.1519/
558		JSC.0b013e318182227e
559	42.	Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA
560		statement. International journal of surgery. 2010; 8(5):336-341. doi: 10.1016/j.ijsu.2010.02.007
561	43.	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic
562		reviews. International journal of surgery. 2021; 88:105906. doi: 10.1016/j.ijsu.2021.105906

563	44.	Beato M, Stiff A, Coratella G. Effects of postactivation potentiation after an eccentric overload bout on
564		countermovement jump and lower-limb muscle strength. The Journal of Strength & Conditioning Research. 2021; 35(7):
565		182
566		5-1832. doi: 10.1519/JSC.000000000000000000000000000000000000
567	45.	Lum D. Effects of various warm-up protocol on special judo fitness test performance. The Journal of Strength &
568		Conditioning Research. 2019; 33(2): 459-465. doi: 10.1519/JSC.000000000001862
569	46.	Mola JN, Bruce-Low SS, Burnet SJ. Optimal recovery time for postactivation potentiation in professional soccer players.
570		The Journal of Strength & Conditioning Research. 2014; 28(6):1529-1537. doi: 10.1519/ JS
571		C.0000000000313
572	47.	Guerra Jr MA, Caldas LC, De Souza HL, et al. The acute effects of plyometric and sled towing stimuli with and without
573		caffeine ingestion on vertical jump performance in professional soccer players. Journal of the International Society of
574		Sports Nutrition. 2018; 15(1):51. doi: 10.1186/ s12970-018-0258-3
575	48.	Villalon-Gasch L, Penichet-Tomas A, Sebastia-Amat S, Pueo B, Jimenez-Olmedo JM. Postactivation performance
576		enhancement (PAPE) increases vertical jump in elite female volleyball players. International Journal of Environmental
577		Research and Public Health. 2022; 19(1):462. doi:
578		10.3390/ijerph19010462
579	49.	McCann MR, Flanagan SP. The effects of exercise selection and rest interval on postactivation potentiation of vertical
580		jump performance. The Journal of Strength & Conditioning Research. 2010; 24(5):1285-1291. doi: 10.1519/JS
581		C.0b013e3181d6867c
582	50.	Gepfert M, Golas A, Zajac T, Krzysztofik M. The use of different modes of post-activation potentiation (PAP) for
583		enhancing speed of the slide-step in basketball players. International Journal of Environmental Research and Public

584		Health. 2020; 17(14):5057. doi: 10.3390/ijerph17145057
585	51.	Esformes JI, Keenan M, Moody J, Bampouras TM. Effect of different types of conditioning contraction on upper body
586		postactivation potentiation. The Journal of Strength & Conditioning Research. 2011; 25(1):143-148. doi: 10.1
587		519/JSC.0b013e3181fef7f3
588	52.	Creekmur CC, Haworth JL, Cox RH, Walsh MS. Effects of plyometrics performed during warm-up on 20 and 40 m
589		sprint performance. The Journal of sports medicine and physical fitness. 2016; 57(5):550-555. doi: 10.23736/S0022-
590		4707.16.06227-7
591	53.	Low JL, Ahmadi H, Kelly LP, Willardson J, Boullosa D, Behm DG. Prior band-resisted squat jumps improves running
592		and neuromuscular performance in middle-distance runners. Journal of Sports Science & Medicine. 2019; 18(2):301.
593		PMID: 31191101
594	54.	Dobbs WC, Tolusso DV, Fedewa MV, Esco MR. Effect of postactivation potentiation on explosive vertical jump: a
595		systematic review and meta-analysis. The Journal of Strength & Conditioning Research. 2019; 33(7):2009-2018. doi:
596		10.1519/JSC.00000000002750
597	55.	Slinde F, Suber C, Suber L, Edw Én CE, Svantesson U. Test-retest reliability of three different countermovement
598		jumping tests. The Journal of Strength & Conditioning Research. 2008; 22(2):640-644. doi: 10.1519/JSC.0b013e3181
599		660475
600	56.	Gourgoulis V, Aggeloussis N, Kasimatis P, Mavromatis G, Garas A. Effect of a Submaximal Half-Squats Warm-up
601		Program on Vertical Jumping Ability The Journal of Strength & Conditioning Research. 2003; 17(2):342. doi:
602		10.1519/1533-4287(2003)017<0342:EOASHW>2.0.CO;2
603	57.	Weber KR, Brown LE, Coburn JW, Zinder SM. Acute effects of heavy-load squats on consecutive squat jump
604		performance. The Journal of Strength & Conditioning Research. 2008; 22(3):726-730. doi: 10.1519/JSC.0b013e3181

605		660899
606	58.	Markovic G, Simek S, Bradic A. Are acute effects of maximal dynamic contractions on upper-body ballistic
607		performance load specific? The Journal of Strength & Conditioning Research. 2008; 22(6):1811-1815. doi: 10.1519/
608		JSC.0b013e318182227e
609	59.	Kilduff LP, Bevan HR, Kingsley MI, et al. Postactivation potentiation in professional rugby players: Optimal recovery.
610		The Journal of Strength & Conditioning Research. 2007; 21(4):1134-1138.
611	60.	Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction
612		time in human knee extensor muscles. Journal of applied physiology. Published online 2000. doi: 10.1152/
613		jappl.2000.88.6.2131
614	61.	Paasuke M, Ereline J, Gapeyeva H, Torop T. Twitch contractile properties of plantarflexor muscles in female power-
615		trained athletes. Medicina dello Sport. 2002; 55(4):279-286.
616	62.	Baechle TR, Earle RW. Essentials of Strength Training and Conditioning. Human kinetics; 2008.
617	63.	Khamoui AV, Brown LE, Coburn JW, et al. Effect of potentiating exercise volume on vertical jump parameters in
618		recreationally trained men. The Journal of Strength & Conditioning Research. 2009; 23(5):1465-1469. doi:
619		10.1519/JSC.0b013e3181a5bcdd
620	64.	Lesinski M, MÜhlbauer T, BÜsch D, Granacher U. Effects of complex training on strength and speed performance in
621		athletes: a systematic review. Effects of complex training on athletic performance. Sportverletzung Sportschaden: Organ
622		der Gesellschaft für Orthopadisch-Traumatologische Sportmedizin. 2014; 28(2):85-107. doi:10.1055/s-0034-1366145
623	65.	Healy R, Comyns TM. The application of postactivation potentiation methods to improve sprint speed. Strength and
624		Conditioning Journal. 2017; 39(1):1-9. doi: 10.1519/SSC.000000000000276
625	66.	Crewther BT, Kilduff LP, Cook CJ, Middleton MK, Bunce PJ, Yang GZ. The acute potentiating effects of back squats

626		on athlete performance. The Journal of Strength & Conditioning Research. 2011; 25(12):3319-3325. doi: 10.1519/
627		JSC.0b013e318215f560
628	67.	Mcbride JM, Nimphius S, Erickson TM. The acute effects of heavy-load squats and loaded countermovement jumps on
629		sprint performance. The Journal of Strength & Conditioning Research. 2005;19(4):893-897. doi:10. 1519/R-16304.1
630	68.	Comyns TM, Harrison AJ, Hennessy LK, Jensen RL. The optimal complex training rest interval for athletes from
631		anaerobic sports. The Journal of Strength & Conditioning Research. 2006; 20(3):471-476. doi: 10.1519/18445
632		.1
633	69.	Simperingham K, Cronin J, Pearson S, Ross A. Acute changes in sprint running performance following ballistic exercise
634		with added lower body loading. Journal of Australian Strength and Conditioning. 2015; 23(6): 86-89.
635	70.	van den Tillaar R, von Heimburg E. Comparison of different sprint training sessions with assisted and resisted running:
636		Effects on performance and kinematics in 20-m sprints. Human Movement. 2017; 18(2):21-29. doi: 10. 1515/humo-
637		2017-0013
638	71.	Smith CE, Hannon JC, McGladrey B, Shultz B, Eisenman P, Lyons B. The effects of a postactivation potentiation
639		warm-up on subsequent sprint performance. Human Movement. 2014; 15(1):36-44. doi: 10.2478/humo- 201
640		3-0050
641	72.	Rixon KP, Lamont HS, Bemben MG. Influence of type of muscle contraction, gender, and lifting experience on
642		postactivation potentiation performance. The Journal of Strength & Conditioning Research. 2007; 21(2):500-505. doi:
643		10.1519/R-18855.1
644	73.	Houston ME, Grange RW. Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle.
645		Canadian Journal of Physiology and Pharmacology. 1990; 68(7):908-913. doi: 10.1139/y90-139
646	74.	Seitz LB, de Villarreal ES, Haff GG. The temporal profile of postactivation potentiation is related to strength level. The

647		Journal of Strength & Conditioning Research. 2014; 28(3):706-715. doi: 10.1519/JSC.0b013e3182a 73ea3
648	75.	Silva RA, Silva-JÚnior FL, Pinheiro FA, Souza PF, Boullosa DA, Pires FO. Acute prior heavy strength exercise bouts
649		improve the 20-km cycling time trial performance. The Journal of Strength & Conditioning Research. 2014; 28(9):2513-
650		2520. doi: 10.1519/JSC.00000000000442
651	76.	Feros SA, Young WB, Rice AJ, Talpey SW. The effect of including a series of isometric conditioning contractions to
652		the rowing warm-up on 1,000-m rowing ergometer time trial performance. The Journal of Strength & Conditioning
653		Research. 2012; 26(12):3326-3334. doi: 10.1519/JSC.0b013e3 182495025
654	77.	Behm DG. Force Maintenance With Submaximal Fatiguing Contractions. Canadian Journal of Applied Physiology.
655		2004;29(3):274-290. doi: 10.1139/ h04-019
656	78.	Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction
657		time in human knee extensor muscles. Journal of Applied Physiology. 2000; 88(6):2131-2137. doi: 10.115
658		2/japp1.2000.88.6.2131
659	79.	Hvid LG, Gejl K, Bech RD, et al. Transient impairments in single muscle fibre contractile function after prolonged
660		cycling in elite endurance athletes. Acta Physiologica. 2013; 208(3):265-273. doi:10.1111/apha.12095
661	80.	Jones RM, Cook CC, Kilduff LP, et al. Relationship between repeated sprint ability and aerobic capacity in professional
662		soccer players. The Scientific World Journal. 2013; 2013. doi:10.1155/2013/952350
663	81.	Gossen ER, Sale DG. Effect of postactivation potentiation on dynamic knee extension performance. European journal
664		of applied physiology. 2000; 83: 52
665		4-530. doi:10.1007/s004210000304
666	82.	Ebben WP, Jensen RL, Blackard DO. Electromyographic and kinetic analysis of complex training variables. The Journal
667		of Strength & Conditioning Research. 2000; 14(4): 451-456.

10 Data Availability Statement

- 671 The original contributions presented in the study are included in the
- 672 article/Supplementary Material, further inquiries can be directed to the corresponding
- authors.

Figure

Figure (Prisma flowchart)