-
- Erick Sánchez-Salguero¹, Diana Bonilla-Ruelas¹, Mario René Alcorta-García^{2,4}
- Maternal obesity shapes the B lymphocyte and antibody repertoires of

1 **Maternal colostrum**

1 Erick Sánchez-Salguero¹, Diana Bonilla-Ruelas¹, Mario René Alcorta-García

1 Víctor Javier Lara-Diaz^{3,6}, Claudia Nohemí 2 **human colostrum**

3

4 Erick Sánchez-Salg

5 Víctor Javier Lara-D

6 Brunck^{1,5*}

7 ¹ The Institute for Ob

2 2501 Sur, Tecnológic

9 ² Hospital Regional N 45678901 Erick Sánchez-Salguero', Diana Bonilla-Ruelas', Mario René Alcorta-García^{2,4},

Víctor Javier Lara-Diaz^{3,6}, Claudia Nohemí López-Villaseñor^{2,4}, Marion E G

Brunck^{1,5*}

¹ The Institute for Obesity Research, Tecnolo Víctor Javier Lara-Diaz^{3,6}, Claudia Nohemí López-Villaseñor^{2,4}, Marion E G
- Brunck $1,5^*$
- Víctor Javier Lara-Diaz^{3,6}, Claudia Nohemí López-Villaseñor^{2,4}, Marion E G

Brunck^{1,5*}

¹ The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Gar

² Bospital Regional Materno Infantil, Servi 78901234 ¹ The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada
-
- ¹ The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada

2501 Sur, Tecnológico, 64700, Monterrey, Nuevo León, México.

² Hospital Regional Materno Infantil, Servicios de Salud de Nuevo Le 2501 Sur, Tecnológico, 64700, Monterrey, Nuevo León, México.

² Hospital Regional Materno Infantil, Servicios de Salud de Nu

Rafael 460, San Rafael, 67140 Guadalupe, Nuevo León, México.

³ Pediatras404, San Pedro Garz ² Hospital Regional Materno Infantil, Servicios de Salud de Nuevo León, OPD, Av. San
-
- ³ Pediatras404, San Pedro Garza Garcia, Nuevo León, México.
- ² Hospital Regional Materno Infantil, Servicios de Salud de Nuevo León, OPD, Av. San
Rafael 460, San Rafael, 67140 Guadalupe, Nuevo León, México.
³ Pediatras404, San Pedro Garza Garcia, Nuevo León, México.
⁴ School o Rafael 460, San Rafael, 67140 Guadalupe, Nuevo León, México.

³ Pediatras404, San Pedro Garza Garcia, Nuevo León, México.

⁴ School of Medicine and Health Sciences, Tecnologico de Monte

Sada 2501 Sur, Tecnológico, 648 ⁹ Pediatras404, San Pedro Garza Garcia, Nuevo León, México.

⁴ School of Medicine and Health Sciences, Tecnologico de Mor

Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, M

⁵ School of Engineering and Scie ⁴ School of Medicine and Health Sciences, Tecnologico de Monterrey, Av. Eugenio Garza
-
- ⁴ School of Medicine and Health Sciences, Tecnologico de Monterrey, Av. Eugenio Garza

13 Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, México.

⁵ School of Engineering and Sciences, Tecnologico de Monterre Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, México.

⁵ School of Engineering and Sciences, Tecnologico de Monterrey,

Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, México.

⁶ University of New ⁵ School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza 14 [°] School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza
15 Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, México.
⁶ University of New South Wales, Faculty of Medicine, Sydney, Au
-
- Sada 2501 Sur, Tecnológico, 64849, Monterrey, Nuevo León, México.
16 ⁶ University of New South Wales, Faculty of Medicine, Sydney, Australi
17 **Correspondence to: <u>marion.brunck@tec.mx</u>
20 ABSTRACT**
22 **ABSTRACT** ⁶ University of New South Wales, Faculty of Medicine, Sydney, Australia.
-
-
- Correspondence to: marion.brunck@tec.mx
-

⁶ University of New South Wales, Faculty of Medicine, Sydney, Australia.
17
18 Correspondence to: <u>marion.brunck@tec.mx</u>
20
ABSTRACT
22 The prevalence of obesity is rapidly increasing worldwide and its interpretions mu - 18
19 20
21 22 3
24 25 - 19 20 21 22 23 24 25 26 Correspondence to: <u>marion.brunck@tec.mx</u>

20

21 **ABSTRACT**

22 The prevalence of obesity is rapidly increas

24 generations must be assessed. We recently

25 with obesity contained a significantly redu

26 Here, in a sub - 21 22 23 24 25 26 27 32 21 **ABSTRACT**
22 The prevalen
24 generations r
25 with obesity
26 Here, in a st
27 characterize
28 from obese -- 23 24 25 26 27 28 29 20 The prevalence of obesity is rapidly increasing worldwide and its impact on future

generations must be assessed. We recently showed that colostrum from mothers

with obesity contained a significantly reduced B lymphocytes generations must be assessed. We recently showed that colostrum from mothers

25 with obesity contained a significantly reduced B lymphocytes (CD19⁺) fraction.

26 Here, in a subsequent transversal cohort study of 48 mot with obesity contained a significantly reduced B lymphocytes $(CD19⁺)$ fraction. with obesity contained a significantly reduced B lymphocytes (CD19⁺) fraction.

26 Here, in a subsequent transversal cohort study of 48 mothers, we exhaustively

27 characterize the B lymphocytes subsets present in perip Here, in a subsequent transversal cohort study of 48 mothers, we exhaustively

characterize the B lymphocytes subsets present in peripheral blood and colostrum

from obese mothers and describe a pervasive alteration of the characterize the B lymphocytes subsets present in peripheral blood and colostrum

from obese mothers and describe a pervasive alteration of the B lymphocytes

compartment of human colostrum accompanied by a dysregulated an From obese mothers and describe a pervasive alteration of the B lymphocytes

29 compartment of human colostrum accompanied by a dysregulated antibody

20 composition. We describe significant decreases in regulatory B cells 29 compartment of human colostrum accompanied by a dysregulated antibody 30 composition. We describe significant decreases in regulatory B cells and soluble
1gA concentrations, combined with increases in soluble IgG and double negative 2
32 (CD19⁺, CD27⁻, IgD⁻, CD38⁻, CD24⁻, CD21⁻, 1gA concentrations, combined with increases in soluble IgG and double negative 2

(CD19⁺, CD27⁻, IgD⁻, CD38⁻, CD24⁻, CD21⁻, CD11c⁺) B lymphocytes. These

NOTE: This preprint reports new research that has not (CD19⁺, CD27, IgD, CD38, CD24, CD21, CD11c⁺ $(CD19^+, CD27, IgD, CD38, CD24, CD21, CD11c^+)$ B lymphocytes. These
NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

aterations correlated with maternal BMI and corporal fat %. We provide evidence
for possibly autoimmune IgG present in obese colostrum, and for the
proinflammatory consequences of obese colostrum *in vitro*. Beyond the imp 34 for possibly autoimmune IgG present in obese colostrum, and for the proinflammatory consequences of obese colostrum *in vitro*. Beyond the impact of obesity, we evidence the selective presence of B lymphocyte subtypes i 35 proinflammatory consequences of obese colostrum *in vitro*. Beyond the impact of obesity, we evidence the selective presence of B lymphocyte subtypes in colostrum and *in situ* production of IgG antibodies, which expand 36 obesity, we evidence the selective presence of B lymphocyte subtypes in
37 colostrum and *in situ* production of lgG antibodies, which expands our current
38 understanding of the origin of colostrum lgG. As maternal mil 37 colostrum and *in situ* production of IgG antibodies, which expands our current

38 understanding of the origin of colostrum IgG. As maternal milk antibodies play a

39 crucial role in regulating neonatal gut immune dev understanding of the origin of colostrum IgG. As maternal milk antibodies play a
crucial role in regulating neonatal gut immune development, this work uncovers
maternal obesity as a potential risk factor for compromised br 39 crucial role in regulating neonatal gut immune development, this work uncovers

40 maternal obesity as a potential risk factor for compromised breastmilk immune

41 components, calling for more research on the long-term maternal obesity as a potential risk factor for compromised breastmilk immune

components, calling for more research on the long-term health of lactating infants.

42
 KEYWORDS: Colostrum, Obesity, B lymphocytes, IgG, Ig 41 components, calling for more research on the long-term health of lactating infants.
42
KEYWORDS: Colostrum, Obesity, B lymphocytes, IgG, IgA
44
45
45 43
44
45
46
47 43 **KEYWORDS:** Colostrum, Obesity, B lymphocytes, IgG, IgA 45
46
47
48
49 46
47
48
49
50 47
48
49
50
51 48
49
50
51
52 49
50
51
52
53 49 50
51
52
53
54 50 51
52
53
54
55 51 52
53
54
55
56 $52₂$ 53
53
54
55
56
57 53 54
55
56
57 54 --
55
56
57 55 56
57 56 57 57

58 **1. INTRODUCTION**
59 Tolerizing response
61 efficient food diges
62 responses cause in
63 colitis, immune toler
64 expansion of a tole
65 primes the disease 60
61
62
63
64
65
66
7 Folerizing responses in the gut allow the establishment of the microbiota and
61 efficient food digestion, contributing to health. Disruptions in these tolerizing
62 responses cause inflammation that promote disease. For efficient food digestion, contributing to health. Disruptions in these tolerizing

responses cause inflammation that promote disease. For example, in ulcerative

colitis, immune tolerance to commensal microbes is impaired esponses cause inflammation that promote disease. For example, in ulcerative
colitis, immune tolerance to commensal microbes is impaired¹. This prevents the
expansion of a tolerizing ROR γ^+ Treg population, fueling g colitis, immune tolerance to commensal microbes is impaired¹. This prevents the colitis, immune tolerance to commensal microbes is impaired¹. This prevents the
expansion of a tolerizing ROR γ^+ Treg population, fueling gut inflammation that
primes the disease². Interestingly, ROR γ^+ Treg pop expansion of a tolerizing $RORy⁺$ Treg population, fueling gut inflammation that expansion of a tolerizing $RORy^+$ Treg population, fueling gut inflammation that

for primes the disease². Interestingly, $RORy^+$ Treg populations essential to the

establishment of the microbiota are transmitted exclus primes the disease². Interestingly, $\mathsf{ROR}\mathsf{y}^*$ be primes the disease². Interestingly, $RORy^+$ Treg populations essential to the
establishment of the microbiota are transmitted exclusively through breastmilk and
persist through adulthood³. Therefore, essential immu 66 establishment of the microbiota are transmitted exclusively through breastmilk and
67 persist through adulthood³. Therefore, essential immune responses in the adult gut
68 are imprinted at least in part during breast persist through adulthood³. Therefore, essential immune responses in the adult gut prime adverse conditions later in life⁴.

67 persist through adulthood³. Therefore, essential immune responses in the adult gut
68 are imprinted at least in part during breastfeeding and inappropriate responses
69 prime adverse conditions later in life⁴.
70
7 68 are imprinted at least in part during breastfeeding and inappropriate responses

69 prime adverse conditions later in life⁴.

70

71 Maternal obesity is a rising condition worldwide that correlates with variations in For prime adverse conditions later in life⁴.

70

71 Maternal obesity is a rising condition

72 multiples breastmilk components

73 oligosaccharides (HMO) and lipids⁵⁻⁸.

74 cytokines and leukocytes remain sca

75 red 71 72 73 74 75 76 77 79 Maternal obesity is a rising condition worldwide that correlates with variations in

The microbiota, Human-milk

oligosaccharides (HMO) and lipids⁵⁻⁸. However, reports on immune bioactives like

cytokines and leukocytes multiples breastmilk components including the microbiota, Human-milk

73 oligosaccharides (HMO) and lipids⁵⁻⁸. However, reports on immune bioactives like

cytokines and leukocytes remain scarce⁹⁻¹². We recently eviden oligosaccharides (HMO) and lipids $5-8$. However, reports on immune bioactives like oligosaccharides (HMO) and lipids⁵⁻⁸. However, reports on immune bioactives like
cytokines and leukocytes remain scarce⁹⁻¹². We recently evidenced a significant
reduction of the B lymphocytes compartment in the colost cytokines and leukocytes remain scarce $9-12$. We recently evidenced a significant cytokines and leukocytes remain scarce⁹⁻¹². We recently evidenced a significant

75 reduction of the B lymphocytes compartment in the colostrum of mothers with

76 obesity¹³. Here, we further characterize 18 B lymphoc rs reduction of the B lymphocytes compartment in the colostrum of mothers with

obesity¹³. Here, we further characterize 18 B lymphocytes subpopulations in obese

colostrum and describe pervasive alterations of the reso obesity¹³. Here, we further characterize 18 B lymphocytes subpopulations in obese besity¹³. Here, we further characterize 18 B lymphocytes subpopulations in obese
colostrum and describe pervasive alterations of the resolved populations, including
less B_{reg} -like and more of a recently described procolostrum and describe pervasive alterations of the resolved populations, including

178 less B_{reg}-like and more of a recently described pro-inflammatory B lymphocyte

179 population, also known as double-negative 2 (DN 78 less B_{reg}-like and more of a recently described pro-inflammatory B lymphocyte
population, also known as double-negative 2 (DN2) B cells^{14,15}. These alterations
at the cellular level are accompanied by significant r population, also known as double-negative 2 (DN2) B cells^{14,15}. These alterations requision, also known as double-negative 2 (DN2) B cells^{14,15}. These alterations
at the cellular level are accompanied by significant regulations in colostrum
antibodies, including less soluble IgA (sIgA), and more solu at the cellular level are accompanied by significant regulations in colostrum
antibodies, including less soluble IgA (sIgA), and more soluble IgG (sIgG).
Interestingly, obese colostrum sIgG had increased recognition of N-
 81 antibodies, including less soluble IgA (sIgA), and more soluble IgG (sIgG).
82 Interestingly, obese colostrum sIgG had increased recognition of N-
83 acetylglucosamine (GIcNAc) which is present on bacterial and fungal 82 Interestingly, obese colostrum sIgG had increased recognition of N-
acetylglucosamine (GIcNAc) which is present on bacterial and fungal cell walls, but
also composes various human tissues, hinting toward a possible tra α acetylglucosamine (GlcNAc) which is present on bacterial and fungal cell walls, but
also composes various human tissues, hinting toward a possible transfer of
autoimmunity^{16–18}. Finally, we show that in contrast to 84 also composes various human tissues, hinting toward a possible transfer of autoimmunity^{16–18}. Finally, we show that in contrast to colostrum from "lean" mothers, obese colostrum leads to activation of human macrophag autoimmunity^{16–18}. Finally, we show that in contrast to colostrum from "lean" 85 autoimmunity¹⁶⁻¹⁸. Finally, we show that in contrast to colostrum from "lean"

186 mothers, obese colostrum leads to activation of human macrophages *in vitro*.

187 Overall, we describe here that maternal obesity reg 86 mothers, obese colostrum leads to activation of human macrophages *in vitro*.

87 Overall, we describe here that maternal obesity regulates B lymphocytes subsets

87 Overall, we describe here that maternal obesity regul 87 Overall, we describe here that maternal obesity regulates B lymphocytes subsets

States B in the subsets

States B in t

88 and antibodies in human colostrum, with possible long-lasting impact on the
89 suckling neonate's health.
90
2. MATERIALS AND METHODS
82 **2.1 Human samples**
This cross-sectional study was approved by the Ethics Commit so

suckling neonate's health.

90
 2. MATERIALS AND MET

92
 2.1 Human samples

This cross-sectional study

Regional Materno Infantil,

the School of Medicine and CarlMicrobio2018 Pog. 91
92
93
94
95
96
97
97 2. **MATERIALS AND METHODS**
92 **2.1 Human samples**
94 This cross-sectional study was ap
95 Regional Materno Infantil, Servici
96 the School of Medicine and He
97 (CarlMicrobio2018, Reg. No. DEI
98 hospital for delivery were - 93
93
94
95
96
97
98
99 2.1 Human samples
94 This cross-sectional s
95 Regional Materno Infa
96 the School of Medic
97 (CarlMicrobio2018, R
98 hospital for delivery
99 Participation in the stude of age between 18 and 3 94 This cross-sectional study was approved by the Ethics Committee of the Hospital
95 Regional Materno Infantil, Servicios de Salud de Nuevo León, and by the IRB at
96 the School of Medicine and Health Sciences, TecSalud, 95 Regional Materno Infantil, Servicios de Salud de Nuevo León, and by the IRB at
96 the School of Medicine and Health Sciences, TecSalud, in Monterrey, Mexico
97 (CarlMicrobio2018, Reg. No. DEISC-19 01 18 09). Eligible wo 96 the School of Medicine and Health Sciences, TecSalud, in Monterrey, Mexico (CarlMicrobio2018, Reg. No. DEISC-19 01 18 09). Eligible women attending the hospital for delivery were recruited between September 2022 and Apr 97 (CarlMicrobio2018, Reg. No. DEISC-19 01 18 09). Eligible women attending the
98 hospital for delivery were recruited between September 2022 and April 2023.
99 Participation in the study was based on the following inclu 98 hospital for delivery were recruited between September 2022 and April 2023.
99 Participation in the study was based on the following inclusion criteria: (1) maternal
90 age between 18 and 34 years, (2) over 5 prenatal v Participation in the study was based on the following inclusion criteria: (1) maternal

age between 18 and 34 years, (2) over 5 prenatal visits without any adverse event

during pregnancy, (3) pre-pregnancy BMI >18.5 and 100 age between 18 and 34 years, (2) over 5 prenatal visits without any adverse event

101 during pregnancy, (3) pre-pregnancy BMI >18.5 and <25, or >30, (4) term infant,

102 and (5) willingness to participate. Exclusion during pregnancy, (3) pre-pregnancy BMI >18.5 and <25, or >30, (4) term infant,

and (5) willingness to participate. Exclusion criteria included (1) having received

antibiotics anytime during the 3-month period before bir and (5) willingness to participate. Exclusion criteria included (1) having received

103 antibiotics anytime during the 3-month period before birth, or having received a

104 prolonged antibiotic treatment (>3 months) anyt antibiotics anytime during the 3-month period before birth, or having received a
prolonged antibiotic treatment (>3 months) anytime during pregnancy, (2) having
received immunosuppressive doses of steroids during pregnanc prolonged antibiotic treatment (>3 months) anytime during pregnancy, (2) having
received immunosuppressive doses of steroids during pregnancy, (3) history of any
monoclonal antibody treatment, (4) history of chronic disea received immunosuppressive doses of steroids during pregnancy, (3) history of any

106 monoclonal antibody treatment, (4) history of chronic disease (outside of obesity),

107 (5) suffering from any nutrition-related disea monoclonal antibody treatment, (4) history of chronic disease (outside of obesity),

107 (5) suffering from any nutrition-related disease or dietary restrictions, (6) episodes

108 of diarrhea during the last 2 weeks of pr (5) suffering from any nutrition-related disease or dietary restrictions, (6) episodes

108 of diarrhea during the last 2 weeks of pregnancy, (7) history of surgery within 12

109 months prior to pregnancy, (8) history of 108 of diarrhea during the last 2 weeks of pregnancy, (7) history of surgery within 12

109 months prior to pregnancy, (8) history of antineoplastic treatment. Elimination

110 criteria included (1) having received antibio months prior to pregnancy, (8) history of antineoplastic treatment. Elimination

criteria included (1) having received antibiotics for >24 h post-birth, (2) newborn

admission to NICU, (3) any additional cause impeding sam criteria included (1) having received antibiotics for >24 h post-birth, (2) newborn
admission to NICU, (3) any additional cause impeding sample collection. Oxytocin
was not used during labor. Pre-pregnancy weight was recal admission to NICU, (3) any additional cause impeding sample collection. Oxytocin
was not used during labor. Pre-pregnancy weight was recalled, current height was
measured and current body fat percentage (BF%) obtained by i was not used during labor. Pre-pregnancy weight was recalled, current height was
measured and current body fat percentage (BF%) obtained by impedance at the
time of recruitment. Additional variables collected or measured i measured and current body fat percentage (BF%) obtained by impedance at the
time of recruitment. Additional variables collected or measured in this work
included maternal age, primiparity, infant gender, gestational age at 114 time of recruitment. Additional variables collected or measured in this work
115 included maternal age, primiparity, infant gender, gestational age at birth, mode of
116 delivery, weight of infant at birth, volume of c included maternal age, primiparity, infant gender, gestational age at birth, mode of
delivery, weight of infant at birth, volume of colostrum obtained, frequency of B
lymphocytes subpopulations in blood and colostrum sampl 116 delivery, weight of infant at birth, volume of colostrum obtained, frequency of B
117 lymphocytes subpopulations in blood and colostrum samples, type and
118 concentrations of antibodies and frequency of antibody-produ 117 lymphocytes subpopulations in blood and colostrum samples, type and
118 concentrations of antibodies and frequency of antibody-producing cells in
118 118 concentrations of antibodies and frequency of antibody-producing cells in

colostrum. Additional details are included in the study's STROBE statement

120 (Supplementary Table 1). Participants were allocated to the "obese" (BMI>30,

121 BF%>30) or "lean" (18.5>BMI<25, BF%<22) groups according to (Supplementary Table 1). Participants were allocated to the "obese" (BMI>30,
121 BF%>30) or "lean" (18.5>BMI<25, BF%<22) groups according to the WHO
122 guidelines. Upon recruitment and signed informed consent, 4 ml of ma 121 BF%>30) or "lean" (18.5>BMI<25, BF%<22) groups according to the WHO
122 guidelines. Upon recruitment and signed informed consent, 4 ml of maternal
123 peripheral blood were drawn into K₂EDTA coated tubes (BD Vacutai quidelines. Upon recruitment and signed informed consent, 4 ml of maternal

123 peripheral blood were drawn into K_2EDTA coated tubes (BD Vacutainer®, cat.

124 366643). The same day, after infant feeding, the nipple area peripheral blood were drawn into K₂EDTA coated tubes (BD Vacutainer®, cat.
124 366643). The same day, after infant feeding, the nipple area of the breast was
125 gently cleaned with neutral soap and water, and 1-3 ml of 366643). The same day, after infant feeding, the nipple area of the breast was
125 gently cleaned with neutral soap and water, and 1-3 ml of colostrum were collected
126 using a manual pump. Samples were immediately stored

gently cleaned with neutral soap and water, and 1-3 ml of colostrum were collected
126 using a manual pump. Samples were immediately stored on ice until processing
127 and all samples were processed within 2 h of collectio using a manual pump. Samples were immediately stored on ice until processing

127 and all samples were processed within 2 h of collection.

128 2.2 Isolation of PBMC from peripheral blood

130 Ficoll-Paque (Fisher scientif and all samples were processed within 2 h of collection.

128
 2.2 Isolation of PBMC from peripheral blood

Ficoll-Paque (Fisher scientific, cat. 17-1440-03) was u

peripheral blood and residual erythrocytes were lysed u 129
130
131
132
133
134
135 2.2 **Isolation of PBMC from peripheral blood**
130 Ficoll-Paque (Fisher scientific, cat. 17-1440-03
131 peripheral blood and residual erythrocytes were
132 (BD, cat. 555899), as per manufacturer's i
133 counted using a Neub Ficoll-Paque (Fisher scientific, cat. 17-1440-03) was used to enrich PBMC from

peripheral blood and residual erythrocytes were lysed using Pharm Lyse Solution

(BD, cat. 555899), as per manufacturer's instructions. Cells peripheral blood and residual erythrocytes were lysed using Pharm Lyse Solution (BD, cat. 555899), as per manufacturer's instructions. Cells were manually counted using a Neubauer chamber, using 0.4% Trypan blue to discrim (BD, cat. 555899), as per manufacturer´s instructions. Cells were manually

counted using a Neubauer chamber, using 0.4% Trypan blue to discriminate dead

cells). Three million live PBMC were then stained for flow cytomet

counted using a Neubauer chamber, using 0.4% Trypan blue to discriminate dead

cells). Three million live PBMC were then stained for flow cytometry in a total

volume of 100 µl.
 2.3 Cell enrichment from colostrum

Appr cells). Three million live PBMC were then stained for flow cytometry in a total
135 volume of 100 µl.
 2.3 Cell enrichment from colostrum

Approximately 2 ml of colostrum were processed for cell enrichment prior to

139 volume of 100 µl.
136
2.3 Cell enrichme
138 Approximately 2
139 staining for flow c
140 were recorded, a
141 Supernatant were
142 FBS/2mM EDTA. 137
138
139
140
141
142
143 **2.3 Cell enrichment from colostrum**
138 Approximately 2 ml of colostrum we
139 staining for flow cytometry, as previou
140 were recorded, and samples were of
141 Supernatant were stored away, and of
142 FBS/2mM EDTA. Cell 238 Approximately 2 ml of colostrum were processed for cell enrichment prior to staining for flow cytometry, as previously reported^{13,19}. Briefly, colostrum volumes were recorded, and samples were centrifuged at 400 rcf staining for flow cytometry, as previously reported^{13,19}. Briefly, colostrum volumes 339 staining for flow cytometry, as previously reported^{13,19}. Briefly, colostrum volumes
3140 were recorded, and samples were centrifuged at 400 rcf for 15 min at 4°C.
3141 Supernatant were stored away, and cell pellet were recorded, and samples were centrifuged at 400 rcf for 15 min at 4°C.

141 Supernatant were stored away, and cell pellet were washed twice with PBS/1%

142 FBS/2mM EDTA. Cells were manually counted using a Neubauer cha Supernatant were stored away, and cell pellet were washed twice with PBS/1%

FBS/2mM EDTA. Cells were manually counted using a Neubauer chamber using

0.4% Trypan blue to discriminate dead cells. Two million live cells wer FBS/2mM EDTA. Cells were manually counted using a Neubauer chamber using

143 0.4% Trypan blue to discriminate dead cells. Two million live cells were then

144 stained for flow cytometry in a total volume of 100 µl.

145

2.4% Trypan blue to discriminate dead cells. Two million live cells were then
144 stained for flow cytometry in a total volume of 100 μ l.
145
2.4 Flow cytometry
147 The same conjugated monoclonal antibodies were used 144 stained for flow cytometry in a total volume of 100 µl.

145
 2.4 Flow cytometry

147 The same conjugated monoclonal antibodies were us

148 and antibody and viability stains were titrated indeper

149 were staining 146
147
148
149 **2.4 Flow cytometry**
147 The same conjugate
148 and antibody and via
149 were staining with 147 The same conjugated monoclonal antibodies were used to stain both tissue types,

148 and antibody and viability stains were titrated independently for each tissue. PBMC

149 were staining with 1.38 µl of CD19-PerCP Cy5 148 and antibody and viability stains were titrated independently for each tissue. PBMC
were staining with 1.38 µl of CD19-PerCP Cy5.5 (BioLegend, catalog number
must also the control of the staining with 1.38 µl of CD19-P 149 were staining with 1.38 μl of CD19-PerCP Cy5.5 (BioLegend, catalog number

The staining with 1.38 μl of CD19-PerCP Cy5.5 (BioLegend, catalog number

The staining with 1.38 μl of CD19-PerCP Cy5.5 (BioLegend, catalog nu

302230), 5 µl of CD21-PE/DazzleTM 594 (BioLegend, catalog number 354922), 5
151 µl of CD24-Brilliant Violet 786TM (BioLegend, catalog number 311142), 2 µl of
152 CD27-APC (BioLegend, catalog number 302810), 2.5 µl of CD38 151 μ l of CD24-Brilliant Violet 786TM (BioLegend, catalog number 311142), 2 μ l of CD27-APC (BioLegend, catalog number 302810), 2.5 μ l of CD38-Alexa Fluor® 700 (BioLegend, catalog number 397206), 2 μ l of IgA-Vi 152 CD27-APC (BioLegend, catalog number 302810), 2.5 µl of CD38-Alexa Fluor® 700 (BioLegend, catalog number 397206), 2 µl of IgA-VioGreen (Miltenyi Biotec, catalog number 130-113-481), 3 µl of IgG APC Cy7 (BioLegend, cata 153 (BioLegend, catalog number 397206), 2 μ l of IgA-VioGreen (Miltenyi Biotec, catalog number 130-113-481), 3 μ l of IgG APC Cy7 (BioLegend, catalog number 410732), 3 μ l of IgD-VioBlue (Miltenyi Biotec, catalog nu catalog number 130-113-481), 3 µl of IgG APC Cy7 (BioLegend, catalog number 410732), 3 µl of IgD-VioBlue (Miltenyi Biotec, catalog number 130-123-258), and 5 µl of CD11c-Brilliant Violet 605TM (BioLegend, catalog number 7 410732), 3 µl of IgD-VioBlue (Miltenyi Biotec, catalog number 130-123-258), and 5

156 µl of CD11c-Brilliant Violet 605TM (BioLegend, catalog number 744436), and 1 µl

157 of Zombie Green (BioLegend, catalog number 423111 staining times for optimal resolution, and incubated 90 min at 4° C in the dark²⁰.

156 μ l of CD11c-Brilliant Violet 605TM (BioLegend, catalog number 744436), and 1 μ l

157 of Zombie Green (BioLegend, catalog number 423111); in a final volume of 100 μ l

158 of PBS/1% FBS/2mM EDTA. As previous pu 157 of Zombie Green (BioLegend, catalog number 423111); in a final volume of 100 µl

158 of PBS/1% FBS/2mM EDTA. As previous publications suggested we optimized

159 staining times for optimal resolution, and incubated 90 158 of PBS/1% FBS/2mM EDTA. As previous publications suggested we optimized

159 staining times for optimal resolution, and incubated 90 min at 4°C in the dark²⁰.

160 For colostrum cells, 2x10⁶ cells were stained usi 3159 staining times for optimal resolution, and incubated 90 min at 4°C in the dark²⁰.

160 For colostrum cells, $2x10^6$ cells were stained using a cocktail including 1.3:

161 CD19-PerCP Cy5.5, 5 µl CD21-PE/DazzleTM 5 For colostrum cells, $2x10^6$ cells were stained using a cocktail including 1.38 μ l For colostrum cells, 2x10° cells were stained using a cocktail including 1.38 µl

161 CD19-PerCP Cy5.5, 5 µl CD21-PE/DazzleTM 594, 5 µl CD24-Brilliant Violet

162 786TM, 2 µl CD27-APC, 3 µl CD38-Alexa Fluor® 700, 5 µl IgA-161 CD19-PerCP Cy5.5, 5 µl CD21-PE/DazzleTM 594, 5 µl CD24-Brilliant Violet
162 786TM, 2 µl CD27-APC, 3 µl CD38-Alexa Fluor® 700, 5 µl lgA-VioGreen, 5 µl lgG-
163 APC Cy7, 5 µl lgD-VioBlue, 5 µl lgG-APC Cy7, and 5 µl CD11c 162 786TM, 2 µl CD27-APC, 3 µl CD38-Alexa Fluor® 700, 5 µl IgA-VioGreen, 5 µl IgG-

163 APC Cy7, 5 µl IgD-VioBlue, 5 µl IgG-APC Cy7, and 5 µl CD11c-Brilliant Violet

164 605TM; in a final volume of 100 µl of PBS/1% FBS/2m 163 APC Cy7, 5 µl IgD-VioBlue, 5 µl IgG-APC Cy7, and 5 µl CD11c-Brilliant Violet

164 605TM; in a final volume of 100 µl of PBS/1% FBS/2mM EDTA. After incubation,

165 samples were washed and resuspended in PBS/1% FBS/2mM 164 605TM; in a final volume of 100 µl of PBS/1% FBS/2mM EDTA. After incubation,
165 samples were washed and resuspended in PBS/1% FBS/2mM EDTA for
166 immediate acquisition on a BD® FACSCelesta flow cytometer fitted with 165 samples were washed and resuspended in PBS/1% FBS/2mM EDTA for

166 immediate acquisition on a BD® FACSCelesta flow cytometer fitted with 405 nm,

167 488 nm, and 633 nm lasers and operated through the BD® FACSDiva so 166 immediate acquisition on a BD® FACSCelesta flow cytometer fitted with 405 nm,

167 488 nm, and 633 nm lasers and operated through the BD® FACSDiva software

168 v.8. Compensation controls were used at each acquisition 488 nm, and 633 nm lasers and operated through the BD® FACSDiva software
168 v.8. Compensation controls were used at each acquisition using compensation
169 beads following manufacturer's recommendations, and automatic co v.8. Compensation controls were used at each acquisition using compensation
169 beads following manufacturer's recommendations, and automatic compensation
170 was performed prior to acquisition. Over 10^6 events were re beads following manufacturer's recommendations, and automatic compensation

170 was performed prior to acquisition. Over 10⁶ events were recorded from each

171 sample, with the FSC threshold adjusted to 50,000 or 5,000 was performed prior to acquisition. Over 10^6 events were recorded from each was performed prior to acquisition. Over 10° events were recorded from each
171 sample, with the FSC threshold adjusted to 50,000 or 5,000 for blood and
172 colostrum, respectively. Analysis was performed using FlowJ sample, with the FSC threshold adjusted to 50,000 or 5,000 for blood and

colostrum, respectively. Analysis was performed using FlowJo X 10.0.7r2. The

gating strategy initially optimized was based on previous reports and colostrum, respectively. Analysis was performed using FlowJo X 10.0.7r2. The
gating strategy initially optimized was based on previous reports and CD45 stained
samples but FMO controls were used to adjust gates for both s samples but FMO controls were used to adjust gates for both sample types^{21,22}.

gating strategy initially optimized was based on previous reports and CD45 stained

174 samples but FMO controls were used to adjust gates for both sample types^{21,22}.

175 The gating strategy is described in Supplementa samples but FMO controls were used to adjust gates for both sample types^{21,22}.
175 The gating strategy is described in Supplementary Fig. 1.
176 **2.5 IgM, sIgA and sIgG ELISA**
177 **2.5 IgM, sIgA and sIgG ELISA**
178 Flat The gating strategy is described in Supplementary Fig. 1.
176
2.5 IgM, sIgA and sIgG ELISA
Flat-bottom 96-well polystyrene plates were coated with 1
179 anti-human monoclonal antibody for either IgM (Abca
(Abcam, cat. ab 177
178
179
180 **2.5 IgM, sIgA and sIgG ELISA**

178 Flat-bottom 96-well polystyrene

179 anti-human monoclonal antibo

180 (Abcam, cat. ab7400b) or IgG (178 Flat-bottom 96-well polystyrene plates were coated with 1:5000 PBS-diluted mouse
179 anti-human monoclonal antibody for either IgM (Abcam, cat. ab200541), IgA
180 (Abcam, cat. ab7400b) or IgG (Abcam, cat. ab72528), and 179 anti-human monoclonal antibody for either IgM (Abcam, cat. ab200541), IgA
180 (Abcam, cat. ab7400b) or IgG (Abcam, cat. ab72528), and incubated 12 h at 4 °C. 180 (Abcam, cat. ab7400b) or IgG (Abcam, cat. ab72528), and incubated 12 h at 4 °C.

(Abcam, cat. ab72528), and incubated 12 h at 4 °C.

181 After blocking, dilutions of plasma or colostrum supernatants were incubated for 2

182 h at 37 °C. For detection, anti-human IgG, IgA, and IgM coupled to HRP (Abcam,

183 cat. ab102420) were added at 1:8000 dilution 182 h at 37 °C. For detection, anti-human IgG, IgA, and IgM coupled to HRP (Abcam, cat. ab102420) were added at 1:8000 dilution and incubated for 1 h at 37 °C. Fifty μ I/ well of TMB (Abcam, cat. ab171523) were then incu cat. ab102420) were added at 1:8000 dilution and incubated for 1 h at 37 °C. Fifty μ well of TMB (Abcam, cat. ab171523) were then incubated 2 min. The reaction was stopped with 50 μ of 0.2 M H₂SO₄, and plates we 184 μ I/ well of TMB (Abcam, cat. ab171523) were then incubated 2 min. The reaction

185 was stopped with 50 μ I of 0.2 M H₂SO₄, and plates were read at 450 nm on a

186 spectrophotometer (Tecan's Magellan® univer was stopped with 50 μ of 0.2 M H₂SO₄, and plates were read at 450 nm on a
spectrophotometer (Tecan's Magellan® universal reader). Quantitative standard
curves were obtained for each isotype using serial dilutions f spectrophotometer (Tecan's Magellan® universal reader). Quantitative standard

curves were obtained for each isotype using serial dilutions from recombinant

human IgA (Abcam, cat. ab91025), IgG (Abcam, cat. Ab91102) or Ig

curves were obtained for each isotype using serial dilutions from recombinant
188 human IgA (Abcam, cat. ab91025), IgG (Abcam, cat. Ab91102) or IgM (Abcam,
189 cat. Ab91117).
190
191 **2.6 IgM, IgG, and IgA-secreting cells** human IgA (Abcam, cat. ab91025), IgG (Abcam, cat. Ab91102) or IgM (Abcam, cat. Ab91117).

189 cat. Ab91117).
 2.6 IgM, IgG, and IgA-secreting cells ELISPOT

191 **2.6 IgM, IgG, and IgA-secreting cells ELISPOT**

192 Briefl cat. Ab91117).

190
 **2.6 lgM, lgG, a

2.6 lgM, lgG, a

192 Briefly, 96-well

activation, men

194 monoclonal an

195 ab7400, ab725

196 blocked for 90 r

197 at 200.000 col** 191
192
193
194
195
196
197 2.6 IgM, IgG, and IgA-secreting cells ELISPOT
192 Briefly, 96-well plates were covered with PVI
activation, membranes were coated with a 1:25
monoclonal antibody recognizing IgM, IgA, or
ab7400, ab72528, respectively). The 192 Briefly, 96-well plates were covered with PVDF membranes. After methanol
193 activation, membranes were coated with a 1:2500 dilution of mouse anti-human
194 monoclonal antibody recognizing IgM, IgA, or IgG (Abcam, ca 193 activation, membranes were coated with a 1:2500 dilution of mouse anti-human

194 monoclonal antibody recognizing IgM, IgA, or IgG (Abcam, cats. ab200541,

195 ab7400, ab72528, respectively). The plates were incubated monoclonal antibody recognizing IgM, IgA, or IgG (Abcam, cats. ab200541,

195 ab7400, ab72528, respectively). The plates were incubated for 12 h at 4° C, then

196 blocked for 90 min at 25 °C. Colostrum-enriched cells or ab7400, ab72528, respectively). The plates were incubated for 12 h at 4° C, then
196 blocked for 90 min at 25 °C. Colostrum-enriched cells or blood PBMC were seeded
197 at 200,000 cells/well in RPMI 1640 with 10% FBS and 1 blocked for 90 min at 25 °C. Colostrum-enriched cells or blood PBMC were seeded
at 200,000 cells/well in RPMI 1640 with 10% FBS and 100 U/ml penicillin, 0.1
mg/ml streptomycin. Plates were incubated for 18 h at 37 °C and 5 at 200,000 cells/well in RPMI 1640 with 10% FBS and 100 U/ml penicillin, 0.1
mg/ml streptomycin. Plates were incubated for 18 h at 37 °C and 5% of CO₂. For
detection, a 1:10,000 dilution of HRP-conjugated goat anti-human mg/ml streptomycin. Plates were incubated for 18 h at 37 °C and 5% of CO₂. For
199 detection, a 1:10,000 dilution of HRP-conjugated goat anti-human IgG, IgA, and
19M (Abcam, cat. ab102420) was incubated 1 h at 37°C. Fina detection, a 1:10,000 dilution of HRP-conjugated goat anti-human IgG, IgA, and

1990 IgM (Abcam, cat. ab102420) was incubated 1 h at 37°C. Finally, 50 µl/well 3,3′-

DAB (Sigma-Aldrich, cat. D4418) were added. Membranes we 1gM (Abcam, cat. ab102420) was incubated 1 h at 37°C. Finally, 50 µl/well 3,3′-

201 DAB (Sigma-Aldrich, cat. D4418) were added. Membranes were then washed and

202 dried, and pictures were acquired with a Stereoscopic Mic DAB (Sigma-Aldrich, cat. D4418) were added. Membranes were then washed and

202 dried, and pictures were acquired with a Stereoscopic Microscope (Nikon, cat.

203 SMZ1500). Spots were counted using the Analyze Particles co

dried, and pictures were acquired with a Stereoscopic Microscope (Nikon, cat.

203 SMZ1500). Spots were counted using the Analyze Particles command in ImageJ

204 (Java®).

205

2.7 Colostrum-mediated macrophage-like cells SMZ1500). Spots were counted using the Analyze Particles command in ImageJ
204 (Java®).
205
205 2.7 Colostrum-mediated macrophage cytokine production
207 To produce human macrophage-like cells, U937 cells (ATCC, CRL-1593.2 204 (Java®).
205
206 **2.7 Colo:**
207 To produ
208 differentia
209 1640, sup
210 but inclue
211 cells we ---
206
207
208
209
210
211 2.7 **Colostrum-mediated macrophage cytokine production**
207 To produce human macrophage-like cells, U937 cells (ATCC
208 differentiated over 24 h using 10 ng/ml PMA (Sigma-Aldrich®,
209 1640, supplemented as above. After 2 207 To produce human macrophage-like cells, U937 cells (ATCC, CRL-1593.2) were

208 differentiated over 24 h using 10 ng/ml PMA (Sigma-Aldrich®, cat. 79346) in RPMI

209 1640, supplemented as above. After 24 h, the media w 208 differentiated over 24 h using 10 ng/ml PMA (Sigma-Aldrich®, cat. 79346) in RPMI

209 1640, supplemented as above. After 24 h, the media was replaced without PMA

210 but including 2.5% 0.22 µm-filtered colostrum super 209 1640, supplemented as above. After 24 h, the media was replaced without PMA
210 but including 2.5% 0.22 µm-filtered colostrum supernatant. After a further 24 h,
211 cells were washed, fresh media without colostrum was 210 but including 2.5% 0.22 μ m-filtered colostrum supernatant. After a further 24 h, cells were washed, fresh media without colostrum was added. To quantify cells were washed, fresh media without colostrum was added. T 211 cells were washed, fresh media without colostrum was added. To quantify

212 cytokines, 5 µL of culture supernatants were obtained every 2 h for a total of 16 h.

213 Samples were centrifuged and stored at -20 °C until quantification. Cytokines were

214 quantified using a LEGENDplex kit (Bio 213 Samples were centrifuged and stored at -20 °C until quantification. Cytokines were

214 quantified using a LEGENDplex kit (BioLegend, cat. 740808) according to the

215 manufacturer's instructions. All samples were i quantified using a LEGENDplex kit (BioLegend, cat. 740808) according to the

manufacturer's instructions. All samples were immediately read on a BD®

FACSCelesta flow cytometer fitted with 405 nm, 488 nm, and 633 nm laser manufacturer's instructions. All samples were immediately read on a BD®

FACSCelesta flow cytometer fitted with 405 nm, 488 nm, and 633 nm lasers and

217 operated through the BD® FACSDiva software version 8. Analysis and EACSCelesta flow cytometer fitted with 405 nm, 488 nm, and 633 nm lasers and

217 operated through the BD® FACSDiva software version 8. Analysis and quantitative

218 data were obtain using the FCAP Array software v 3.0 S Cloud-based Data Analysis Software online²³.

217 operated through the BD® FACSDiva software version 8. Analysis and quantitative

218 data were obtain using the FCAP Array software v 3.0 SoftFlow® LEGENDplex™

219 Cloud-based Data Analysis Software online²³.

221 data were obtain using the FCAP Array software v 3.0 SoftFlow® LEGENDplex™

219 Cloud-based Data Analysis Software online²³.

220

221 **2.8 Statistical Analysis**

222 Shapiro-Wilk normality tests were performed on each Cloud-based Data Analysis Software online²³.

220

221 **2. 8 Statistical Analysis**

222 Shapiro-Wilk normality tests were performe

223 dataset. Non-normal datasets were compare

224 Kruskal-Wallis test when comparing >2 221
222
223
224
225
226
227
229 221 **2. 8 Statistical Analysis**

222 Shapiro-Wilk normality t

223 dataset. Non-normal data

224 Kruskal-Wallis test when

225 were compared using {

226 Pearson rank or Spearm

227 v.8 (GraphPad Software I

228 using Inde Shapiro-Wilk normality tests were performed on each B lymphocyte subtype

223 dataset. Non-normal datasets were compared using Mann-Whitney or one-way

224 Kruskal-Wallis test when comparing >2 groups. Means of normally di dataset. Non-normal datasets were compared using Mann-Whitney or one-way

224 Kruskal-Wallis test when comparing >2 groups. Means of normally distributed data

225 were compared using Student's t test. Correlations were in Kruskal-Wallis test when comparing >2 groups. Means of normally distributed data

225 were compared using Student's t test. Correlations were investigated using

226 Pearson rank or Spearman r. All these tests were perform were compared using Student's t test. Correlations were investigated using

226 Pearson rank or Spearman r. All these tests were performed in GraphPad Prism

227 v.8 (GraphPad Software Inc®, San Diego CA, USA). Median (IQR Pearson rank or Spearman r. All these tests were performed in GraphPad Prism

227 v.8 (GraphPad Software Inc®, San Diego CA, USA). Median (IQR) were compared

228 using Independent-Samples Median test in SPSS v.26.

229 3.

v.8 (GraphPad Software Inc®, San Diego CA, USA). Median (IQR) were compared
228 using Independent-Samples Median test in SPSS v.26.
239 3. RESULTS AND DISCUSSION
231 3.1 B lymphocytes subpopulations are selectively present using Independent-Samples Median test in SPSS v.26.
229
230 3. RESULTS AND DISCUSSION
231
232 3.1 B lymphocytes subpopulations are selectively pr
233 We recruited a total of 48 mothers to participate in this
234 the BMI an 230
231
232
233
234
235
235
235 3. **3. RESULTS AND DISCUSSION**
231 **3.1 B lymphocytes subpopulationally**
233 We recruited a total of 48 mothers
234 the BMI and BF% of the cohort
235 compared to the cohort of "lean"
236 possible confounders such as m
237 232
233
234
235
236
237
238 3.1 **B lymphocytes subpopulations are selectively present in colostrum**
233 We recruited a total of 48 mothers to participate in this study. As per study c
234 the BMI and BF% of the cohort of mothers with obesity were sig We recruited a total of 48 mothers to participate in this study. As per study design,

234 the BMI and BF% of the cohort of mothers with obesity were significantly larger

235 compared to the cohort of "lean" mothers, whil

the BMI and BF% of the cohort of mothers with obesity were significantly larger

235 compared to the cohort of "lean" mothers, while no difference were observed in

236 possible confounders such as maternal age, infant gen compared to the cohort of "lean" mothers, while no difference were observed in

236 possible confounders such as maternal age, infant gender, gestational age, or

237 delivery type between the groups (Table 1).

238 We app possible confounders such as maternal age, infant gender, gestational age, or

237 delivery type between the groups (Table 1).

238 We applied an optimized 10-colour flow cytometry panel to detect 18

239 subpopulations of delivery type between the groups (Table 1).

238 We applied an optimized 10-colour fl

239 subpopulations of B lymphocytes in periph

240 strategy was based on classical and mo

241 peripheral blood B lymphocytes (Table 2) We applied an optimized 10-colour flow cytometry panel to detect 18

239 subpopulations of B lymphocytes in peripheral blood and colostrum. The gating

240 strategy was based on classical and more recent markers used to su 239 subpopulations of B lymphocytes in peripheral blood and colostrum. The gating
240 strategy was based on classical and more recent markers used to subtype
241 peripheral blood B lymphocytes (Table 2). We found a reduced 240 strategy was based on classical and more recent markers used to subtype
241 peripheral blood B lymphocytes (Table 2). We found a reduced fraction of the total
242 B lymphocytes population in obese colostrum compared to 241 peripheral blood B lymphocytes (Table 2). We found a reduced fraction of the total
242 B lymphocytes population in obese colostrum compared to the lean cohort 242 B lymphocytes population in obese colostrum compared to the lean cohort

(Supplementary Fig. 2), consistent with previous findings¹³. The reduction was not

(Supplementary Fig. 2), consistent with previous findings¹³. The reduction was not

resumed in peripheral blood, suggesting that obesity regulates this compartment

locally, with observed changes in colostrum.

246

In resumed in peripheral blood, suggesting that obesity regulates this compartment

245 locally, with observed changes in colostrum.

246 ln peripheral blood, we could detect all targeted subpopulations including rare

248 s 245 locally, with observed changes in colostrum.

246

247 ln peripheral blood, we could detect all ta

248 subtypes like B_{reg} -like and transitional B

249 proportions consistent with previous repo

250 multiple subtype 247
248
249
250
251
252
253 247 In peripheral blood, we could detect all targeted subpopulations including rare

248 subtypes like B_{reg} -like and transitional B cells (Supplementary Fig. 3) with

249 proportions consistent with previous reports^{22,} 248 subtypes like B_{reg}-like and transitional B cells (Supplementary Fig. 3) with

249 proportions consistent with previous reports^{22,24–26}. In contrast, in colostrum

250 multiple subtypes could not be detected, notab proportions consistent with previous reports^{22,24–26}. In contrast, in colostrum proportions consistent with previous reports^{22,24–26}. In contrast, in colostrum

250 multiple subtypes could not be detected, notably the early stages of B cell

251 ontogeny including transitional and naïve B cells (Fig multiple subtypes could not be detected, notably the early stages of B cell

251 ontogeny including transitional and naïve B cells (Fig. 1A). In comparing B

252 lymphocyte subtypes between blood and colostrum, we consider ontogeny including transitional and naïve B cells (Fig. 1A). In comparing B
252 lymphocyte subtypes between blood and colostrum, we considered relative
253 proportions (Supplementary Fig. 3), but also concentrations in ori bymphocyte subtypes between blood and colostrum, we considered relative

proportions (Supplementary Fig. 3), but also concentrations in original samples

(Fig. 1) calculated from measured sample volumes, manual cell count proportions (Supplementary Fig. 3), but also concentrations in original samples

254 (Fig. 1) calculated from measured sample volumes, manual cell counts and %

255 populations, to account for discrepancies in cellularity 254 (Fig. 1) calculated from measured sample volumes, manual cell counts and %

255 populations, to account for discrepancies in cellularity between blood and

256 colostrum (Fig. 1). Differences were consistent between p 255 populations, to account for discrepancies in cellularity between blood and

256 colostrum (Fig. 1). Differences were consistent between population % and

257 concentrations. While early ontogeny B cells were absent fr colostrum (Fig. 1). Differences were consistent between population % and

concentrations. While early ontogeny B cells were absent from colostrum,

differentiated subtypes were very significantly increased in this tissue, concentrations. While early ontogeny B cells were absent from colostrum,

258 differentiated subtypes were very significantly increased in this tissue, including
 B_{reg} -like, DN2-like and plasma-like cells that were rare differentiated subtypes were very significantly increased in this tissue, including
 B_{reg} -like, DN2-like and plasma-like cells that were rare in peripheral blood (Fig. 1B),

although definitive labelling should be based B_{reg} -like, DN2-like and plasma-like cells that were rare in peripheral blood (Fig. 1B),

260 although definitive labelling should be based on functional assays such as cytokine

261 and antibody production. While swi 260 although definitive labelling should be based on functional assays such as cytokine

261 and antibody production. While switched memory (SwM) B cells were present in

262 similar concentrations in both colostrum and b 261 and antibody production. While switched memory (SwM) B cells were present in similar concentrations in both colostrum and blood, unswitched memory B cells (USwM) were significantly underrepresented in colostrum compar 262 similar concentrations in both colostrum and blood, unswitched memory B cells

263 (USwM) were significantly underrepresented in colostrum compared to peripheral

264 blood (Fig. 1C). Overall, the results describe per 263 (USwM) were significantly underrepresented in colostrum compared to peripheral
264 blood (Fig. 1C). Overall, the results describe pervasive, significant differences in %
265 and concentrations of B lymphocytes subtype blood (Fig. 1C). Overall, the results describe pervasive, significant differences in %

and concentrations of B lymphocytes subtypes between blood and colostrum. This

may suggest a selective migration to the mammary acin and concentrations of B lymphocytes subtypes between blood and colostrum. This

266 may suggest a selective migration to the mammary acini and colostrum. It further

267 describes human colostrum as containing multiple sub B cells, enriching the current state-of-the $art^{27,28}$.

may suggest a selective migration to the mammary acini and colostrum. It further

267 describes human colostrum as containing multiple subpopulations of differentiated

268 B cells, enriching the current state-of-the art² describes human colostrum as containing multiple subpopulations of differentiated

268 B cells, enriching the current state-of-the art^{27,28}.

269

270 We then asked if proportions of specific B cell subpopulations in col 268 B cells, enriching the current state-of-the art^{27,28}.

269 We then asked if proportions of specific B cell

271 regulated with maternal obesity. In this contex

272 USwM B cells without detected changes in the

273 270
271
272
273 270 We then asked if proportions of specific B cell subpopulations in colostrum were

271 regulated with maternal obesity. In this context, we measured significantly less

272 USwM B cells without detected changes in the S 271 regulated with maternal obesity. In this context, we measured significantly less
272 USwM B cells without detected changes in the SwM B cells (Fig. 1C). While this
273 work is the first to report changes in breastmilk 272 USwM B cells without detected changes in the SwM B cells (Fig. 1C). While this
273 work is the first to report changes in breastmilk memory B cells in relation with
273 273 work is the first to report changes in breastmilk memory B cells in relation with

1273 work is the first to report changes in breastmilk memory B cells in relation with

1273

maternal obesity, others have measured increased breastmilk SwM B cells from

275 HIV-infected mothers²⁸. Increased SwM B cells were also found in mouse visceral

276 adipose tissue²⁹. IgG isotype switching follows st HIV -infected mothers²⁸. Increased SwM B cells were also found in mouse visceral 275 HIV-infected mothers²⁸. Increased SwM B cells were also found in mouse visceral
276 adipose tissue²⁹. IgG isotype switching follows stimulation with cytokines that are
277 increased in obesity^{29,30}. We propose t adipose tissue 29 . IgG isotype switching follows stimulation with cytokines that are adipose tissue²⁹. IgG isotype switching follows stimulation with cytokines that are

increased in obesity^{29,30}. We propose that the increase in SwM B cells depletes

USwM, causing the significant decrease in colostrum increased in obesity^{29,30}. We propose that the increase in SwM B cells depletes 277 increased in obesity^{29,30}. We propose that the increase in SwM B cells depletes

278 USwM, causing the significant decrease in colostrum USwM B cells. In support of

279 this, obesity peripheral blood indeed contain USwM, causing the significant decrease in colostrum USwM B cells. In support of

this, obesity peripheral blood indeed contained significantly less USwM and

significantly more SwM B lymphocytes (data not shown).

281

28

279 this, obesity peripheral blood indeed contained significantly less USwM and

280 significantly more SwM B lymphocytes (data not shown).

281 3.2 Obesity colostrum harbors a dysregulated B lymphocyte repertoire,

283 h 280 significantly more SwM B lymphocytes (data not shown).

281 **3.2 Obesity colostrum harbors a dysregulated B**
 hinting towards an inflammatory profile

284 Looking at functional populations, we found a significa

285 --
282
283
284
285
286
287
289 3.2 Obesity colostrum harbors a dysregulated B lymphocyte repertoire,

283 **hotain and a step inflame inflame in the colostron of mothers** with obesity (Fig. 2A). The relative abundance

286 fraction in the colostrum of m **hinting towards an inflammatory profile**

284 Looking at functional populations, we fou

285 fraction in the colostrum of mothers with of

286 of colostrum B_{reg}-like cells negatively corre

287 and current BF%. Inflamma Looking at functional populations, we found a significantly reduced B_{reg} -like cell

fraction in the colostrum of mothers with obesity (Fig. 2A). The relative abundance

of colostrum B_{reg} -like cells negatively correlat fraction in the colostrum of mothers with obesity (Fig. 2A). The relative abundance

286 of colostrum B_{reg}-like cells negatively correlated with maternal pre-pregnancy BMI

287 and current BF%. Inflammation has been lin 286 of colostrum B_{reg}-like cells negatively correlated with maternal pre-pregnancy BMI

287 and current BF%. Inflammation has been linked to decreased B_{reg}-like cells

288 functions and growth^{31,32}. Obesity is now a and current BF%. Inflammation has been linked to decreased B_{reg}-like cells

288 functions and growth^{31,32}. Obesity is now accepted as a state of chronic

inflammation, which supports the physiological interpretation o functions and growth^{31,32}. Obesity is now accepted as a state of chronic transformations and growth^{31,32}. Obesity is now accepted as a state of chronic inflammation, which supports the physiological interpretation of the results^{33,34}. B_{reg} cells limit ongoing immune reactions, restore im inflammation, which supports the physiological interpretation of the results^{33,34}. B_{req} inflammation, which supports the physiological interpretation of the results^{33,34}. B_{reg}
cells limit ongoing immune reactions, restore immune homeostasis, and promote
tolerance to commensals of the gut microbiota, sugg cells limit ongoing immune reactions, restore immune homeostasis, and promote
tolerance to commensals of the gut microbiota, suggesting consequences of this
reduction for the infant's pioneering microbiota^{35–38}. We then tolerance to commensals of the gut microbiota, suggesting consequences of this

reduction for the infant's pioneering microbiota^{35–38}. We then investigated DN2-like

B cells, recently described in blood in multiple infl reduction for the infant's pioneering microbiota³⁵⁻³⁸. We then investigated DN2-like reduction for the infant's pioneering microbiota^{36–38}. We then investigated DN2-like

293 B cells, recently described in blood in multiple inflammatory scenarios including

294 autoimmune disorders, acute infections and 293 B cells, recently described in blood in multiple inflammatory scenarios including

294 autoimmune disorders, acute infections and obesity^{22,15,39}. Consistent with the

295 inflammatory state suggested by a reduced autoimmune disorders, acute infections and obesity $22,15,39$. Consistent with the autoimmune disorders, acute infections and obesity^{22,15,39}. Consistent with the

inflammatory state suggested by a reduced B_{reg} -like B cell fraction, we found

significantly increased proportions of DN2-like cells, an inflammatory state suggested by a reduced B_{reg} -like B cell fraction, we found

296 significantly increased proportions of DN2-like cells, and these changes positively

297 correlated with pre-pregnancy BMI and current B 296 significantly increased proportions of DN2-like cells, and these changes positively

297 correlated with pre-pregnancy BMI and current BF% (Fig. 2B). While the exact

298 origins and roles of DN2-like cells remain unc correlated with pre-pregnancy BMI and current BF% (Fig. 2B). While the exact

298 origins and roles of DN2-like cells remain unclear to date, their occurrence follow a

299 proinflammatory stimulus⁴⁰⁻⁴³. Future experime origins and roles of DN2-like cells remain unclear to date, their occurrence follow a
proinflammatory stimulus⁴⁰⁻⁴³. Future experiments could include measuring the
transcription factor T-bet and IFNy production from the proinflammatory stimulus^{40–43}. Future experiments could include measuring the proinflammatory stimulus^{40–43}. Future experiments could include measuring the

transcription factor T-bet and IFNy production from these cells to confirm cell

identity^{44–46}. We then investigated plasma-like cells tha 300 transcription factor T-bet and IFNγ production from these cells to confirm cell
301 identity^{44–46}. We then investigated plasma-like cells that could be producing
302 antibodies. These were increased in obesity colos identity^{44–46}. We then investigated plasma-like cells that could be producing 301 identity⁴⁴⁻⁴⁶. We then investigated plasma-like cells that could be producing
 302 antibodies. These were increased in obesity colostrum, and as observed with DN2-
 303 like B cells, colostrum plasma-like cell 302 antibodies. These were increased in obesity colostrum, and as observed with DN2-
303 like B cells, colostrum plasma-like cell proportions positively correlated with pre-
304 pregnancy BMI and with current BF% (Fig. 2C) 303 like B cells, colostrum plasma-like cell proportions positively correlated with pre-
304 pregnancy BMI and with current BF% (Fig. 2C). Plasma cells can differentiate
41. The pregnancy BMI and with current BF% (Fig. 2C) 304 pregnancy BMI and with current BF% (Fig. 2C). Plasma cells can differentiate

following $IFNy^{47}$ and leptin signaling⁴⁸. These soluble factors are increased in obesity⁴⁹, which provides a physiological explanation for our findings.

following $IFN\gamma^{4}$ and leptin signaling⁴⁸. These soluble factors are increased in
306 obesity⁴⁹, which provides a physiological explanation for our findings.
307
308 Correlation values (r^2) for the 3 cell types wer 306 obesity⁴⁹, which provides a physiological explanation for our findings.

307

308 Correlation values (r^2) for the 3 cell types were consistently hig

309 compared to BMI. Despite the historical use of BMI as an in 308
308
309
310
311
312
313
314 Correlation values (r^2) for the 3 cell types were consistently higher for BF% 308 Correlation values (r²) for the 3 cell types were consistently higher for BF% compared to BMI. Despite the historical use of BMI as an indicator of obesity, the lack of precision in the composition of the measured w compared to BMI. Despite the historical use of BMI as an indicator of obesity, the
310 lack of precision in the composition of the measured weight is confounding. Our
311 results suggest a clearer association between incre 310 lack of precision in the composition of the measured weight is confounding. Our
311 results suggest a clearer association between increased BF% and the regulation of
312 specific B cell subtypes in human colostrum.
313

specific B cell subtypes in human colostrum.

312 results suggest a clearer association between increased BF% and the regulation of

313 3.3 Obesity modulates colostrum plasma like-cells and their antibody

315 secreting f specific B cell subtypes in human colostrum.
313
314 3.3 Obesity modulates colostrum plas
315 secreting function
316 Having identified a significant increase in
317 wondered if this population exhibited cha
318 isotype 314
315
316
317
318
319
320 3.3 **Obesity modulates colostrum plasma like-cells and their antibody**
secreting function
315 **Having identified a significant increase in colostrum plasma-like B cells, we**
317 wondered if this population exhibited chang secreting function
315 **Having identified a**
317 **wondered if this p**
318 **isotypes, and antig
319 expression during c
320 CD19 MFI within th**
321 their relative degree
322 on CD19 expression 316 Having identified a significant increase in colostrum plasma-like B cells, we
317 wondered if this population exhibited changes in their antibody production,
318 isotypes, and antigen specificity. As B cells gradually wondered if this population exhibited changes in their antibody production,
318 isotypes, and antigen specificity. As B cells gradually lose CD19 surface
319 expression during differentiation towards antibody-secreting ce 318 isotypes, and antigen specificity. As B cells gradually lose CD19 surface
expression during differentiation towards antibody-secreting cells, we measured
CD19 MFI within the plasma-like cell subpopulations in both gro 319 expression during differentiation towards antibody-secreting cells, we measured

320 CD19 MFI within the plasma-like cell subpopulations in both groups to compare

321 their relative degree of maturity⁵⁰. We identif 320 CD19 MFI within the plasma-like cell subpopulations in both groups to compare
321 their relative degree of maturity⁵⁰. We identified 3 discrete subpopulations based
322 on CD19 expression level, with a significant i their relative degree of maturity⁵⁰. We identified 3 discrete subpopulations based 321 their relative degree of maturity⁵⁰. We identified 3 discrete subpopulations based
322 on CD19 expression level, with a significant increase in the CD19^{low} plasma-like B
323 cell fraction in the obese cohort (Supp on CD19 expression level, with a significant increase in the CD19^{low} plasma-like B on CD19 expression level, with a significant increase in the CD19^{ow} plasma-like B

cell fraction in the obese cohort (Supplementary Fig. 4)⁵¹. This suggests obese

colostrum is enriched in plasma-like cells maturing t cell fraction in the obese cohort (Supplementary Fig. $4)^{51}$. This suggests obese cell fraction in the obese cohort (Supplementary Fig. 4)⁵¹. This suggests obese

colostrum is enriched in plasma-like cells maturing towards antibody-secreting

cells, possibly driven by proinflammatory signals linked t earlier $47,48$.

colostrum is enriched in plasma-like cells maturing towards antibody-secreting
cells, possibly driven by proinflammatory signals linked to obesity as described
artier^{47,48}.
327
We compared isotypes of the plasma-like ce cells, possibly driven by proinflammatory signals linked to obesity as described
 $\text{earlier}^{47,48}$.

327

We compared isotypes of the plasma-like cells and evidenced a significantly

increased fraction of lgG^+ plasma 326 earlier^{47,48}.

327 We compa

329 increased 1

330 fraction rem

331 IgA⁺- and

332 contained

333 compensate 328
329
330
331
332
333
334 We compared isotypes of the plasma-like cells and evidenced a significantly
increased fraction of $\lg G^+$ plasma-like cells in obese colostrum, while the $\lg A^+$
fraction remained unchanged (Fig. 3A). Interestingly, intra increased fraction of lgG^+ plasma-like cells in obese colostrum, while the lgA^+ 330
330
331
332
333
335 fraction remained unchanged (Fig. 3A). Interestingly, intra-individual correlations of
1gA⁺- and 1gG⁺-plasma-like cells exhibited a trend whereby obese colostrum
contained a switched relation of both isotypes (Fig. 3B) IgA⁺ - and IgG+ 19A⁺- and IgG⁺-plasma-like cells exhibited a trend whereby obese colostrum

232 contained a switched relation of both isotypes (Fig. 3B), suggesting a

233 compensatory mechanism although more work is required to mecha contained a switched relation of both isotypes (Fig. 3B), suggesting a
333 compensatory mechanism although more work is required to mechanistically
334 explain this. We then investigated if there were more antibody-secreti 333 compensatory mechanism although more work is required to mechanistically
334 explain this. We then investigated if there were more antibody-secreting cells in
335 obese colostrum. Using an ELISPOT assay, we found a sig explain this. We then investigated if there were more antibody-secreting cells in
335 obese colostrum. Using an ELISPOT assay, we found a significant increase in IgG-
335 obese colostrum. Using an ELISPOT assay, we found a 335 obese colostrum. Using an ELISPOT assay, we found a significant increase in IgG-

336 secreting cells in obese colostrum which positively correlated with maternal BMI
337 and BF% (Fig. 3C). While IgA-secreting cell concentrations remained unchanged,
338 we observed a negative correlation between their and BF% (Fig. 3C). While IgA-secreting cell concentrations remained unchanged,
338 we observed a negative correlation between their concentration, and maternal BMI
349 and BF%. These results confirm colostrum contains B c we observed a negative correlation between their concentration, and maternal BMI

and BF%. These results confirm colostrum contains B cell subsets that actively

produce antibodies *in situ*, adding to the current underst 339 and BF%. These results confirm colostrum contains B cell subsets that actively

340 produce antibodies *in situ*, adding to the current understanding of breastmilk IgG

341 originating from FcN-mediated transcellular produce antibodies *in situ*, adding to the current understanding of breastmilk IgG
originating from FcN-mediated transcellular translocation⁵². We measured
significantly more sIgG and less sIgA concentrations in obese originating from FcN-mediated transcellular translocation⁵². We measured originating from FcN-mediated transcellular translocation⁵². We measured
significantly more slgG and less slgA concentrations in obese colostrum (Fig. 3D).
These changes may affect the establishment of the intestinal mi significantly more sIgG and less sIgA concentrations in obese colostrum (Fig. 3D).

343 These changes may affect the establishment of the intestinal microbiota⁵³.

344 Dysregulations in maternal antibodies received thro These changes may affect the establishment of the intestinal microbiota⁵³. These changes may affect the establishment of the intestinal microbiota⁵³.

Dysregulations in maternal antibodies received through breastmilk also impact the

growth and maturation of the neonatal intestine⁵⁴. These r By Dysregulations in maternal antibodies received through breastmilk also impact the
growth and maturation of the neonatal intestine⁵⁴. These results confirm previous
reports of increased local concentrations of IgG in growth and maturation of the neonatal intestine⁵⁴. These results confirm previous 345 growth and maturation of the neonatal intestine³⁴. These results confirm previous

346 reports of increased local concentrations of lgG in obesity⁵⁵. We further wondered

347 if the increased lgG may be autoimmune reports of increased local concentrations of \log in obesity⁵⁵. We further wondered reports of increased local concentrations of IgG in obesity⁵⁵. We further wondered

347 if the increased IgG may be autoimmune, as accumulating evidence links obesity

348 to autoimmune disorders⁵⁶. We measured the co 347 if the increased IgG may be autoimmune, as accumulating evidence links obesity
348 to autoimmune disorders⁵⁶. We measured the concentration of colostrum IgG
359 specifically recognizing N-acetylglucosamine (GIcNAc), to autoimmune disorders⁵⁶. We measured the concentration of colostrum \log 348 to autoimmune disorders³⁶. We measured the concentration of colostrum IgG

349 specifically recognizing N-acetylglucosamine (GlcNAc), a common bacterial and

350 fungal antigen that bears similarities with circulati 349 specifically recognizing N-acetylglucosamine (GlcNAc), a common bacterial and
350 fungal antigen that bears similarities with circulating hyaluronic acid in obesity^{57,58}.
351 We found a very significant increase of fungal antigen that bears similarities with circulating hyaluronic acid in obesity $57,58$. fungal antigen that bears similarities with circulating hyaluronic acid in obesity^{57,58}.
351 We found a very significant increase of anti-GlcNAc IgG in obese colostrum (Fig.
352 3D). The GlcNAc used as target antigen in We found a very significant increase of anti-GlcNAc IgG in obese colostrum (Fig.
352 3D). The GlcNAc used as target antigen in the assay was obtained from Group A
353 *Streptococcus pyogenes* (GAS), however the incidence G 352 3D). The GlcNAc used as target antigen in the assay was obtained from Group A
353 *Streptococcus pyogenes* (GAS), however the incidence GAS infection is low
354 among pregnant mothers from low income countries like Mex Streptococcus pyogenes (GAS), however the incidence GAS infection is low

among pregnant mothers from low income countries like Mexico⁵⁹, and no

participant reported GAS infection during pregnancy. These results then su among pregnant mothers from low income countries like Mexico⁵⁹, and no and among pregnant mothers from low income countries like Mexico⁵⁹, and no
355 participant reported GAS infection during pregnancy. These results then suggest
356 autoreactive anti-GlcNAc IgG in obese colostrum, and it w 355 participant reported GAS infection during pregnancy. These results then suggest
356 autoreactive anti-GlcNAc IgG in obese colostrum, and it will be important to
357 investigate how this affects neonatal gut health.
35

356 autoreactive anti-GlcNAc IgG in obese colostrum, and it will be important to investigate how this affects neonatal gut health.
358
359 3.4 Obese colostrum IgG may originate from proinflammatory DN2 B
1970 lymphocytes
 357 investigate how this affects neonatal gut health.
358 **3.4 Obese colostrum IgG may originate**
360 **lymphocytes**
361 We then wondered what cells could produce Ig
362 DN2-like cells were almost entirely IgG⁺ (Fig.
363 359
360
361
362
363
364
365 359 **3.4 Obese colostrum IgG may originate from proinflammatory DN2 B**
360 **lymphocytes**
361 We then wondered what cells could produce IgG in obese colostrum. We noticed
262 DN2-like cells were almost entirely IgG⁺ (Fig 19360 **lymphocytes**

361 We then wonc

362 DN2-like cells

363 reported to sec

364 DN2-like and

365 secreting cells

366 producers. Th 361 We then wondered what cells could produce IgG in obese colostrum. We noticed
362 DN2-like cells were almost entirely IgG⁺ (Fig. 4A), and these cells have been
363 reported to secrete IgG⁴⁰. Since obese colostrum c DN2-like cells were almost entirely $\lg G^+$ (Fig. 4A), and these cells have been 362 DN2-like cells were almost entirely $1gG^+$ (Fig. 4A), and these cells have been
reported to secrete $1gG^{40}$. Since obese colostrum contained significantly more $1gG^+$
DN2-like and $1gG^+$ plasma-like cells, toge reported to secrete $\lg G^{40}$. Since obese colostrum contained significantly more $\lg G^+$ 364
365
366 DN2-like and IgG⁺ plasma-like cells, together with more sIgG (Fig. 3C) and IgG-364 DN2-like and IgG⁺ plasma-like cells, together with more sIgG (Fig. 3C) and IgG-
365 secreting cells (Fig. 3A), we correlated IgG concentrations with these possible local
366 producers. There were clear correlations b secreting cells (Fig. 3A), we correlated IgG concentrations with these possible local
producers. There were clear correlations between IgG colostrum concentrations
producers. There were clear correlations between IgG colos 366 producers. There were clear correlations between IgG colostrum concentrations

States of the vertex of the

and both $\lg G^+$ cell types in obesity but not in the lean cohort (Fig. 4B, gray and red 367 and both IgG⁺ cell types in obesity but not in the lean cohort (Fig. 4B, gray and red
368 data, respectively). Looking at IgG-producing cells, the only significant correlation
369 was with the proportion of DN2-like data, respectively). Looking at IgG-producing cells, the only significant correlation
369 was with the proportion of DN2-like cells, in obese colostrum only (Fig. 4C, gray
370 data), suggesting these cells participate in t 369 was with the proportion of DN2-like cells, in obese colostrum only (Fig. 4C, gray data), suggesting these cells participate in the production of IgG in this context. As DN2 cells are mostly found in a proinflammatory DN2 cells are mostly found in a proinflammatory setting^{15,40,60}, it will be relevant to

370 data), suggesting these cells participate in the production of IgG in this context. As
371 DN2 cells are mostly found in a proinflammatory setting^{15,40,60}, it will be relevant to
372 investigate the IgG subtypes pro DN2 cells are mostly found in a proinflammatory setting^{15,40,60}, it will be relevant to

investigate the IgG subtypes produced and their consequence *in vivo*.

373

3.5 **Obese colostrum activates human macrophages** *in* investigate the IgG subtypes produced and their consequence *in vivo*.

373

374 **3.5 Obese colostrum activates human macrophages** *in vitro*

375 We finally investigated the effect of obese colostrum on human r

376 Macro 374
375
376
377
378
379
380
381 374 **3.5 Obese colostrum activates human macrophages** *in vitro***
375 We finally investigated the effect of obese colostrum on hur
376 Macrophages reside in the neonatal intestine and regulate the
377 response during the fi** 375 We finally investigated the effect of obese colostrum on human macrophages.

376 Macrophages reside in the neonatal intestine and regulate the local inflammatory

377 response during the first days of life⁶¹. Co-cul Macrophages reside in the neonatal intestine and regulate the local inflammatory

1377 response during the first days of life⁶¹. Co-cultures evidenced that colostrum from

1378 mothers with obesity prompted TNF-a produc response during the first days of life 61 . Co-cultures evidenced that colostrum from 377 response during the first days of life^{b1}. Co-cultures evidenced that colostrum from
378 mothers with obesity prompted TNF-a production while colostrum from lean
379 mothers did not (Fig. 5A). Until shortly after bir mothers with obesity prompted TNF-a production while colostrum from lean
379 mothers did not (Fig. 5A). Until shortly after birth, the neonatal intestine contains
380 macrophages replenished by blood monocytes due to comm mothers did not (Fig. 5A). Until shortly after birth, the neonatal intestine contains

macrophages replenished by blood monocytes due to commensal stimulation. In

health, these intestinal macrophages show low pro-inflamm macrophages replenished by blood monocytes due to commensal stimulation. In

1831 health, these intestinal macrophages show low pro-inflammatory responses,

1832 including minimal IL-6 and TNF- α expression^{62–66}. Eleva bealth, these intestinal macrophages show low pro-inflammatory responses,
382 including minimal IL-6 and TNF- α expression^{62–66}. Elevated TNF- α levels in the
383 neonatal intestine increases NEC pathogenesis⁶⁷. O including minimal IL-6 and TNF- α expression⁶²⁻⁶⁶. Elevated TNF- α levels in the including minimal IL-6 and TNF-α expression^{b2-66}. Elevated TNF-α levels in the

1383 including minimal IL-6 and TNF-α expression^{b2-66}. Elevated TNF-α levels in the

1384 was significantly increased by obese colostrum neonatal intestine increases NEC pathogenesis 67 . On the other hand, while IL-6 neonatal intestine increases NEC pathogenesis^o'. On the other hand, while IL-6
384 was significantly increased by obese colostrum stimulation, this cytokine was
385 already present in basal conditions (Fig. 5B). Overall, was significantly increased by obese colostrum stimulation, this cytokine was
385 already present in basal conditions (Fig. 5B). Overall, there was a direct induction
386 of inflammation of macrophages by obese colostrum. already present in basal conditions (Fig. 5B). Overall, there was a direct induction
386 of inflammation of macrophages by obese colostrum. Further research should
387 investigate activation mechanisms and long-term conseq

of inflammation of macrophages by obese colostrum. Further research should
investigate activation mechanisms and long-term consequences for neonatal
health.
389
4. Conclusions
This is the first report of obesity-mediat investigate activation mechanisms and long-term consequences for neonatal
388 health.
389 **4. Conclusions**
391 This is the first report of obesity-mediated regulation of B lymphocytes and
392 antibodies in human colostrum. 388 health.

389 **4. Cond**

391 This is

392 antibod

393 and fur

394 affect t

395 addition

395 addition 390
391
392
393
394
395
396 4. **Conclusions**
391 This is the first
392 antibodies in hui
393 and functionally
394 affect the comp
395 additional resea
396 breast tissue aff 391 This is the first report of obesity-mediated regulation of B lymphocytes and antibodies in human colostrum. We measured notable changes in phenotypically and functionally distinct B lymphocyte subpopulations, which in 392 antibodies in human colostrum. We measured notable changes in phenotypically
393 and functionally distinct B lymphocyte subpopulations, which in turn adversely
394 affect the composition of antibodies (summarized in Fi 393 and functionally distinct B lymphocyte subpopulations, which in turn adversely
394 affect the composition of antibodies (summarized in Fig. 6). We advocate for
395 additional research to explore the underlying mechanis 394 affect the composition of antibodies (summarized in Fig. 6). We advocate for additional research to explore the underlying mechanisms in maternal gut and breast tissue affected by obesity, as well as to understand the 395 additional research to explore the underlying mechanisms in maternal gut and
396 breast tissue affected by obesity, as well as to understand the ramifications for
396 breast tissue affected by obesity, as well as to un 396 breast tissue affected by obesity, as well as to understand the ramifications for

397 neonatal intestinal maturation, including the establishment of gut microbiota and
398 maturation of the intestine in suckling infants.
399 **References**
401 1. Shen, Z.-H. *et al.* Relationship between intestinal microb

-
-
-
- maturation of the intestine in suckling infants.

399
 References

1. Shen, Z.-H. *et al.* Relationship between intestinal n

2. Mechanisms and clinical application of probiotics a

24, 5–14 (2018).

404 2. Lyu, M. *et a* 400
401
402
403
404
405 400 **References**

401 1. Shen, Z.-H.

402 Mechanism

403 24, 5–14 (2

404 2. Lyu, M. et a

405 gut. Nature

406 3. Ramanan, I 401 1. Shen, 2.-H. et al. Relationship between intestinal microbiota and dicerative collis.

402 Mechanisms and clinical application of probiotics and fecal microbiota transplanta

403 24, 5–14 (2018).

404 2. Lyu, M. et a 24, 5–14 (2018).

24, 5–14 (2018).

24, 5–14 (2018).

24, 5–14 (2018).

26. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the

2015 gut. Nature 610, 744–751 (2022).

3. Ramana
-
-
-
- 404 2. Lyu, M. *et al.* ILC:
405 gut. *Nature* 610,
406 3. Ramanan, D. *et a*
407 Treg Setpoint. Ce
408 4. Brodin, P. Immur
409 term. *Science* 370 405 gut. Nature 610, 744–751 (2022).
406 3. Ramanan, D. et al. An Immunologic Mode of Multigenerational Transmission Governs a Gut
407 Treg Setpoint. Cell 181, 1276-1290.e13 (2020).
408 4. Brodin, P. Immune-microbe interac 405 gut. Nature 610, 744–751 (2022).

406 3. Ramanan, D. *et al.* An Immunologi

407 Treg Setpoint. *Cell* **181**, 1276-1290

408 4. Brodin, P. Immune-microbe intera

409 term. *Science* **376**, 945–950 (2022

410 5. Gámez-V 406 3. Ramanan, D. et al. An Immunologic Mode of Multigenerational Transmission Governs a Gut
408 4. Brodin, P. Immune-microbe interactions early in life: A determinant of health and disease lo
409 4. Brodin, P. Immune-mic 408 4. Brodin, P. Immune-microbe interactions early it
term. Science 376, 945–950 (2022).
410 5. Gámez-Valdez, J. S. et al. Differential analysis of
411 from women with gestational diabetes mellitus
412 6. Azad, M. B. et a 409 term. *Science* 376, 945–950 (2022).
410 5. Gámez-Valdez, J. S. *et al.* Differential analysis of the bacterial community in colostrum samples
411 from women with gestational diabetes mellitus and obesity. *Sci Rep* 11
- 410 5. Gámez-Valdez, J. S. *et al.* Differentia
411 from women with gestational diabe
412 6. Azad, M. B. *et al.* 'Human Milk Oligo
413 Fixed and Modifiable Maternal Char
414 *The Journal of Nutrition* **148**, 1733–1
415 7.
-
-
-
-
- 410 5. Gámez-Valdez, J. S. et al. Differential analysis of the bacterial community in colostrum samples
411 from women with gestational diabetes mellitus and obesity. *Sci Rep* 11, 24373 (2021).
412 6. Azad, M. B. *et al.* 411 From women with gestational diabetes mellites and obesity. Scrinep 11, 24373 (2021).
412 6. Azad, M. B. *et al.* 'Human Milk Oligosaccharide Concentrations Are Associated with Mu
413 Fixed and Modifiable Maternal Chara 412 6. Azad, M. B. et al. Trainian Milk Oligosaccharide Concentrations Are Associated with Multiple

413 Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices

414 *The Journal of Nutr* The Journal of Nutrition 148, 1733–1742 (2018).

415 T. Ellsworth, L. et al. Impact of maternal overweight and obesity on milk composition and infant

416 growth. *Matern Child Nutr* 16, (2020).

417 8. Daniel, A. I. *et a* 414 The Journal of Nutrition 148, 1733–1742 (2010).
415 7. Ellsworth, L. *et al.* Impact of maternal overweigh
416 growth. *Matern Child Nutr* **16**, (2020).
417 8. Daniel, A. I. *et al.* Maternal BMI is positively asso
418
-
- 416 growth. Matern Child Nutr 16, (2020).
417 8. Daniel, A. I. *et al.* Maternal BMI is posi-
418 review and meta-regression analysis. 7
419 1022 (2021).
- 415 8. Elisworth, L. et al. Impact of material overweight and obesity on milk composition and milant growth. Matern Child Nutr 16, (2020).
417 8. Daniel, A. I. *et al.* Maternal BMI is positively associated with human milk 417 8. Daniel, A. I. et al. Maternal BMI is positively associated with human milk fat. a systematic
review and meta-regression analysis. The American Journal of Clinical Nutrition 113, 1009
1022 (2021). 148 review and meta-regression analysis. The American Journal of Clinical Nutrition 113, 1009–1022 (2021).

 $\frac{1}{2}$

-
-
- 421 gain during pregnancy modify the immunomodulatory potential of breast milk. *Pediatr Res* 7
422 77–85 (2012).
423 10. Fujimori, M. *et al*. Cytokine and adipokine are biofactors can act in blood and colostrum of
424 ob 422 gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res 72,
423 10. Fujimori, M. *et al.* Cytokine and adipokine are biofactors can act in blood and colostrum of
424 obese mothers: Cytok 423 10. Fujimori, M. *et*
424 obese mothers
425 11. Leghi, G. *et al.*
426 Systematic Rev
427 12. Erliana, U. D. 8
428 Milk of Obese 423 10. Fujimori, M. et al. Cytokine and adipokine are biofactors can act in biood and colostrum of
1424 obese mothers: Cytokine and adipokine in maternal obesity. *BioFactors* 43, 243–250 (2017
1425 11. Leghi, G. *et al.* 924 obese mothers: Cytokine and adipokine in material obesity. BioFactors 43, 243–250 (2017).

425 11. Leghi, G. et al. The Impact of Maternal Obesity on Human Milk Macronutrient Composition:

426 Systematic Review and Met
-
- 425 11. Leghi, G. et al. The Impact of Materikal Obesity of Fidelman Milk Macromatient Composition: A

426 Systematic Review and Meta-Analysis. Nutrients 12, 934 (2020).

427 12. Erliana, U. D. & Fly, A. D. The Function an 426 Systematic Review and Meta-Analysis. Nutrients 12, 334 (2020).

427 12. Erliana, U. D. & Fly, A. D. The Function and Alteration of Immuno

428 Milk of Obese Mothers. Nutrients 11, 1284 (2019).

430 colostrum of mothers
-
-
-
- Milk of Obese Mothers. *Nutrients* **11**, 1284 (2019).

429 13. Piñeiro-Salvador, R. *et al.* A cross-sectional study evidences regulations of leukocytes in the

430 colostrum of mothers with obesity. *BMC Med* **20**, 388 (2
- 428 Milk of Obese Mothers. *Nutrients* 11, 1264 (2015).
429 13. Piñeiro-Salvador, R. *et al.* A cross-sectional study ev
6. colostrum of mothers with obesity. *BMC Med* 20, 3
431 14. Colonna-Romano, G. *et al.* A double-ne 429 13. Piñeiro-Salvador, R. et al. A cross-sectional study evidences regulations of leukocytes in the

430 colostrum of mothers with obesity. *BMC Med* 20, 388 (2022).

431 14. Colonna-Romano, G. *et al.* A double-negativ 431 14. Colonna-Romano, G. *et al.* A double-negative (IgD-CD27-) B c
peripheral blood of elderly people. *Mechanisms of Ageing and*
433 (2009).
434 15. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Phenotypic
435 of 431 14. Colonna-Romano, G. et al. A double-negative (IgD−CD27−) B cell population is increased in the
1432 peripheral blood of elderly people. *Mechanisms of Ageing and Development* **130**, 681–690
1434 15. Frasca, D., Dia
-
-
-
-
- 432 peripheral blood of elderly people. Mechanisms of Ageing and Development 130, 681–690
433 (2009).
434 15. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Phenotypic and Functional Characterizati
435 of Double Negati 434 15. Frasca,
435 of Douk
436 616650
437 16. Brouwe
438 *Nat Rev*
439 17. Aruffo, of Double Negative B Cells in the Blood of Individuals With Obesity. Front. Immunol. 12,

436 616650 (2021).

437 16. Brouwer, S. et al. Pathogenesis, epidemiology and control of Group A Streptococcus infection.

438 Nat R 435 of Double Negative B Cens in the Blood of Individuals With Obesity. Front. Immunol. 12,
437 16. Brouwer, S. et al. Pathogenesis, epidemiology and control of Group A Streptococcus infe
438 *Nat Rev Microbiol* 21, 431–44 437 16. Brouwer, S. *et a*
438 *Nat Rev Microbi*
439 17. Aruffo, A., Stam
440 surface recepto
441 18. Cywes, C. & We
442 signalling. *Natu* 16. Brouwer, S. et al. Pathogenesis, epidemiology and control of Group A Streptococcus infection.

16. Browwer, S. et al. Pathogenesis, epidemiology and control of Group A Streptococcus infection.

16. Browns 16. Stamenkov
- 438 Mat Rev Microbiol 21, 431–447 (2023).

439 17. Aruffo, A., Stamenkovic, I., Melnick, M.,

surface receptor for hyaluronate. Cell 6

441 18. Cywes, C. & Wessels, M. R. Group A Str

signalling. *Nature* 414, 648–652 (200
-
- surface receptor for hyaluronate. *Cell* 61, 1303–1313 (1990).

441 18. Cywes, C. & Wessels, M. R. Group A Streptococcus tissue invasion by CD44-mediated cell

signalling. *Nature* 414, 648–652 (2001). 441 18. Cywes, C. & Wessels, M. R. Group A Streptococcus tissue invasignalling. Nature 414, 648–652 (2001).
- 442 signalling. Nature 414, 648–652 (2001). 4442 signalling. Nature 414, 648–652 (2001).

-
-
- Multicolour Flow Cytometry. Plose ONE 10, e0133380 (2015).

445 20. Whyte, C. E., Tumes, D. J., Liston, A. & Burton, O. T. Do more v

9 Parameter Cytometry Through Overnight Staining. Current Pr.

447 21. Cervantes-Díaz, R
-
- 443 Multicolour Flow Cytometry. *PLoS ONE* 10, e0135580 (2015).

444 Multicolour Flow Cytometry. *PLoS ONE* 10, e0135580 (2015).

445 20. Whyte, C. E., Tumes, D. J., Liston, A. & Burton, O. T. Do more with Less: Improving Parameter Cytometry Through Overnight Staining. Current Protocols 2, (2022).

21. Cervantes-Díaz, R. *et al.* Circulating B10 regulatory cells are decreased in severe and crit

22. Sosa-Hernández, V. A. *et al.* B Cell Sub 1 ataliecer Cytometry Through Overinght Stalling. Current Protocols 2, (2022).

21. Cervantes-Díaz, R. *et al.* Circulating B10 regulatory cells are decreased in severe

22. Sosa-Hernández, V. A. *et al.* B Cell Subsets as
-
- 447 21. Cervantes-Díaz, R. et al. Chediating B10 regulatory cells are decreased in severe and critical
448 COVID-19. Journal of Leukocyte Biology 112, 333–337 (2022).
450 Patients. *Front. Immunol.* 11, 611004 (2020).
451 2448 COVID-19. Journal of Leukocyte Biology 112, 333–337 (2022).

23. Sosa-Hernández, V. A. *et al.* B Cell Subsets as Severity-Associa

23. Qognit. https://legendplex.qognit.com/user/login?next=home

24. Appelgren, D. *et*
-
- 451 23. Qognit. https://legendplex.qognit.com/user/l
452 24. Appelgren, D. *et al.* Regulatory B cells are red
453 granulomatosis with polyangiitis, and fail to re
454 213, 190–201 (2023).
455 25. Zaimoku, Y. *et al.* Defi
- 24. Appelgren, D. *et al.* Regulatory B cells are reduced in the blood
453 granulomatosis with polyangiitis, and fail to regulate T-cell IFN-
213, 190–201 (2023).
455 25. Zaimoku, Y. *et al.* Deficit of circulating CD19+
- 22. Sosa-Hernández, V. A. et al. B Cell Subsets as Severity-Associated Signatures in COVID-19

24. Qognit. https://legendplex.qognit.com/user/login?next=home.

24. Appelgren, D. *et al.* Regulatory B cells are reduced in t 452 24. Appelgren, D. et al. Regulatory B cells are reduced in the blood in patients with

453 granulomatosis with polyangiitis, and fail to regulate T-cell IFN-y production. Cli

454 213, 190–201 (2023).

455 25. Zaimoku
-
- 25. Zaimoku, Y. *et al.* Defi
456 aplastic anaemia. *Br J*
457 26. Lima, J. *et al.* Characte
458 post-partum: a prospe
459 (2016).
460 27. Peroni, D. G. *et al.* Col
-
- 453 **213**, 190–201 (2023).
213, 190–201 (2023).
253 25. Zaimoku, Y. *et al.* Deficit of circulating CD19+CD24hiCD38hi regulatory B cells in severe
456 aplastic anaemia. *Br J Haematol* **190**, 610–617 (2020).
26. Li
-
-
- 455 aplastic anaemia. *Br J Haematol* **190**, 610–617 (2020).

457 26. Lima, J. *et al.* Characterization of B cells in healthy pregnant women from late pregnanc

458 post-partum: a prospective observational study. *BMC Pre* 456 aplastic anaemia. *Br J Haemator* 190, 610–617 (2020).
457 26. Lima, J. *et al.* Characterization of B cells in healthy preg
61 post-partum: a prospective observational study. *BMC*
459 (2016).
460 27. Peroni, D. G. *e* 457 26. Lima, J. et al. Characterization of B cells in healthy pregnancy and Childbirth 16, 139

458 post-partum: a prospective observational study. *BMC Pregnancy and Childbirth* 16, 139

460 27. Peroni, D. G. *et al.* Co 458 post-partum: a prospective observational study. BMC Pregnancy and Childbirth 16, 159
460 27. Peroni, D. G. et al. Colostrum-derived B and T cells as an extra-lymphoid compartment c
461 effector cell populations in huma 460 27. Peroni,
461 effector
462 137–14.
463 28. Tuaillon
464 Populat
465 29. Winer, I
-
-
-
- 463 28. Tuaillon, E. *et al.*
464 Population Prime
465 29. Winer, D. A. *et al*
466 production of pa
- 460 27. Peroni, D. G. et al. Colostrain derived B and T cells as an extra-lymphoid compartment of
461 effector cell populations in humans. The Journal of Maternal-Fetal & Neonatal Medicine 2
463 28. Tuaillon, E. et al. Hum 462 effector cell populations in humans. The Journal of Maternal-Fetal & Neonatal Medicine 26,
463 28. Tuaillon, E. *et al.* Human Milk-Derived B Cells: A Highly Activated Switched Memory Cell
464 Population Primed to Secr 263 28. Tualiton, E. et al. Human Milk-Derived B Cells: A Highly Activated Switched Memory Cell

29. Winer, D. A. *et al.* B cells promote insulin resistance through modulation of T cells and

29. Winer, D. A. *et al.* B c 164 Population Primed to Secrete Antibodies. *Finantion* 182, 7155–7162 (2005).

29. Winer, D. A. *et al.* B cells promote insulin resistance through modulation of T

production of pathogenic IgG antibodies. *Nat Med* 17,
- 25. Winer, D. A. et al. B cens promote insulin resistance through modulation of T cells and
production of pathogenic IgG antibodies. Nat Med 17, 610–617 (2011). 466 production of pathogenic IgG antibodies. Nat Med 17, 610–617 (2011).

-
- 467 30. O'Rourke, R. W. et al. Depot-specific differences in inflammatory inediators and a role for NK
468 cells and IFN-gamma in inflammation in human adipose tissue. *Int J Obes (Lond)* 33, 978–990
469 (2009).
470 31. Te 468 cens and IFN-gamma in inflammation in itellian adipose tissue. *Int Y Obes (Lond) 33, 978–990*
469 (2009).
470 31. Tedder, T. F. B10 Cells: A Functionally Defined Regulatory B Cell Subset. *The Journal of*
471 *Immunol*
- 470 31. Tedder,
471 *Immund*
472 32. Nishimu
473 Inflamm
474 33. Ellulu, N
475 linking r
-
- 470 31. Tedder, T. F. B10 Cens. A Functionally Defined Regulatory D Cen Subset. The Journal of
471 Immunology 194, 1395–1401 (2015).
472 32. Nishimura, S. et al. Adipose Natural Regulatory B Cells Negatively Control Adipos 471 Immunology 194, 1395–1401 (2015).

472 32. Nishimura, S. *et al.* Adipose Natural R

473 Inflammation. *Cell Metabolism* 18, 75

474 33. Ellulu, M. S., Patimah, I., Khaza'ai, H.,

475 Iinking mechanism and the complica
-
- 172 32. Nishimura, 3. et al. Adipose Natural Regulatory B Cells Negatively Control Adipose Tissue

18. 179–766 (2013).

18. 18. Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: th
 473 Inflammation. Cell Metabolism 18, 759–766 (2015).
474 33. Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A. & P.
475 Inking mechanism and the complications. *aoms* 4, 8
476 34. Rohm, T. V., Meier, D. T., Olefsky, J.
-
- 175 Inking mechanism and the complications. *aoms* 4, 851–863 (2017).

176 34. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, a

177 related disorders. *Immunity* 55, 31–55 (20
-
-

- 475 and the complications. aoms 4, 651–863 (2017).
476 34. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammatio
477 related disorders. Immunity 55, 31–55 (2022).
478 35. Strom, A. *et al.* B regulatory cel related disorders. *Immunity* 55, 31–55 (2022).

478 35. Strom, A. *et al.* B regulatory cells are increased in hypercholesterolaemic mice and protect

479 from lesion development via IL-10. *Thromb Haemost* 114, 835–847 (478 35. Strom, A. *et al.* B regulatory cells are increased
479 from lesion development via IL-10. *Thromb Ha*
480 36. Mercadante, A. C. T. *et al.* Oral combined thera
481 cell-dependent long-lasting specific tolerance.
4 479 from lesion development via IL-10. *Thromb Haemost* **114**, 835–847 (2015).

480 from lesion development via IL-10. *Thromb Haemost* **114**, 835–847 (2015).

481 cell-dependent long-lasting specific tolerance. *J Immunol* 479 From Lesion development via IL-10. Thromb Haemost 114, 835–847 (2015).

479 a.ell-dependent long-lasting specific tolerance. *J Immunol* 192, 1928–1937 (2015).

481 a.ell-dependent long-lasting specific tolerance. *J I*
-
-
-
-
- 480 36. Mercadante, A. e. T. et al. Oral combined therapy with problotics and alloantigen induces B

481 cell-dependent long-lasting specific tolerance. *J Immunol* 192, 1928–1937 (2014).

482 37. Rosser, E. C. *et al.* M 482 37. Rosser, E. C. *et al.* Microbiota-Derived Metabolites Suppress Arthritis by Amplifyin
483 Hydrocarbon Receptor Activation in Regulatory B Cells. *Cell Metabolism* **31**, 837-8
484 (2020).
485 38. Rosser, E. C. *et a* 482 37. Rosser, E. C. et al. Microbiota Derived Metabolites Suppress Arthritis by Ampinying Aryl-
484 (2020).
485 38. Rosser, E. C. *et al.* Regulatory B cells are induced by gut microbiota-driven interleukin-1f
486 interl 483 (2020).
483 Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metabolism 31, 837-851.e10
485 38. Rosser, E. C. *et al.* Regulatory B cells are induced by gut microbiota-driven interleukin-1β
486 interleukin-6 485 38. Rosser,
486 interleu
487 39. Machar
488 with inc
489 (2005).
-
-
- 486 interleukin-6 production. *Nat Med* 20, 1334–1339 (2014).
487 39. Machann, J. *et al.* Age and gender related effects on adipose tissue compartments of subjects
488 with increased risk for type 2 diabetes: a whole body 487 39. Machann, J. *et al.* Age and gender related effects on adipo
with increased risk for type 2 diabetes: a whole body MRI
(2005). 488 with increased risk for type 2 diabetes: a whole body MRI / MRS study. *MAGMA* 18, 128–137 (2005). with increased risk for type 2 diabetes: a whole body MRI / MRS study. MAGMA 18, 128–137
(2005).
- 489 (2005).

-
- 490 40. Jenks, S. A. et al. District Effector B Cells Induced by Officgulated Toll-like Receptor 7
491 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 49,
493 41. Woodruff, M. C. *et al.* Extra
-
- 492 739.e6 (2018).
492 739.e6 (2018).
493 41. Woodruff, M. C. *et al.* Extrafollicular B cell responses correlate with neutralizing antibodie
494 and morbidity in COVID-19. *Nat Immunol* 21, 1506–1516 (2020).
495 42. Stewa 493 41. Woodruff, M. C
494 and morbidity i
495 42. Stewart, A. *et a*
496 and Discrete De
497 43. Winer, D. A., W
498 related adipose
-
- 41. Woodraff, M. C. et al. Extrafolical B cell responses correlate with neutralizing antibodies

494 and morbidity in COVID-19. Nat *Immunol* 21, 1506–1516 (2020).

495 and Discrete Development Pathways. *Front. Immunol.* 494 42. Stewart, A. *et al.* Single-Cell Transcriptomic Analyses Define Distinant and Discrete Development Pathways. *Front. Immunol.* **12**, 602539 497 43. Winer, D. A., Winer, S., Chng, M. H. Y., Shen, L. & Engleman, E. G
-
-
-
-
- 42. Stewart, A. et al. Single-Cell Transcriptomic Analyses Define District Peripheral D Cell Subsets

496 and Discrete Development Pathways. *Front. Immunol.* **12**, 602539 (2021).

497 43. Winer, D. A., Winer, S., Chng, M. 496 and Discrete Development Pathways. Front. Immunol. 12, 602339 (2021).
497 43. Winer, D. A., Winer, S., Chng, M. H. Y., Shen, L. & Engleman, E. G. B Lymph
498 (2014).
499 (2014).
44. Scharer, C. D. *et al.* Epigenetic p 498 (2014).
499 (2014).
44. Scharer, C. D. *et al.* Epigenetic programming underpins B cell dysfunction in human SLE. Nat
45. Stone, S. L. *et al.* T-bet transcription factor promotes antibody secreting cell differentiati 500 44. Scharer
501 *Immund*
502 45. Stone, S
503 limiting
504 46. Zumaqu
505 promot 501 *Immunol* 20, 1071–1082 (2019).
502 *Immunol* 20, 1071–1082 (2019).
503 limiting the inflammatory effects of IFNy on B cells. *Immunity* 50, 1172-1187.e7 (2019).
504 46. Zumaquero, E. *et al.* IFNy induces epigenetic p
-
- 503 Iimiting the inflammatory effects of IFNy on B cells. Immunity 50, 1172-1187 e7 (2019).
-
- 502 45. Stone, S. L. *et al.* T-bet transcript
503 limiting the inflammatory effects
504 46. Zumaquero, E. *et al.* IFNy induce
505 promotes TLR7/8 and IL-21 induc
506 47. Peng, S. L., Szabo, S. J. & Glimche
507 autoantibo
- 503 limiting the inflammatory effects of IFNy on B cells. *Immunity* 50, 1172-1187.e7 (2019).
504 46. Zumaquero, E. *et al.* IFNy induces epigenetic programming of human T-bethi B cells and
505 promotes TLR7/8 and IL-21 in 503 Immung the inflammatory enects of IFNγ on B cells. *Immunity 50*, 1172-1187.e7 (2015).
504 46. Zumaquero, E. *et al.* IFNγ induces epigenetic programming of human T-bethi B cells and
505 promotes TLR7/8 and IL-21 indu 505 promotes TLR7/8 and IL-21 induced differentiation. *eLife* 8, e41641 (2019).
506 47. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathoger
507 autoantibody production. *Proc. Nat* 505 promotes TERT/8 and IL-21 induced directmation. ELJ_C of e41641 (2019).
506 47. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching a
507 autoantibody production. Proc. Natl. Acad. Sci. U.S

- 507 autoantibody production. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 5545–5550 (2002).
508 48. Crouch, M., Al-Shaer, A. & Shaikh, S. R. Hormonal Dysregulation and Unbalanced Specialize
710 Pro-Resolving Mediator Biosynthesis 507 autoantibody production. Proc. Natl. Acad. Sci. 0.3.A. 99, 5345–5550 (2002).
508 48. Crouch, M., Al-Shaer, A. & Shaikh, S. R. Hormonal Dysregulation and Unbalan
509 Pro-Resolving Mediator Biosynthesis Contribute toward France Processolving Mediator Biosynthesis Contribute toward Impaired B Cell Outcomes in Obesity
 Mol. Nutr. Food Res. **65**, 1900924 (2021).
 49. Muskiet, F., Carrera-Bastos, P., Pruimboom, L., Lucia, A. & Furman, D. Ob
-
-
- 510 *Mol. Nutr. Food Res.* **65**, 1900924 (2021).
511 49. Muskiet, F., Carrera-Bastos, P., Pruimboom, L., Lucia, A. & Furman, D. Obesity and Leptin
712 Resistance in the Regulation of the Type I Interferon Early Response an For Hammay by Barbard Basis, F., Pruimboom, B., Panalynch Basisia, Pruisipy, and Leptin.

Sesistance in the Regulation of the Type I Interferon Early Response and the Increased Ris

Severe COVID-19. Nutrients 14, 1388 (202
- 510 Mol. Mutr. Food Res. 65, 1900924 (2021).
511 49. Muskiet, F., Carrera-Bastos, P., Pruimboor
Resistance in the Regulation of the Type I
Severe COVID-19. Nutrients **14**, 1388 (202 513 Severe COVID-19. Nutrients **14**, 1388 (2022). Severe COVID-19. Nutrients $1+$, 1388 (2022).

-
-
- 515 Plasma Cell Populations. *Front. Immunol.* **10**, 2458 (2019).

516 S1. Arumugakani, G. et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at

517 the Plasmablast to Plasma Cell Transition. *The Jour* 515 Frasma Cell Fopulations. Front. Immunol. 10, 2438 (2013).
516 51. Arumugakani, G. *et al.* Early Emergence of CD19-Negative I
517 the Plasmablast to Plasma Cell Transition. *The Journal of In*
52. Pullen, K. M. *et al.*
- 51. Samuagakani, G. et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at

516 the Plasmablast to Plasma Cell Transition. The Journal of Immunology 198, 4618–4628 (2017).

52. Pullen, K. M. *et al.* Sel
- 518 52. Pullen, K. M. *et al.* Selective functional antibody transfer into the breastmilk after SARS-CoV-2
519 infection. *Cell Reports* 37, 109959 (2021).
520 53. Pabst, O. & Slack, E. IgA and the intestinal microbiota: t
-
- 519 Infection. Cell Reports 37, 109999 (2021).
520 53. Pabst, O. & Slack, E. IgA and the intestinal
521 *Mucosal Immunol* 13, 12–21 (2020).
522 54. Koch, M. A. *et al.* Maternal IgG and IgA An
523 in Early Life. *Cell* 165
-
- 519 infection. *Cell Reports* 37, 109959 (2021).
520 53. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific.
521 *Mucosal Immunol* 13, 12–21 (2020).
522 54. Koch, M. A. *et al.* Mater 521 *Mucosal Immunol* 13, 12–21 (2020).
522 54. Koch, M. A. *et al. Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Respo*
523 in Early Life. *Cell* 165, 827–841 (2016).
524 55. van Dam, A. D. *et al. IgG is e* Mucosar *Mindon* 13, 12–21 (2020).

522 54. Koch, M. A. *et al.* Maternal IgG and Ig

in Early Life. *Cell* **165**, 827–841 (2016

524 55. van Dam, A. D. *et al.* IgG is elevated intolerance via Fcy-receptor or comp

526 56
-
- 523 in Early Life. *Cell* 165, 827–841 (2016).
523 in Early Life. *Cell* 165, 827–841 (2016).
524 55. van Dam, A. D. *et al.* IgG is elevated in obese white adipose tissue but does not induce glucos
525 intolerance via Fcy
-
-
-
- 523 In Early Enc. Cell 165, 627–841 (2010).
524 55. van Dam, A. D. *et al.* 1gG is elevated in
525 intolerance via Fcy-receptor or comple
526 56. Frasca, D., Diaz, A., Romero, M., Thalle
527 antibodies in the human subcuta 525 intolerance via Fcy-receptor or complement. *Int J Obes (Lond)* 42, 260–269 (2018).
526 56. Frasca, D., Diaz, A., Romero, M., Thaller, S. & Blomberg, B. B. Secretion of autoimmune
527 antibodies in the human subcutaneo Intolerance via Fcγ-receptor or complement. *Int J Obes (Lond)* 42, 200–209 (2016).
526 56. Frasca, D., Diaz, A., Romero, M., Thaller, S. & Blomberg, B. B. Secretion of autoimm
527 antibodies in the human subcutaneous adi 527 antibodies in the human subcutaneous adipose tissue. *PLoS One* **13**, e0197472 (2018).
528 57. Petrus, P. *et al.* Glutamine Links Obesity to Inflammation in Human White Adipose Tissu
529 *Metabolism* **31**, 375-390.e11 527 antibodies in the human subcutaneous adipose tissue. *PLOS One* 13, e0137472 (2016).
528 57. Petrus, P. *et al.* Glutamine Links Obesity to Inflammation in Human White Adipose Tissue.
530 *Metabolism* 31, 375-390.e11 (
-
- 529 *Metabolism* 31, 375-390.e11 (2020).
530 58. Romo, M. *et al.* Small fragments of hyaluronan are increased in individuals with obesity and
531 contribute to low-grade inflammation through TLR-mediated activation of inn
-
-
-
- 525 Metabolism 31, 375-390.e11 (2020).
530 58. Romo, M. *et al.* Small fragments of hy
531 contribute to low-grade inflammation
6132 cells. *Int J Obes* 46, 1960–1969 (2022
533 59. Sherwood, E. *et al.* Invasive group A s
 531 contribute to low-grade inflammation through TLR-mediated activation of innate immune
532 cells. *Int J Obes* 46, 1960–1969 (2022).
533 59. Sherwood, E. *et al.* Invasive group A streptococcal disease in pregnant women 532 cells. *Int J Obes* **46**, 1960–1969 (2022).
533 59. Sherwood, E. *et al.* Invasive group A streptococcal disease in pregnant women and young
534 children: a systematic review and meta-analysis. *The Lancet Infectious D* 532 cens. *Int J Obes* 46, 1560–1565 (2022).
533 59. Sherwood, E. *et al.* Invasive group A str
634 children: a systematic review and meta
535 (2022).
536 60. Elsner, R. A. & Shlomchik, M. J. Germin
7537 Vaccination, Immun 533 59. Sherwood, E. et al. Invasive group A streptococcal disease in pregnant women and young

children: a systematic review and meta-analysis. The Lancet Infectious Diseases 22, 1076–

(2022).

536 60. Elsner, R. A. & Sh 535 (2022).
535 (2022).
536 60. Elsner, R. A. & Shlomchik, M. J. Germinal Center and Extrafollicular B Cell Responses in
537 Vaccination, Immunity, and Autoimmunity. *Immunity* 53, 1136–1150 (2020).
-
- 536 60. Elsner, I
537 Vaccina
- Vaccination, Immunity, and Autoimmunity. *Immunity* 53, 1136–1150 (2020). vaccination, immunity, and Autominidinty. *Immunity* 53, 1136–1136 (2020).

-
-
-
-
- Macrophages in the Pathogenesis of Necrotizing Enterocolitis Caused by Cronobacter

sakazakii. Journal of Surgical Research 172, 18–28 (2012).

541 62. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are lo 540 sakazakii. Journal of Surgical Research 172, 18–28 (2012).
541 62. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defir
542 Tim-4 and CD4 expression. J Exp Med 215, 1507–1518 (2018). Sakazakii. Journal of Surgical Research 172, 18–28 (2012).
541 62. Shaw, T. N. *et al.* Tissue-resident macrophages in the intes
542 Tim-4 and CD4 expression. *J Exp Med* 215, 1507–1518 (20
543 63. Weber, B., Saurer, L., S 542 Tim-4 and CD4 expression. J Exp Med 215, 1507–1518 (2018).
543 63. Weber, B., Saurer, L., Schenk, M., Dickgreber, N. & Mueller, C.
544 distinct intestinal mononuclear phagocyte subsets which main
545 during homeostatic
- 542 Tim-4 and CD4 expression. *J Exp Med* 215, 1507–1518 (2018).
543 G3. Weber, B., Saurer, L., Schenk, M., Dickgreber, N. & Mueller, C. CX3CR1 defines functionally
544 distinct intestinal mononuclear phagocyte subsets whi distinct intestinal mononuclear phagocyte subsets which maintain their respective function

during homeostatic and inflammatory conditions. *Eur J Immunol* **41**, 773–779 (2011).

546 64. Smith, P. D. *et al.* Intestinal ma
-
- during homeostatic and inflammatory conditions. *Eur J Immunol* 41, 773–779 (2011).
546 d. Smith, P. D. *et al.* Intestinal macrophages lack CD14 and CD89 and consequently are down-
547 regulated for LPS- and IgA-mediated 545 64. Smith, P. D. *et al.* Intestinal macrophages lack CD14 and CD89 and consequently are d
547 regulated for LPS- and IgA-mediated activities. *J Immunol* 167, 2651–2656 (2001).
548 65. Rivollier, A., He, J., Kole, A.,
-
-
-
-
- 547 regulated for LPS- and IgA-mediated activities. *J Immunol* 167, 2651–2656 (2001).
548 65. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the
549 differentiation program of Ly6Chi m 547 regulated for EPS- and IgA-mediated activities. J *Immunol* 167, 2651–2656 (2001).
548 65. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammatory macrophages
550 inflammatory dendritic cells in the
-
- differentiation program of Ly6Chi monocytes from antiinflammatory macrophage

inflammatory dendritic cells in the colon. *J Exp Med* 209, 139–155 (2012).

551 66. Smythies, L. E. *et al.* Human intestinal macrophages displ 1549 Inflammatory dendritic cells in the colon. *J Exp Med* 209, 139–155 (2012).

551 66. Smythies, L. E. *et al.* Human intestinal macrophages display profound inflammatory are despite avid phagocytic and bacteriocidal ac 550 Inflammatory dendritic cells in the colon. *J* Exp Med 209, 139–153 (2012).
551 66. Smythies, L. E. *et al.* Human intestinal macrophages display profound infla
552 despite avid phagocytic and bacteriocidal activity. 552 despite avid phagocytic and bacteriocidal activity. *J Clin Invest* 115, 66–75 (2005).
553 despite avid phagocytic and bacteriocidal activity. *J Clin Invest* 115, 66–75 (2005).
553 67. Halpern, M. D. *et al.* Reductio Example 2012 despite avid phagocytic and bacteriocidal activity. J. Chin Invest 115, 66–75 (2005).

553 67. Halpern, M. D. *et al.* Reduction of experimental necrotizing enterocolitis with anti-

4 *American Journal of Phy*
-
-
-
- 553 67. Halpern, M. D. et al. Reduction of experimental necrotizing enterocolitis with anti-TNF-α.
554 American Journal of Physiology-Gastrointestinal and Liver Physiology 290, G757–G764 (20
555 68. Sims, G. P. et al. Iden
- 556 Blood 105, 4356 4358 (2005).
557 69. Suryani, S. *et al.* Differential ex
558 distinct subsets of human trans
559 70. Palanichamy, A. *et al.* Novel Hu
560 Depletion Therapy1. *The Journ*
- Signal American Journal of Physiology-Gustrointestinal and Ever Physiology 250, G757–G764 (2000).

Signal of Sims, G. P. et al. Identification and characterization of circulating human transitional B cells.

Blood 105, 439 556 *Blood* 105, 4390–4398 (2005).
556 *Blood* 105, 4390–4398 (2005).
557 69. Suryani, S. *et al.* Differential expression of CD21 identifies developmentally and functionally
558 distinct subsets of human transitional B ce 558 distinct subsets of human transitional B cells. *Blood* 115, 519–529 (2010).
559 distinct subsets of human transitional B cells. *Blood* 115, 519–529 (2010).
559 Depletion Therapy1. *The Journal of Immunology* 182, 598 distinct subsets of human transitional B cells. Blood 115, 519–529 (2010).
559 70. Palanichamy, A. *et al.* Novel Human Transitional B Cell Populations Reveal
Depletion Therapy1. *The Journal of Immunology* 182, 5982–5993
- 559 70. Palanichamy, A. et al. Novel Human Transitional B Cell Populations Revealed by B Cell
Depletion Therapy1. *The Journal of Immunology* 182, 5982–5993 (2009). 560 Depletion Therapy1. The Journal of Immunology 182, 5982–5993 (2009).

-
- 562 Naive B Cells Expressing Low Levels of Surface IgM. The Journal of Immunology 186, 4640–4648 (2011).
563 A648 (2011).
564 72. Golinski, M.-L. *et al.* CD11c+ B Cells Are Mainly Memory Cells, Precursors of Antibody
565
-
-
-
- 563 4648 (2011).
564 72. Golinski, M.-L. *et al.* CD11c+ B Cells Are Mainly Memory Cells, Precursors of Antibody
565 Secreting Cells in Healthy Donors. *Frontiers in Immunology* 11, (2020).
566 73. Jenks, S. A., Cashman, K 564 72. Golinski, M.-L
565 Secreting Cel
566 73. Jenks, S. A., C
567 humans and !
568 74. Shapiro-Shele
569 Plasma Cells : 565 Secreting Cells in Healthy Donors. *Frontiers in Immunology* 11, (2020).
566 Secreting Cells in Healthy Donors. *Frontiers in Immunology* 11, (2020).
566 73. Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E.-H. Secreting Cells in Healthy Donors. Frontiers in Immunology 11, (2020).

566 73. Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E.-H. & Sanz, I. Ext

567 humans and SLE. *Immunological Reviews* 288, 136–148 (2019).

-
- 1567 humans and SLE. *Immunological Reviews* 288, 136–148 (2019).

168 74. Shapiro-Shelef, M. *et al.* Blimp-1 Is Required for the Formation of Immunoglobulin Secreting

169 Plasma Cells and Pre-Plasma Memory B Cells. *Imm* 146 (2013).

568 74. Shapiro-Shelef, M. *et al.* Blimp-1 ls Required for the Formation

569 Plasma Cells and Pre-Plasma Memory B Cells. *Immunity* 19, 607

570 75. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran,
-
- Fra. Shapho Shelef, M. et al. Blimp-1 is Required for the Formation of Immunoglobalii Secreting

Formation Plasma Cells and Pre-Plasma Memory B Cells. Immunity 19, 607–620 (2003).

75. Nutt, S. L., Hodgkin, P. D., Tarlinto
-
-
-
- 569 Plasma Cells and Pre-Plasma Memory B Cells. *Immunity* 19, 607–620 (2003).
570 SEC Reading Basma Cells. Nat Rev Immunol 15, 160–171 (2015).
571 Secreting plasma Cells. Nat Rev Immunol 15, 160–171 (2015).
572 T6. Bagnar 571 Secreting plasma cells. Nat Rev Immulior 15, 160–171 (2015).
573 Immunology 195, 3716–3724 (2015).
574 77. Grimsholm, O. CD27 on human memory B cells–more than just
575 Experimental Immunology 213, 164–172 (2023).
576 573 Immunology 195, 3716–3724 (2015).
573 Immunology 195, 3716–3724 (2015).
574 77. Grimsholm, O. CD27 on human memory B cells-more than just a surface marker. Clin
575 Experimental Immunology 213, 164–172 (2023).
576 78.
- 573 Immunology 199, 3716–3724 (2019).
574 77. Grimsholm, O. CD27 on human memoral
575 Experimental Immunology 213, 164–1
576 78. Saunders, S. P., Ma, E. G. M., Aranda,
577 Memory of Allergic IgE Responses. Fra
578 79. Sutt
- 576 78. Saunders, S. P., Ma, E. G. M., Aranda, C. J. & Curotto de Lafaille, M. A. Non-classical B Cell
- Experimental Immunology 213, 164–172 (2023).
576 78. Saunders, S. P., Ma, E. G. M., Aranda, C. J. & Curc
577 Memory of Allergic IgE Responses. *Frontiers in In*
578 79. Sutton, H. J. *et al.* Atypical B cells are part of a
- 575 Experimental Immunology 213, 164–172 (2023).

576 Saunders, S. P., Ma, E. G. M., Aranda, C. J. & Curotto de Lafaille, M. A. Non-classical B Cell

577 Memory of Allergic IgE Responses. *Frontiers in Immunology* 10, (201 Memory of Allergic IgE Responses. *Frontiers in Immunology* **10**, (2019).

578 79. Sutton, H. J. *et al.* Atypical B cells are part of an alternative lineage of B cells that participa

579 in responses to vaccination and i 578 79. Sutton, H. J. *et al.* Atypical B cells are part of an alternative lineage of B

in responses to vaccination and infection in humans. *Cell Reports* **34**, 10

580 80. Wang, S. *et al.* IL-21 drives expansion and pl
-
-
-
- 579 in responses to vaccination and infection in humans. *Cell Reports* 34, 108684 (2021).

580 80. Wang, S. *et al.* IL-21 drives expansion and plasma cell differentiation of autoreactive

581 CD11chiT-bet+ B cells in SLE 579 Intesponses to vace mation and infection in humans. Cell Reports 34, 100064 (2021).
580 80. Wang, S. *et al.* IL-21 drives expansion and plasma cell differentiation of autoreactive
581 CD11chiT-bet+ B cells in SLE. *Na* 581 CD11chiT-bet+ B cells in SLE. Nat Commun 9, 1758 (2018).
582 81. CD19+CD24hiCD38hi B Cells Exhibit Regulatory Capacity in Healthy Individuals but Ar
583 Functionally Impaired in Systemic Lupus Erythematosus Patients: I 582 81. CD19+CD24hiCD38hi B Cells Exhibit Regulatory Capacity in
583 Functionally Impaired in Systemic Lupus Erythematosus Pa
584 https://www.cell.com/immunity/fulltext/S1074-7613(09)0
- 583 Functionally Impaired in Systemic Lupus Erythematosus Patients: Immunity.
584 https://www.cell.com/immunity/fulltext/S1074-7613(09)00547-
584 https://www.cell.com/immunity/fulltext/S1074-7613(09)00547-
- 584 https://www.cell.com/immunity/fulltext/S1074-7613(09)00547-
 $\frac{1}{2}$ 584 https://www.cell.com/immunity/fulltext/ $\frac{1}{2}$

-
-
-
-
-

586 05470%3Fshowall%3Dtrue.
587 82. Mauri, C. & Menon, M. Human regulatory B cells in health and disease: therapeutic potential.
588 JClin Invest 127, 772–779 (2017).
589 **AUTHOR CONTRIBUTIONS**
591 All authors approved the 587 82. Mauri, C. & Menon, M. Hum
588 *J Clin Invest* 127, 772–779 (2
589 **AUTHOR CONTRIBUTION**
591 All authors approved the
592 performed experiments, a
593 manuscript DBR perform 588 JClin Invest 127, 772–779 (2017).
589
590 **AUTHOR CONTRIBUTIONS**
591 All authors approved the final version of the manuscript. ESS designed and
592 performed experiments, analyzed data and reviewed the
593 manuscript. 589
589 **AUTHOR CONTRIBUTIONS**
591 All authors approved the final
592 performed experiments, analyz
593 manuscript. DBR performed
594 manuscript. MRAG, VJLD and C
595 collected samples, edited, and 590
591
592
593
595
595
596
507 **AUTHOR CONTRIBUTIONS**
591 All authors approved the fir
592 performed experiments, ana
593 manuscript. DBR performed
594 manuscript. MRAG, VJLD and
595 collected samples, edited, a
596 study, analyzed data, wrote, e
597 All authors approved the final version of the manuscript. ESS designed and

separation of the manuscript. DBR performed experiments, analyzed data and reviewed the

manuscript. DBR performed experiments, analyzed data and performed experiments, analyzed data and wrote, edited, and reviewed the

manuscript. DBR performed experiments, analyzed data and reviewed the

manuscript. MRAG, VJLD and CNLV, designed experiments, enrolled participants, manuscript. DBR performed experiments, analyzed data and reviewed the

s94 manuscript. MRAG, VJLD and CNLV, designed experiments, enrolled participants,

collected samples, edited, and reviewed the manuscript. MEGB designe manuscript. MRAG, VJLD and CNLV, designed experiments, enrolled participants,

sollected samples, edited, and reviewed the manuscript. MEGB designed the

study, analyzed data, wrote, edited, and reviewed the manuscript.
 collected samples, edited, and reviewed the manuscript. MEGB designed the
596 study, analyzed data, wrote, edited, and reviewed the manuscript.
597 **DECLARATION OF COMPETING INTEREST**
599 **The authors declare no conflict o**

-
-

spanning study, analyzed data, wrote, edited, and reviewed the manuscript.

597
 DECLARATION OF COMPETING INTEREST

The authors declare no conflict of interest.

601 **FUNDING**

This research was supported by the Institut 598
598
599
600
601
602
603
604 **DECLARATION OF COMPETING INTEREST**
599 The authors declare no conflict of interest.
600
601 **FUNDING**
602 This research was supported by the Institute for
603 de Biotecnología FEMSA of Tecnológico
604 StrainBiotech SAPI d The authors declare no conflict of interest.

599 **FUNDING**

501 **FUNDING**

502 This research was supported by the Institute

503 de Biotecnología FEMSA of Tecnológia

504 StrainBiotech SAPI de CV.

505 **DATA AVAILABILITY** 601
602
603
604
605
606
607 601 **FUNDING**
602 This resea
603 de Biotecr
604 StrainBiote
605 **DATA AVA**
607 All .fcs3 fi
608 FlowRepos Folio This research was supported by the Institute for Obesity Research and the Centro
603 de Biotecnología FEMSA of Tecnológico de Monterrey, and sponsored by
604 StrainBiotech SAPI de CV.
605 **DATA AVAILABILITY**
607 AII

de Biotecnología FEMSA of Tecnológico de Monterrey, and sponsored by
604 StrainBiotech SAPI de CV.
605 **DATA AVAILABILITY**
607 AII .fcs3 files obtained as part of this work will be made freely available on
608 FlowReposito StrainBiotech SAPI de CV.
605
DATA AVAILABILITY
607 All .fcs3 files obtained as
608 FlowRepository upon paper
609
610 **ACKNOWLEDGEMENTS**
611 We acknowledge institution 606
607
608
609
610
611
612 606 **DATA AVAILABILITY**
607 All .fcs3 files obtained
608 FlowRepository upon p
609
610 **ACKNOWLEDGEMEN**
611 We acknowledge institution a clinical study. We are
613 All .fcs3 files obtained as part of this work will be made freely available on
608 FlowRepository upon paper acceptance (in process)
609
610 **ACKNOWLEDGEMENTS**
611 We acknowledge institutional support in all administrative

610
611
612
613
614

- FlowRepository upon paper acceptance (in process)
609
610 ACKNOWLEDGEMENTS
611 We acknowledge institutional support in all administ
612 a clinical study. We are deeply grateful to participatin
613 Table 1: Participants cha **ACKNOWLEDGEMENTS**
611 We acknowledge institution
612 a clinical study. We are dee
613
614 Table 1: Participants chara 611 We acknowledge institutional support in all administrative processes involved with
612 a clinical study. We are deeply grateful to participating families.
613
614 Table 1: Participants characteristics
- 612 a clinical study. We are deeply grateful to participating families.
613
Table 1: Participants characteristics
614 Table 1: Participants characteristics
-
- ---
614 614 Table 1: Participants characteristics

615

616
617
618
619
620

620
|
|

621

622
623
1 622 **FIGURE LEGENDS**

Fig. 1: Human colostrum and peripheral blood are differentially enriched in
 for all multiple B lymphocyte subtypes. a) Concentrations of transitional and naïve B

cells in peripheral blood and colostrum. **b)** Concent **multiple B lymphocyte subtypes. a)** Concentrations of transitional and naïve B cells in peripheral blood and colostrum. **b)** Concentrations of B_{reg} -like, DN2-like and plasma-like cells in peripheral blood and colostrum 626 cells in peripheral blood and colostrum. **b)** Concentrations of B_{reg}-like, DN2-like and plasma-like cells in peripheral blood and colostrum. **c)** Concentrations of USwM and SwM in blood and colostrum (above) and sub 627 plasma-like cells in peripheral blood and colostrum. **c)** Concentrations of USwM
628 and SwM in blood and colostrum (above) and subsampling comparing samples
629 from mothers with BMI<25 ("lean") and mothers with BMI> 628 and SwM in blood and colostrum (above) and subsampling comparing samples
629 from mothers with BMI<25 ("lean") and mothers with BMI>30 ("obese") (below).
630 Statistical analysis was performed using Mann-Whitney U tes 629 from mothers with BMI<25 ("lean") and mothers with BMI>30 ("obese") (below).

630 Statistical analysis was performed using Mann-Whitney U tests, comparing B cell

631 subsets concentrations (live cells/ml or original 630 Statistical analysis was performed using Mann-Whitney U tests, comparing B cell
631 subsets concentrations (live cells/ml or original blood or colostrum) from mothers
632 with obesity (n=25) or with a lean BMI (n=23).

631 subsets concentrations (live cells/ml or original blood or colostrum) from mothers
632 with obesity (n=25) or with a lean BMI (n=23). *p < 0.05, **p< 0.01, ***p < 0.001
and ****p < 0.0001.
634
Fig. 2: Maternal BMI an 632 with obesity (n=25) or with a lean BMI (n=23). *p < 0.05, **p< 0.01, ***p < 0.001

633 and ****p < 0.0001.

634
 **Fig. 2: Maternal BMI and BF% correlates with the frequency of Breg-like,

double-negative (DN2) and pla** 633 and ****p < 0.0001.
634 **Fig. 2: Maternal I**
636 **double-negative (I**
637 B_{reg}-like, **b)** DN2-lik
638 cohorts (left of the
639 values (middle) and
640 were used to com 635
636
637
638
639
640
641 **Fig. 2: Maternal BMI and BF% correlates with the frequency of Breg-like,**
 636 double-negative (DN2) and plasma-like cells in colostrum. Comparisons of **a)**
 B_{reg} -like, **b)** DN2-like and **c**) plasma-like cell % in **double-negative (DN2) and plasma-like cells in colostrum.** Comparisons of **a)** B_{reg} -like, **b**) DN2-like and **c**) plasma-like cell % in colostrum from lean and obese cohorts (left of the 3 panels), and correlations with B_{reg} -like, **b)** DN2-like and **c)** plasma-like cell % in colostrum from lean and obese

cohorts (left of the 3 panels), and correlations with between pre-pregnancy BMI

values (middle) and BF% (right). Doted lines rep 638 cohorts (left of the 3 panels), and correlations with between pre-pregnancy BMI
639 values (middle) and BF% (right). Doted lines represent SE. Mann-Whitney U tests
640 were used to compare B cell subsets in colostrum values (middle) and BF% (right). Doted lines represent SE. Mann-Whitney U tests

were used to compare B cell subsets in colostrum from both cohorts. Pearson

correlations were used to investigate the relationships between

640 were used to compare B cell subsets in colostrum from both cohorts. Pearson
641 correlations were used to investigate the relationships between B cell subsets %
642 and BMI or BF%. **p < 0.01 and ****p < 0.0001.
643
 641 correlations were used to investigate the relationships between B cell subsets %
642 and BMI or BF%. **p < 0.01 and ****p < 0.0001.
643
Fig. 3: IgG production is increased in colostrum from mothers with obesity.
a) 642 and BMI or BF%. $*^*p < 0.01$ and $*^{***}p < 0.0001$.
643 **Fig. 3: IgG production is increased in colost**
645 **a)** Relative contribution of IgA⁺ and IgG⁺ plasma
646 ± SD). Comparisons performed using Mann-V
647 indivi 644
645
646
648
648
650
651 **Fig. 3: IgG production is increased in colostrum from mothers with obesity.**
 a) Relative contribution of IgA⁺ and IgG⁺ plasma-like cells between cohorts (mean
 \pm SD). Comparisons performed using Mann-Whitney U a) Relative contribution of IgA⁺ and IgG⁺ **a)** Relative contribution of $\lg A^+$ and $\lg G^+$ plasma-like cells between cohorts (mean \pm SD). Comparisons performed using Mann-Whitney U test **p<0.01. **b)** Intra-individual correlation analysis of $\lg A^+$ and $\lg G^$ 646 \pm SD). Comparisons performed using Mann-Whitney U test **p<0.01. **b)** Intra-
647 individual correlation analysis of IgA⁺ and IgG⁺ colostrum plasma-like cells in both
648 groups. Spearman tests compared Z-Scores individual correlation analysis of IgA^+ and IgG^+ individual correlation analysis of $\lg A^+$ and $\lg G^+$ colostrum plasma-like cells in both

groups. Spearman tests compared Z-Scores of $\lg A^+$ and $\lg G^+$ plasma-like cells

proportions. **c**) Comparison of $\lg G$ and $\lg A$ groups. Spearman tests compared Z-Scores of IgA^+ and IgG^+ 648 groups. Spearman tests compared Z-Scores of $\lg A^+$ and $\lg G^+$ plasma-like cells

649 proportions. c) Comparison of $\lg G$ and $\lg A$ -secreting colostrum cells in both

650 cohorts (left), and Pearson correlations with 649 proportions. **c)** Comparison of IgG and IgA-secreting colostrum cells in both cohorts (left), and Pearson correlations with maternal BMI (middle) and BF% (right). **d)** Concentration of total IgG (mg/ml) and GlcNAc-spe 650 cohorts (left), and Pearson correlations with maternal BMI (middle) and BF%
651 (right). **d)** Concentration of total IgG (mg/ml) and GlcNAc-specific IgG (ng/ml)
652 (above) and total IgA (mg/ml) in both groups (indivi 651 (right). **d)** Concentration of total IgG (mg/ml) and GlcNAc-specific IgG (ng/ml) (above) and total IgA (mg/ml) in both groups (individual data, with mean \pm SD).

Comparisons performed through Mann-Whitney U test p 652 (above) and total IgA (mg/ml) in both groups (individual data, with mean \pm SD).
653 Comparisons performed through Mann-Whitney U test *p < 0.05, **p<0.01, ****p <
654 0.0001. 653 Comparisons performed through Mann-Whitney U test *p < 0.05, **p<0.01, ****p <

0.0001.

654 0.0001. 654 0.0001.

656
657
658
659
660
661
662 **Fig. 4: IgG⁺ -DN2 cells and IgG+** Fig. 4: IgG⁺-DN2 cells and IgG⁺-plasma like cells contribute to local IgG
production in obesity. a) Representative colostrum DN2-like B cells plot showing
IgA or IgG expression. b) Correlations between IgG⁺ plasma-li **production in obesity. a)** Representative colostrum DN2-like B cells plot showing
658 IgA or IgG expression. **b)** Correlations between IgG⁺ plasma-like cells and DN2-
669 Correlations between IgG⁺ plasma-like cells an IgA or IgG expression. **b)** Correlations between IgG⁺ plasma-like cells and DN2-658 IgA or IgG expression. **b)** Correlations between IgG⁺ plasma-like cells and DN2-
659 like cell proportions with IgG concentrations in lean (red) and obese (gray) cohorts.
c) Correlations between IgG⁺ plasma-like Fig. by Correlations with IgG concentrations in lean (red) and obese (gray) cohorts.
 c) Correlations between IgG⁺ plasma-like cells and DN2-like cell proportions with

concentrations of IgG-secreting cells in lean (r **c)** Correlations between IqG^+ plasma-like cells and DN2-like cell proportions with

c) Correlations between IgG⁺ plasma-like cells and DN2-like cell proportions with

concentrations of IgG-secreting cells in lean (red) and obese (gray) cohorts.

Trends were compared by Spearman rank.
 Fig. 5: Obese 661 concentrations of IgG-secreting cells in lean (red) and obese (gray) cohorts.
662 Trends were compared by Spearman rank.
663 **Fig. 5: Obese colostrum prompts cytokines production by human macrophages.** Supernatant con Fig. 5: Obese colostrum prompts
663 Fig. 5: Obese colostrum prompts
665 macrophages. Supernatant concentrations
666 a 16h period by human macrophages (blac
667 24 h with filtered colostrum supernatant from
668 (red). Each 664
665
666
668
669
670
671 **Fig. 5: Obese colostrum prompts cytokines production by human macrophages.** Supernatant concentrations of **a**) TNF-a and **b**) IL-6 produced over a 16h period by human macrophages (black), human macrophages incubated for **macrophages.** Supernatant concentrations of **a)** TNF-α and **b)** IL-6 produced over

a 16h period by human macrophages (black), human macrophages incubated for

667 24 h with filtered colostrum supernatant from the lean c 666 a 16h period by human macrophages (black), human macrophages incubated for
667 24 h with filtered colostrum supernatant from the lean cohort (gray) or obese cohort
668 (red). Each timepoint represents the mean of thre 24 h with filtered colostrum supernatant from the lean cohort (gray) or obese cohort

668 (red). Each timepoint represents the mean of three biological replicates ±SD.

669 Comparisons with two-way ANOVA and Turkey's post

668 (red). Each timepoint represents the mean of three biological replicates ±SD.
669 Comparisons with two-way ANOVA and Turkey's post-hoc test. *p < 0.05,
670 **p<0.01, ***p<0.001 and ****p < 0.0001.
671 **Fig. 6: Overvie** 669 Comparisons with two-way ANOVA and Turkey's post-hoc test. *p < 0.05,

670 **p<0.01, ***p<0.001 and ****p < 0.0001.

671 **Fig. 6: Overview of obesity-related alterations in B lymphocyte subtypes in

673 Fig. 6: Overv** 670 **p<0.01, ***p<0.001 and ****p < 0.0001.
671 **Fig. 6: Overview of obesity-related alt** maternal peripheral blood and colost
674 into B_{reg} cells (2) and migrate from
675 Transitional B cells (1) also migrate to see
6 672
673
674
675
676
677
678 **Fig. 6: Overview of obesity-related alterations in B lymphocyte subtypes in maternal peripheral blood and colostrum.** Transitional B cells (1) differentiate into B_{reg} cells (2) and migrate from the blood into the lacta maternal peripheral blood and colostrum. Transitional B cells (1) differentiate

into B_{reg} cells (2) and migrate from the blood into the lactating duct (2a).

Transitional B cells (1) also migrate to secondary tissues. into B_{reg} cells (2) and migrate from the blood into the lactating duct (2a).

675 Transitional B cells (1) also migrate to secondary tissues. There, transitional B cells

676 differentiate into naïve B cells (3) and ent 675 Transitional B cells (1) also migrate to secondary tissues. There, transitional B cells
676 differentiate into naïve B cells (3) and enter germinal centers (3a) or are activated
677 through the extrafollicular pathway 676 differentiate into naïve B cells (3) and enter germinal centers (3a) or are activated
677 through the extrafollicular pathway to differentiate into DN2-like B cells (4). These
678 (4) could migrate to multiple tissues 677 through the extrafollicular pathway to differentiate into DN2-like B cells (4). These
678 (4) could migrate to multiple tissues, including the lactating mammary gland and
679 colostrum (4a), where they are increased i (4) could migrate to multiple tissues, including the lactating mammary gland and colostrum (4a), where they are increased in obesity. Here we provide evidence that DN2-like B cells could differentiate into $\lg G^+$ plasmacolostrum (4a), where they are increased in obesity. Here we provide evidence that
680 DN2-like B cells could differentiate into $\lg G^+$ plasma-like cells (6a) and $\lg G$ -
681 secreting cells (7a) to increase $\lg G$ produce DN2-like B cells could differentiate into \log^{-1} plasma-like cells (6a) and \log^{-1} 680 DN2-like B cells could differentiate into $1gG⁺$ plasma-like cells (6a) and IgG-
secreting cells (7a) to increase IgG produced in obesity (8). In the germinal center,
naïve B cells (3), after germinal center re 681 secreting cells (7a) to increase IgG produced in obesity (8). In the germinal center,
682 naïve B cells (3), after germinal center reaction (3a) and can differentiate into two
683 subpopulations: (5) memory B cells or 682 naïve B cells (3), after germinal center reaction (3a) and can differentiate into two
683 subpopulations: (5) memory B cells or (6) plasma-like cells. Memory B cells
684 migrate through blood to mammary acini and colos 683 subpopulations: (5) memory B cells or (6) plasma-like cells. Memory B cells
684 migrate through blood to mammary acini and colostrum (5a). We have shown that
685 in obesity, colostrum USwM cells are decreased. Finally, migrate through blood to mammary acini and colostrum (5a). We have shown that
in obesity, colostrum USwM cells are decreased. Finally, colostrum IgG-secreting
in obesity, colostrum USwM cells are decreased. Finally, colost 685 in obesity, colostrum USwM cells are decreased. Finally, colostrum IgG-secreting

⁶⁵⁵

cells and sIgG increase in obesity (7a) while colostrum IgA-secreting cells and sIgA
687 are reduced (8). Created with BioRender.com
688 **Supplementary Fig. 1: Gating strategy used for manual gating of B cells**
690 subs are reduced (8). Created with BioRender.com
688 **Supplementary Fig. 1: Gating strategy us
690 subsets in colostrum.** Transitional B cells
691 regulatory B cells in green, memory B cells in
692 double-negative B cell subset ---
689
690
691
694
695
695 **Supplementary Fig. 1: Gating strategy used for manual gating of B cells
subsets in colostrum.** Transitional B cells in brown, naïve B cells in yellow,
regulatory B cells in green, memory B cells in orange, plasma-like cel **subsets in colostrum.** Transitional B cells in brown, naïve B cells in yellow,

regulatory B cells in green, memory B cells in orange, plasma-like cells in red, and

double-negative B cell subsets (DN1, DN2, DN3 and DN4) 691 regulatory B cells in green, memory B cells in orange, plasma-like cells in red, and
692 double-negative B cell subsets (DN1, DN2, DN3 and DN4) in blue. Dot plots are
693 represented in Contour plots, at least at 5% o

692 double-negative B cell subsets (DN1, DN2, DN3 and DN4) in blue. Dot plots are
693 represented in Contour plots, at least at 5% of level and included outliers in FlowJo
694 X® version Software, BD Biosciences.
695 **Sup** For the contour plots, at least at 5% of level and included outliers in FlowJo

694 X® version Software, BD Biosciences.

695 **Supplementary Fig. 2: CD19⁺ B cells are decreased in the colostrum from

697 mothers with ob** X® version Software, BD Biosciences.
695 **Supplementary Fig. 2: CD19⁺ B cel mothers with obesity a)** Total CD19⁺
698 cohorts. Groups compared using Mann
699 **Supplementary Fig. 3: Human subpopulations of differentiated Supplementary Fig. 2: CD19⁺mothers with obesity a)** Total CD19⁺ B cells in blood and in colostrum from both

696
697
698
699
700
701
702 **Supplementary Fig. 2: CD19⁺ B cells are decreased in the colostrum from mothers with obesity a)** Total CD19⁺ B cells in blood and in colostrum from both cohorts. Groups compared using Mann-Whitney U test. *** $p < 0.00$ mothers with obesity a) Total CD19⁺ B cells in blood and in colostrum from both

cohorts. Groups compared using Mann-Whitney U test. ***p < 0.001.
 Supplementary Fig. 3: Human colostrum contains percentages of
 Suppl cohorts. Groups compared using Mann-Whitney U test. ***p < 0.001.

699
 **Supplementary Fig. 3: Human colostrum contains peroxide subpopulations of differentiated B cells enriching in compariso

702 a) Scatter plots compar** 700
701
702
703
705
705
705 **Supplementary Fig. 3: Human colostrum contains percentages of subpopulations of differentiated B cells enriching in comparison with blood.

a) Scatter plots comparing transitional and naïve B cells in blood and colostrum. subpopulations of differentiated B cells enriching in comparison with blood.**
 a) Scatter plots comparing transitional and naïve B cells in blood and colostrum. **b)**

Scatter plots comparing regulatory B cells (Breg-lik **a)** Scatter plots comparing transitional and naïve B cells in blood and colostrum. **b)**

Scatter plots comparing regulatory B cells (Breg-like), double negative 2 (DN2-like)

and plasma-like cells in blood and in colostr 303 Scatter plots comparing regulatory B cells (Breg-like), double negative 2 (DN2-like)

304 and plasma-like cells in blood and in colostrum. **c)** Scatter plots comparing

305 unswitched memory (USwM) and switched memory 204 and plasma-like cells in blood and in colostrum. **c)** Scatter plots comparing

205 unswitched memory (USwM) and switched memory B cells (SwM) in blood and

206 colostrum (above). Scatter plots comparing USwM and SwM i The unswitched memory (USwM) and switched memory B cells (SwM) in blood and

706 colostrum (above). Scatter plots comparing USwM and SwM in colostrum from

707 lean and mothers with obesity (below). Statistical analysis w colostrum (above). Scatter plots comparing USwM and SwM in colostrum from

To lean and mothers with obesity (below). Statistical analysis was performed using the

Mann-Whitney U test, comparing B cell subsets percentages 1707 lean and mothers with obesity (below). Statistical analysis was performed using the

1708 Mann-Whitney U test, comparing B cell subsets percentages in blood from mothers

1709 with obesity (n=25) against lean subject

708 Mann-Whitney U test, comparing B cell subsets percentages in blood from mothers

709 with obesity (n=25) against lean subjects as control (n=23). *p < 0.05, **p< 0.01,

710 ***p < 0.001 and ****p < 0.0001.

711
 Supp with obesity (n=25) against lean subjects as control (n=23). *p < 0.05, **p< 0.01,

710 ***p < 0.001 and ****p < 0.0001.

711 **Supplementary Fig. 4. Obesity induces differentiation of plasma-like cells on**
 CD19 low expr 710 ***p < 0.001 and ****p < 0.0001.

711
 Supplementary Fig. 4. Obesity
 CD19 low expression group. a

714 analyzed in function of CD19 expression g

715 and positive CD19 expression g
 c) Column bar graph compar ---
712
713
714
715
716 712 **Supplementary Fig. 4. Obesity induces differentiation of plasma-like cells on CD19 low expression group. a,b)** Examples of histograms from plasma-like cells analyzed in function of CD19 expression, showing negative CD 713 **CD19 low expression group. a,b)** Examples of histograms from plasma-like cells analyzed in function of CD19 expression, showing negative CD19 population (left) and positive CD19 expression groups (right), from colostr 2014 analyzed in function of CD19 expression, showing negative CD19 population (left)

715 and positive CD19 expression groups (right), from colostrum of lean and mothers.

716 **c)** Column bar graph comparing plasma-like c 715 and positive CD19 expression groups (right), from colostrum of lean and mothers.
716 **c)** Column bar graph comparing plasma-like cells in function of percentage of (% of 716 **c)** Column bar graph comparing plasma-like cells in function of percentage of (% of

CD19⁺) low (no pattern), median (square pattern), and high (line pattern) CD19 717 CD19⁺) low (no pattern), median (square pattern), and high (line pattern) CD19 expression groups. Bars indicate the mean \pm SD. Statistical analysis was performed using the Kruskal Wallis test for multiple compari 718 expression groups. Bars indicate the mean \pm SD. Statistical analysis was

719 performed using the Kruskal Wallis test for multiple comparisons (Lean n=23 and

720 obesity n=25) assay. ***p<0.001. 719 performed using the Kruskal Wallis test for multiple comparisons (Lean n=23 and
720 obesity n=25) assay. ***p<0.001.
 $\frac{1}{2}$
720 obesity n=25) assay. ***p<0.001. 720 obesity n=25) assay. ***p<0.001.

Fig. 1

Fig. 2

2 0

3 5 4 0

 \bullet

 r^2 =0.2207

4 5

% live cells Z-Score

 -1

1
0
-1

 $\mathbf 0$

 $\mathbf 1$

Fig. 4

 $\mathbf C$

% o f I g G + p l a s m a - l i k e c e l l s

Fig. 5

A B TNF-alpha IL-6 * 15 50 ** ** ** ** * * **** 40 * ** 10 30 / ml / ml g g p p 20 5 10 * 0 0 0 4 8 12 16 20 0 4 8 12 16 20 time (h) time (h)** Unstimulated \rightarrow

Co-incubation with lean colostrum supernatant <u>ender i</u>

Co-incubation with obese colostrum supernatant

Plasma-like cells (CD19+ CD27hi CD38hi)

