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ABSTRACT 21 

 22 

The prevalence of obesity is rapidly increasing worldwide and its impact on future 23 

generations must be assessed. We recently showed that colostrum from mothers 24 

with obesity contained a significantly reduced B lymphocytes (CD19+) fraction. 25 

Here, in a subsequent transversal cohort study of 48 mothers, we exhaustively 26 

characterize the B lymphocytes subsets present in peripheral blood and colostrum 27 

from obese mothers and describe a pervasive alteration of the B lymphocytes 28 

compartment of human colostrum accompanied by a dysregulated antibody 29 

composition. We describe significant decreases in regulatory B cells and soluble 30 

IgA concentrations, combined with increases in soluble IgG and double negative 2 31 

(CD19+, CD27-, IgD-, CD38-, CD24-, CD21-, CD11c+) B lymphocytes. These 32 
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alterations correlated with maternal BMI and corporal fat %. We provide evidence 33 

for possibly autoimmune IgG present in obese colostrum, and for the 34 

proinflammatory consequences of obese colostrum in vitro. Beyond the impact of 35 

obesity, we evidence the selective presence of B lymphocyte subtypes in 36 

colostrum and in situ production of IgG antibodies, which expands our current 37 

understanding of the origin of colostrum IgG. As maternal milk antibodies play a 38 

crucial role in regulating neonatal gut immune development, this work uncovers 39 

maternal obesity as a potential risk factor for compromised breastmilk immune 40 

components, calling for more research on the long-term health of lactating infants. 41 

 42 
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1. INTRODUCTION 58 

 59 

Tolerizing responses in the gut allow the establishment of the microbiota and 60 

efficient food digestion, contributing to health. Disruptions in these tolerizing 61 

responses cause inflammation that promote disease. For example, in ulcerative 62 

colitis, immune tolerance to commensal microbes is impaired1. This prevents the 63 

expansion of a tolerizing RORγ
+ Treg population, fueling gut inflammation that 64 

primes the disease2. Interestingly, RORγ
+ Treg populations essential to the 65 

establishment of the microbiota are transmitted exclusively through breastmilk and 66 

persist through adulthood3. Therefore, essential immune responses in the adult gut 67 

are imprinted at least in part during breastfeeding and inappropriate responses 68 

prime adverse conditions later in life4. 69 

 70 

Maternal obesity is a rising condition worldwide that correlates with variations in 71 

multiples breastmilk components including the microbiota, Human-milk 72 

oligosaccharides (HMO) and lipids5–8. However, reports on immune bioactives like 73 

cytokines and leukocytes remain scarce9–12. We recently evidenced a significant 74 

reduction of the B lymphocytes compartment in the colostrum of mothers with 75 

obesity13. Here, we further characterize 18 B lymphocytes subpopulations in obese 76 

colostrum and describe pervasive alterations of the resolved populations, including 77 

less Breg-like and more of a recently described pro-inflammatory B lymphocyte 78 

population, also known as double-negative 2 (DN2) B cells14,15. These alterations 79 

at the cellular level are accompanied by significant regulations in colostrum 80 

antibodies, including less soluble IgA (sIgA), and more soluble IgG (sIgG). 81 

Interestingly, obese colostrum sIgG had increased recognition of N-82 

acetylglucosamine (GlcNAc) which is present on bacterial and fungal cell walls, but 83 

also composes various human tissues, hinting toward a possible transfer of 84 

autoimmunity16–18. Finally, we show that in contrast to colostrum from "lean" 85 

mothers, obese colostrum leads to activation of human macrophages in vitro. 86 

Overall, we describe here that maternal obesity regulates B lymphocytes subsets 87 
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and antibodies in human colostrum, with possible long-lasting impact on the 88 

suckling neonate's health. 89 

 90 

2. MATERIALS AND METHODS 91 

 92 

2.1 Human samples 93 

This cross-sectional study was approved by the Ethics Committee of the Hospital 94 

Regional Materno Infantil, Servicios de Salud de Nuevo León, and by the IRB at 95 

the School of Medicine and Health Sciences, TecSalud, in Monterrey, Mexico 96 

(CarlMicrobio2018, Reg. No. DEISC-19 01 18 09). Eligible women attending the 97 

hospital for delivery were recruited between September 2022 and April 2023. 98 

Participation in the study was based on the following inclusion criteria: (1) maternal 99 

age between 18 and 34 years, (2) over 5 prenatal visits without any adverse event 100 

during pregnancy, (3) pre-pregnancy BMI >18.5 and <25, or >30, (4) term infant, 101 

and (5) willingness to participate. Exclusion criteria included (1) having received 102 

antibiotics anytime during the 3-month period before birth, or having received a 103 

prolonged antibiotic treatment (>3 months) anytime during pregnancy, (2) having 104 

received immunosuppressive doses of steroids during pregnancy, (3) history of any 105 

monoclonal antibody treatment, (4) history of chronic disease (outside of obesity), 106 

(5) suffering from any nutrition-related disease or dietary restrictions, (6) episodes 107 

of diarrhea during the last 2 weeks of pregnancy, (7) history of surgery within 12 108 

months prior to pregnancy, (8) history of antineoplastic treatment. Elimination 109 

criteria included (1) having received antibiotics for >24 h post-birth, (2) newborn 110 

admission to NICU, (3) any additional cause impeding sample collection. Oxytocin 111 

was not used during labor. Pre-pregnancy weight was recalled, current height was 112 

measured and current body fat percentage (BF%) obtained by impedance at the 113 

time of recruitment. Additional variables collected or measured in this work 114 

included maternal age, primiparity, infant gender, gestational age at birth, mode of 115 

delivery, weight of infant at birth, volume of colostrum obtained, frequency of B 116 

lymphocytes subpopulations in blood and colostrum samples, type and 117 

concentrations of antibodies and frequency of antibody-producing cells in 118 
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colostrum. Additional details are included in the study’s STROBE statement 119 

(Supplementary Table 1). Participants were allocated to the “obese” (BMI>30, 120 

BF%>30) or "lean" (18.5>BMI<25, BF%<22) groups according to the WHO 121 

guidelines. Upon recruitment and signed informed consent, 4 ml of maternal 122 

peripheral blood were drawn into K2EDTA coated tubes (BD Vacutainer®, cat. 123 

366643). The same day, after infant feeding, the nipple area of the breast was 124 

gently cleaned with neutral soap and water, and 1-3 ml of colostrum were collected 125 

using a manual pump. Samples were immediately stored on ice until processing 126 

and all samples were processed within 2 h of collection.  127 

 128 

2.2 Isolation of PBMC from peripheral blood  129 

Ficoll-Paque (Fisher scientific, cat. 17-1440-03) was used to enrich PBMC from 130 

peripheral blood and residual erythrocytes were lysed using Pharm Lyse Solution 131 

(BD, cat. 555899), as per manufacturer´s instructions. Cells were manually 132 

counted using a Neubauer chamber, using 0.4% Trypan blue to discriminate dead 133 

cells). Three million live PBMC were then stained for flow cytometry in a total 134 

volume of 100 µl. 135 

 136 

2.3 Cell enrichment from colostrum  137 

Approximately 2 ml of colostrum were processed for cell enrichment prior to 138 

staining for flow cytometry, as previously reported13,19. Briefly, colostrum volumes 139 

were recorded, and samples were centrifuged at 400 rcf for 15 min at 4°C. 140 

Supernatant were stored away, and cell pellet were washed twice with PBS/1% 141 

FBS/2mM EDTA. Cells were manually counted using a Neubauer chamber using 142 

0.4% Trypan blue to discriminate dead cells. Two million live cells were then 143 

stained for flow cytometry in a total volume of 100 µl. 144 

 145 

2.4 Flow cytometry 146 

The same conjugated monoclonal antibodies were used to stain both tissue types, 147 

and antibody and viability stains were titrated independently for each tissue. PBMC 148 

were staining with 1.38 µl of CD19-PerCP Cy5.5 (BioLegend, catalog number 149 
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302230), 5 µl of CD21-PE/DazzleTM 594 (BioLegend, catalog number 354922), 5 150 

µl of CD24-Brilliant Violet 786TM (BioLegend, catalog number 311142), 2 µl of 151 

CD27-APC (BioLegend, catalog number 302810), 2.5 µl of CD38-Alexa Fluor® 700 152 

(BioLegend, catalog number 397206), 2 µl of IgA-VioGreen (Miltenyi Biotec, 153 

catalog number 130-113-481), 3 µl of IgG APC Cy7 (BioLegend, catalog number 154 

410732), 3 µl of IgD-VioBlue (Miltenyi Biotec, catalog number 130-123-258), and 5 155 

µl of CD11c-Brilliant Violet 605TM (BioLegend, catalog number 744436), and 1 µl 156 

of Zombie Green (BioLegend, catalog number 423111); in a final volume of 100 µl 157 

of PBS/1% FBS/2mM EDTA. As previous publications suggested we optimized 158 

staining times for optimal resolution, and incubated 90 min at 4°C in the dark20.  159 

For colostrum cells, 2x106 cells were stained using a cocktail including 1.38 µl 160 

CD19-PerCP Cy5.5, 5 µl CD21-PE/DazzleTM 594, 5 µl CD24-Brilliant Violet 161 

786TM, 2 µl CD27-APC, 3 µl CD38-Alexa Fluor® 700, 5 µl IgA-VioGreen, 5 µl IgG-162 

APC Cy7, 5 µl IgD-VioBlue, 5 µl IgG-APC Cy7, and 5 µl CD11c-Brilliant Violet 163 

605TM; in a final volume of 100 µl of PBS/1% FBS/2mM EDTA. After incubation, 164 

samples were washed and resuspended in PBS/1% FBS/2mM EDTA for 165 

immediate acquisition on a BD® FACSCelesta flow cytometer fitted with 405 nm, 166 

488 nm, and 633 nm lasers and operated through the BD® FACSDiva software 167 

v.8. Compensation controls were used at each acquisition using compensation 168 

beads following manufacturer’s recommendations, and automatic compensation 169 

was performed prior to acquisition. Over 106 events were recorded from each 170 

sample, with the FSC threshold adjusted to 50,000 or 5,000 for blood and 171 

colostrum, respectively. Analysis was performed using FlowJo X 10.0.7r2. The 172 

gating strategy initially optimized was based on previous reports and CD45 stained 173 

samples but FMO controls were used to adjust gates for both sample types21,22. 174 

The gating strategy is described in Supplementary Fig. 1. 175 

 176 

2.5 IgM, sIgA and sIgG ELISA 177 

Flat-bottom 96-well polystyrene plates were coated with 1:5000 PBS-diluted mouse 178 

anti-human monoclonal antibody for either IgM (Abcam, cat. ab200541), IgA 179 

(Abcam, cat. ab7400b) or IgG (Abcam, cat. ab72528), and incubated 12 h at 4 °C. 180 
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After blocking, dilutions of plasma or colostrum supernatants were incubated for 2 181 

h at 37 °C. For detection, anti-human IgG, IgA, and IgM coupled to HRP (Abcam, 182 

cat. ab102420) were added at 1:8000 dilution and incubated for 1 h at 37 °C. Fifty 183 

µl/ well of TMB (Abcam, cat. ab171523) were then incubated 2 min. The reaction 184 

was stopped with 50 µl of 0.2 M H2SO4, and plates were read at 450 nm on a 185 

spectrophotometer (Tecan’s Magellan® universal reader). Quantitative standard 186 

curves were obtained for each isotype using serial dilutions from recombinant 187 

human IgA (Abcam, cat. ab91025), IgG (Abcam, cat. Ab91102) or IgM (Abcam, 188 

cat. Ab91117). 189 

 190 

2.6 IgM, IgG, and IgA-secreting cells ELISPOT 191 

Briefly, 96-well plates were covered with PVDF membranes. After methanol 192 

activation, membranes were coated with a 1:2500 dilution of mouse anti-human 193 

monoclonal antibody recognizing IgM, IgA, or IgG (Abcam, cats. ab200541, 194 

ab7400, ab72528, respectively). The plates were incubated for 12 h at 4° C, then 195 

blocked for 90 min at 25 °C. Colostrum-enriched cells or blood PBMC were seeded 196 

at 200,000 cells/well in RPMI 1640 with 10% FBS and 100 U/ml penicillin, 0.1 197 

mg/ml streptomycin. Plates were incubated for 18 h at 37 °C and 5% of CO2. For 198 

detection, a 1:10,000 dilution of HRP-conjugated goat anti-human IgG, IgA, and 199 

IgM (Abcam, cat. ab102420) was incubated 1 h at 37°C. Finally, 50 µl/well 3,3′-200 

DAB (Sigma-Aldrich, cat. D4418) were added. Membranes were then washed and 201 

dried, and pictures were acquired with a Stereoscopic Microscope (Nikon, cat. 202 

SMZ1500). Spots were counted using the Analyze Particles command in ImageJ 203 

(Java®). 204 

 205 

2.7 Colostrum-mediated macrophage cytokine production 206 

To produce human macrophage-like cells, U937 cells (ATCC, CRL-1593.2) were 207 

differentiated over 24 h using 10 ng/ml PMA (Sigma-Aldrich®, cat. 79346) in RPMI 208 

1640, supplemented as above. After 24 h, the media was replaced without PMA 209 

but including 2.5% 0.22 µm-filtered colostrum supernatant. After a further 24 h, 210 

cells were washed, fresh media without colostrum was added. To quantify 211 
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cytokines, 5 µL of culture supernatants were obtained every 2 h for a total of 16 h. 212 

Samples were centrifuged and stored at -20 °C until quantification. Cytokines were 213 

quantified using a LEGENDplex kit (BioLegend, cat. 740808) according to the 214 

manufacturer's instructions. All samples were immediately read on a BD® 215 

FACSCelesta flow cytometer fitted with 405 nm, 488 nm, and 633 nm lasers and 216 

operated through the BD® FACSDiva software version 8. Analysis and quantitative 217 

data were obtain using the FCAP Array software v 3.0 SoftFlow® LEGENDplex™ 218 

Cloud-based Data Analysis Software online23.  219 

 220 

2. 8 Statistical Analysis  221 

Shapiro-Wilk normality tests were performed on each B lymphocyte subtype 222 

dataset. Non-normal datasets were compared using Mann-Whitney or one-way 223 

Kruskal-Wallis test when comparing >2 groups. Means of normally distributed data 224 

were compared using Student’s t test. Correlations were investigated using 225 

Pearson rank or Spearman r. All these tests were performed in GraphPad Prism 226 

v.8 (GraphPad Software Inc®, San Diego CA, USA). Median (IQR) were compared 227 

using Independent-Samples Median test in SPSS v.26. 228 

 229 

3. RESULTS AND DISCUSSION 230 

 231 

3.1 B lymphocytes subpopulations are selectively present in colostrum 232 

We recruited a total of 48 mothers to participate in this study. As per study design, 233 

the BMI and BF% of the cohort of mothers with obesity were significantly larger 234 

compared to the cohort of "lean" mothers, while no difference were observed in 235 

possible confounders such as maternal age, infant gender, gestational age, or 236 

delivery type between the groups (Table 1).  237 

We applied an optimized 10-colour flow cytometry panel to detect 18 238 

subpopulations of B lymphocytes in peripheral blood and colostrum. The gating 239 

strategy was based on classical and more recent markers used to subtype 240 

peripheral blood B lymphocytes (Table 2). We found a reduced fraction of the total 241 

B lymphocytes population in obese colostrum compared to the lean cohort 242 
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(Supplementary Fig. 2), consistent with previous findings13. The reduction was not 243 

resumed in peripheral blood, suggesting that obesity regulates this compartment 244 

locally, with observed changes in colostrum. 245 

 246 

In peripheral blood, we could detect all targeted subpopulations including rare 247 

subtypes like Breg-like and transitional B cells (Supplementary Fig. 3) with 248 

proportions consistent with previous reports22,24–26. In contrast, in colostrum 249 

multiple subtypes could not be detected, notably the early stages of B cell 250 

ontogeny including transitional and naïve B cells (Fig. 1A). In comparing B 251 

lymphocyte subtypes between blood and colostrum, we considered relative 252 

proportions (Supplementary Fig. 3), but also concentrations in original samples 253 

(Fig. 1) calculated from measured sample volumes, manual cell counts and % 254 

populations, to account for discrepancies in cellularity between blood and 255 

colostrum (Fig. 1). Differences were consistent between population % and 256 

concentrations. While early ontogeny B cells were absent from colostrum, 257 

differentiated subtypes were very significantly increased in this tissue, including 258 

Breg-like, DN2-like and plasma-like cells that were rare in peripheral blood (Fig. 1B), 259 

although definitive labelling should be based on functional assays such as cytokine 260 

and antibody production. While switched memory (SwM) B cells were present in 261 

similar concentrations in both colostrum and blood, unswitched memory B cells 262 

(USwM) were significantly underrepresented in colostrum compared to peripheral 263 

blood (Fig. 1C). Overall, the results describe pervasive, significant differences in % 264 

and concentrations of B lymphocytes subtypes between blood and colostrum. This 265 

may suggest a selective migration to the mammary acini and colostrum. It further 266 

describes human colostrum as containing multiple subpopulations of differentiated 267 

B cells, enriching the current state-of-the art27,28. 268 

 269 

We then asked if proportions of specific B cell subpopulations in colostrum were 270 

regulated with maternal obesity. In this context, we measured significantly less 271 

USwM B cells without detected changes in the SwM B cells (Fig. 1C). While this 272 

work is the first to report changes in breastmilk memory B cells in relation with 273 
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maternal obesity, others have measured increased breastmilk SwM B cells from 274 

HIV-infected mothers28. Increased SwM B cells were also found in mouse visceral 275 

adipose tissue29. IgG isotype switching follows stimulation with cytokines that are 276 

increased in obesity29,30. We propose that the increase in SwM B cells depletes 277 

USwM, causing the significant decrease in colostrum USwM B cells. In support of 278 

this, obesity peripheral blood indeed contained significantly less USwM and 279 

significantly more SwM B lymphocytes (data not shown). 280 

 281 

3.2 Obesity colostrum harbors a dysregulated B lymphocyte repertoire, 282 

hinting towards an inflammatory profile 283 

Looking at functional populations, we found a significantly reduced Breg-like cell 284 

fraction in the colostrum of mothers with obesity (Fig. 2A). The relative abundance 285 

of colostrum Breg-like cells negatively correlated with maternal pre-pregnancy BMI 286 

and current BF%. Inflammation has been linked to decreased Breg-like cells 287 

functions and growth31,32. Obesity is now accepted as a state of chronic 288 

inflammation, which supports the physiological interpretation of the results33,34. Breg 289 

cells limit ongoing immune reactions, restore immune homeostasis, and promote 290 

tolerance to commensals of the gut microbiota, suggesting consequences of this 291 

reduction for the infant's pioneering microbiota35–38. We then investigated DN2-like 292 

B cells, recently described in blood in multiple inflammatory scenarios including 293 

autoimmune disorders, acute infections and obesity22,15,39. Consistent with the 294 

inflammatory state suggested by a reduced Breg-like B cell fraction, we found 295 

significantly increased proportions of DN2-like cells, and these changes positively 296 

correlated with pre-pregnancy BMI and current BF% (Fig. 2B). While the exact 297 

origins and roles of DN2-like cells remain unclear to date, their occurrence follow a 298 

proinflammatory stimulus40–43. Future experiments could include measuring the 299 

transcription factor T-bet and IFNγ production from these cells to confirm cell 300 

identity44–46. We then investigated plasma-like cells that could be producing 301 

antibodies. These were increased in obesity colostrum, and as observed with DN2-302 

like B cells, colostrum plasma-like cell proportions positively correlated with pre-303 

pregnancy BMI and with current BF% (Fig. 2C). Plasma cells can differentiate 304 
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following IFNγ
47 and leptin signaling48. These soluble factors are increased in 305 

obesity49, which provides a physiological explanation for our findings. 306 

 307 

Correlation values (r2) for the 3 cell types were consistently higher for BF% 308 

compared to BMI. Despite the historical use of BMI as an indicator of obesity, the 309 

lack of precision in the composition of the measured weight is confounding. Our 310 

results suggest a clearer association between increased BF% and the regulation of 311 

specific B cell subtypes in human colostrum. 312 

 313 

3.3 Obesity modulates colostrum plasma like-cells and their antibody 314 

secreting function 315 

Having identified a significant increase in colostrum plasma-like B cells, we 316 

wondered if this population exhibited changes in their antibody production, 317 

isotypes, and antigen specificity. As B cells gradually lose CD19 surface 318 

expression during differentiation towards antibody-secreting cells, we measured 319 

CD19 MFI within the plasma-like cell subpopulations in both groups to compare 320 

their relative degree of maturity50. We identified 3 discrete subpopulations based 321 

on CD19 expression level, with a significant increase in the CD19low plasma-like B 322 

cell fraction in the obese cohort (Supplementary Fig. 4)51. This suggests obese 323 

colostrum is enriched in plasma-like cells maturing towards antibody-secreting 324 

cells, possibly driven by proinflammatory signals linked to obesity as described 325 

earlier47,48. 326 

 327 

We compared isotypes of the plasma-like cells and evidenced a significantly 328 

increased fraction of IgG+ plasma-like cells in obese colostrum, while the IgA+ 329 

fraction remained unchanged (Fig. 3A). Interestingly, intra-individual correlations of 330 

IgA+- and IgG+-plasma-like cells exhibited a trend whereby obese colostrum 331 

contained a switched relation of both isotypes (Fig. 3B), suggesting a 332 

compensatory mechanism although more work is required to mechanistically 333 

explain this. We then investigated if there were more antibody-secreting cells in 334 

obese colostrum. Using an ELISPOT assay, we found a significant increase in IgG-335 
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secreting cells in obese colostrum which positively correlated with maternal BMI 336 

and BF% (Fig. 3C). While IgA-secreting cell concentrations remained unchanged, 337 

we observed a negative correlation between their concentration, and maternal BMI 338 

and BF%. These results confirm colostrum contains B cell subsets that actively 339 

produce antibodies in situ, adding to the current understanding of breastmilk IgG 340 

originating from FcN-mediated transcellular translocation52. We measured 341 

significantly more sIgG and less sIgA concentrations in obese colostrum (Fig. 3D). 342 

These changes may affect the establishment of the intestinal microbiota53. 343 

Dysregulations in maternal antibodies received through breastmilk also impact the 344 

growth and maturation of the neonatal intestine54. These results confirm previous 345 

reports of increased local concentrations of IgG in obesity55. We further wondered 346 

if the increased IgG may be autoimmune, as accumulating evidence links obesity 347 

to autoimmune disorders56. We measured the concentration of colostrum IgG 348 

specifically recognizing N-acetylglucosamine (GlcNAc), a common bacterial and 349 

fungal antigen that bears similarities with circulating hyaluronic acid in obesity57,58. 350 

We found a very significant increase of anti-GlcNAc IgG in obese colostrum (Fig. 351 

3D). The GlcNAc used as target antigen in the assay was obtained from Group A 352 

Streptococcus pyogenes (GAS), however the incidence GAS infection is low 353 

among pregnant mothers from low income countries like Mexico59, and no 354 

participant reported GAS infection during pregnancy. These results then suggest 355 

autoreactive anti-GlcNAc IgG in obese colostrum, and it will be important to 356 

investigate how this affects neonatal gut health. 357 

 358 

3.4 Obese colostrum IgG may originate from proinflammatory DN2 B 359 

lymphocytes 360 

We then wondered what cells could produce IgG in obese colostrum. We noticed 361 

DN2-like cells were almost entirely IgG+ (Fig. 4A), and these cells have been 362 

reported to secrete IgG40. Since obese colostrum contained significantly more IgG+ 
363 

DN2-like and IgG+ plasma-like cells, together with more sIgG (Fig. 3C) and IgG-364 

secreting cells (Fig. 3A), we correlated IgG concentrations with these possible local 365 

producers. There were clear correlations between IgG colostrum concentrations 366 
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and both IgG+ cell types in obesity but not in the lean cohort (Fig. 4B, gray and red 367 

data, respectively). Looking at IgG-producing cells, the only significant correlation 368 

was with the proportion of DN2-like cells, in obese colostrum only (Fig. 4C, gray 369 

data), suggesting these cells participate in the production of IgG in this context. As 370 

DN2 cells are mostly found in a proinflammatory setting15,40,60, it will be relevant to 371 

investigate the IgG subtypes produced and their consequence in vivo. 372 

 373 

3.5 Obese colostrum activates human macrophages in vitro 374 

We finally investigated the effect of obese colostrum on human macrophages. 375 

Macrophages reside in the neonatal intestine and regulate the local inflammatory 376 

response during the first days of life61. Co-cultures evidenced that colostrum from 377 

mothers with obesity prompted TNF-α production while colostrum from lean 378 

mothers did not (Fig. 5A). Until shortly after birth, the neonatal intestine contains 379 

macrophages replenished by blood monocytes due to commensal stimulation. In 380 

health, these intestinal macrophages show low pro-inflammatory responses, 381 

including minimal IL-6 and TNF-α expression62–66. Elevated TNF-α levels in the 382 

neonatal intestine increases NEC pathogenesis67. On the other hand, while IL-6 383 

was significantly increased by obese colostrum stimulation, this cytokine was 384 

already present in basal conditions (Fig. 5B). Overall, there was a direct induction 385 

of inflammation of macrophages by obese colostrum. Further research should 386 

investigate activation mechanisms and long-term consequences for neonatal 387 

health. 388 

 389 

4. Conclusions 390 

This is the first report of obesity-mediated regulation of B lymphocytes and 391 

antibodies in human colostrum. We measured notable changes in phenotypically 392 

and functionally distinct B lymphocyte subpopulations, which in turn adversely 393 

affect the composition of antibodies (summarized in Fig. 6). We advocate for 394 

additional research to explore the underlying mechanisms in maternal gut and 395 

breast tissue affected by obesity, as well as to understand the ramifications for 396 
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neonatal intestinal maturation, including the establishment of gut microbiota and 397 

maturation of the intestine in suckling infants.  398 

 399 
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Table 1: Participants characteristics 614 
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 Group  

Variable Lean, n = 23 Obese, n = 25 P value 

Maternal age (years) a 21 (20 - 24) 23.5 (20 -27.5) 0.099 

BMI (kg/m2) a 21.4 (18.7 - 24.1) 30.3 (30.0 - 31.9) <0.0001 

Body fat percentage (%) a 20 (15 - 22) 39.1 (34 - 42) <0.0001 

Gestational age (weeks) a 38 (37 - 39) 38 (37 - 39) 0.690 

Primiparity a 2 (1 - 3) 3 (1.75 - 4) 0.104 

Vaginal delivery b 23 (100) 24 (92.3) 0.491 

Newborn female gender b 9 (39.1) 15 (60) 
0.156 

Newborn male gender b 14 (60.9) 10 (40) 

Birth weight (g) a 3070 (2700 - 3290) 3000 (2742 - 3255) 0.411 

Birth height (cm) a 49 (47 - 50) 49 (47 - 50) 0.832 

 615 

Notes: BMI = Body Mass Index; a = Values expressed as median (IQR), statistical 616 

analysis with Independent-Samples Median test, b = Values expresses as 617 

frequency (%), statistical analysis with Fisher´s exact test. 618 

 619 

Table 2: Flow cytometry-based identification of B lymphocyte subtypes 620 

B cell subpopulation 

(acronym) 

Surface markers phenotype References 

Total B cells (B cells) CD19+ 27 

Transitional B cells type 1 (T1) CD19+, CD27-, CD38hi, 

CD24hi, CD21neg/low 

68,69 

Transitional B cells type 2 (T2) CD19+, CD27-, CD38hi, 

CD24hi, CD21+ 

69,70 

Resting naïve B cells (resN) CD19+, CD27-, IgD+, CD38+, 

CD24-, CD11c- 

71,72 
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Active naïve B cells (actN) CD19+, CD27-, IgD+, CD38+, 

CD24-, CD11c+ 

72,73 

Total plasma-like cells (Plasma-

like cells) 

CD19+, CD27hi, CD38hi 74,75 

Plasma-like cells expressing IgA 

(IgA+ plasma-like cells) 

CD19+, CD27hi, CD38hi, IgA+ 

Plasma-like cells expressing IgG 

(IgG+ plasma-like cells) 

CD19+, CD27hi, CD38hi, IgG+ 

Unswitched memory B cells 

(USwM) 

CD19+, CD27+, IgD+ 76,77 

IgG switched memory (IgG+ 

SwM) 

CD19+, CD27+, IgD-, IgG+ 

IgA switched memory (IgA+ 

SwM) 

CD19+, CD27+, IgD-, IgA+ 

Unswitched non-classical 

memory (M CD27- IgD+) 

CD19+, CD38neg/low, CD24+, 

CD27-, IgD+ 

78,79 

Switched non-classical memory 

or (M CD27- IgD-) 

CD19+, CD38neg/low, CD24+, 

CD27-, IgD- 

Double negative B cell subtype 1 

(DN1-like) 

CD19+, CD27-, IgD-, CD38-/+, 

CD24-, CD21+, CD11c-   

40,80 

Double negative B cell subtype 2 

(DN2-like) 

CD19+, CD27-, IgD-, CD38-, 

CD24-, CD21-, CD11c+ 

Double negative B cell subtype 3 

(DN3-like) 

CD19+, CD27-, IgD-, CD38-/+, 

CD24-, CD21-, CD11c- 

Double negative B cell subtype 4 

(DN4-like) 

CD19+, CD27-, IgD-, CD38-, 

CD24-, CD21+, CD11c+ 

B reg-like cells (Breg-like cells) CD19+, CD38+, CD24+ 81,82 

 621 

FIGURE LEGENDS 622 

 623 
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Fig. 1: Human colostrum and peripheral blood are differentially enriched in 624 

multiple B lymphocyte subtypes. a) Concentrations of transitional and naïve B 625 

cells in peripheral blood and colostrum. b) Concentrations of Breg-like, DN2-like and 626 

plasma-like cells in peripheral blood and colostrum. c) Concentrations of USwM 627 

and SwM in blood and colostrum (above) and subsampling comparing samples 628 

from mothers with BMI<25 ("lean") and mothers with BMI>30 ("obese") (below). 629 

Statistical analysis was performed using Mann-Whitney U tests, comparing B cell 630 

subsets concentrations (live cells/ml or original blood or colostrum) from mothers 631 

with obesity (n=25) or with a lean BMI (n=23). *p < 0.05, **p< 0.01, ***p < 0.001 632 

and ****p < 0.0001. 633 

 634 

Fig. 2: Maternal BMI and BF% correlates with the frequency of Breg-like, 635 

double-negative (DN2) and plasma-like cells in colostrum. Comparisons of a) 636 

Breg-like, b) DN2-like and c) plasma-like cell % in colostrum from lean and obese 637 

cohorts (left of the 3 panels), and correlations with between pre-pregnancy BMI 638 

values (middle) and BF% (right). Doted lines represent SE. Mann-Whitney U tests 639 

were used to compare B cell subsets in colostrum from both cohorts. Pearson 640 

correlations were used to investigate the relationships between B cell subsets % 641 

and BMI or BF%. **p < 0.01 and ****p < 0.0001. 642 

 643 

Fig. 3: IgG production is increased in colostrum from mothers with obesity. 644 

a) Relative contribution of IgA+ and IgG+ plasma-like cells between cohorts (mean 645 

± SD). Comparisons performed using Mann-Whitney U test **p<0.01. b) Intra-646 

individual correlation analysis of IgA+ and IgG+ colostrum plasma-like cells in both 647 

groups. Spearman tests compared Z-Scores of IgA+ and IgG+ plasma-like cells 648 

proportions. c) Comparison of IgG and IgA-secreting colostrum cells in both 649 

cohorts (left), and Pearson correlations with maternal BMI (middle) and BF% 650 

(right). d) Concentration of total IgG (mg/ml) and GlcNAc-specific IgG (ng/ml) 651 

(above) and total IgA (mg/ml) in both groups (individual data, with mean ± SD). 652 

Comparisons performed through Mann-Whitney U test *p < 0.05, **p<0.01, ****p < 653 

0.0001.  654 
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 655 

Fig. 4: IgG+-DN2 cells and IgG+-plasma like cells contribute to local IgG 656 

production in obesity. a) Representative colostrum DN2-like B cells plot showing 657 

IgA or IgG expression. b) Correlations between IgG+ plasma-like cells and DN2-658 

like cell proportions with IgG concentrations in lean (red) and obese (gray) cohorts. 659 

c) Correlations between IgG+ plasma-like cells and DN2-like cell proportions with 660 

concentrations of IgG-secreting cells in lean (red) and obese (gray) cohorts. 661 

Trends were compared by Spearman rank. 662 

 663 

Fig. 5: Obese colostrum prompts cytokines production by human 664 

macrophages. Supernatant concentrations of a) TNF-α and b) IL-6 produced over 665 

a 16h period by human macrophages (black), human macrophages incubated for 666 

24 h with filtered colostrum supernatant from the lean cohort (gray) or obese cohort 667 

(red). Each timepoint represents the mean of three biological replicates ±SD. 668 

Comparisons with two-way ANOVA and Turkey´s post-hoc test. *p < 0.05, 669 

**p<0.01, ***p<0.001 and ****p < 0.0001. 670 

 671 

Fig. 6: Overview of obesity-related alterations in B lymphocyte subtypes in 672 

maternal peripheral blood and colostrum. Transitional B cells (1) differentiate 673 

into Breg cells (2) and migrate from the blood into the lactating duct (2a). 674 

Transitional B cells (1) also migrate to secondary tissues. There, transitional B cells 675 

differentiate into naïve B cells (3) and enter germinal centers (3a) or are activated 676 

through the extrafollicular pathway to differentiate into DN2-like B cells (4). These 677 

(4) could migrate to multiple tissues, including the lactating mammary gland and 678 

colostrum (4a), where they are increased in obesity. Here we provide evidence that 679 

DN2-like B cells could differentiate into IgG+ plasma-like cells (6a) and IgG-680 

secreting cells (7a) to increase IgG produced in obesity (8). In the germinal center, 681 

naïve B cells (3), after germinal center reaction (3a) and can differentiate into two 682 

subpopulations: (5) memory B cells or (6) plasma-like cells. Memory B cells 683 

migrate through blood to mammary acini and colostrum (5a). We have shown that 684 

in obesity, colostrum USwM cells are decreased. Finally, colostrum IgG-secreting 685 
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cells and sIgG increase in obesity (7a) while colostrum IgA-secreting cells and sIgA 686 

are reduced (8). Created with BioRender.com 687 

 688 

Supplementary Fig. 1: Gating strategy used for manual gating of B cells 689 

subsets in colostrum. Transitional B cells in brown, naïve B cells in yellow, 690 

regulatory B cells in green, memory B cells in orange, plasma-like cells in red, and 691 

double-negative B cell subsets (DN1, DN2, DN3 and DN4) in blue. Dot plots are 692 

represented in Contour plots, at least at 5% of level and included outliers in FlowJo 693 

X® version Software, BD Biosciences. 694 

 695 

Supplementary Fig. 2: CD19+ B cells are decreased in the colostrum from 696 

mothers with obesity a) Total CD19+ B cells in blood and in colostrum from both 697 

cohorts. Groups compared using Mann-Whitney U test. ***p < 0.001. 698 

 699 

Supplementary Fig. 3: Human colostrum contains percentages of 700 

subpopulations of differentiated B cells enriching in comparison with blood. 701 

a) Scatter plots comparing transitional and naïve B cells in blood and colostrum. b) 702 

Scatter plots comparing regulatory B cells (Breg-like), double negative 2 (DN2-like) 703 

and plasma-like cells in blood and in colostrum. c) Scatter plots comparing 704 

unswitched memory (USwM) and switched memory B cells (SwM) in blood and 705 

colostrum (above). Scatter plots comparing USwM and SwM in colostrum from 706 

lean and mothers with obesity (below). Statistical analysis was performed using the 707 

Mann-Whitney U test, comparing B cell subsets percentages in blood from mothers 708 

with obesity (n=25) against lean subjects as control (n=23). *p < 0.05, **p< 0.01, 709 

***p < 0.001 and ****p < 0.0001. 710 

 711 

Supplementary Fig. 4. Obesity induces differentiation of plasma-like cells on 712 

CD19 low expression group. a,b) Examples of histograms from plasma-like cells 713 

analyzed in function of CD19 expression, showing negative CD19 population (left) 714 

and positive CD19 expression groups (right), from colostrum of lean and mothers. 715 

c) Column bar graph comparing plasma-like cells in function of percentage of (% of 716 
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CD19+) low (no pattern), median (square pattern), and high (line pattern) CD19 717 

expression groups. Bars indicate the mean ± SD. Statistical analysis was 718 

performed using the Kruskal Wallis test for multiple comparisons (Lean n=23 and 719 

obesity n=25) assay. ***p<0.001. 720 
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Supplementary Fig. 1
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Supplementary Fig. 4
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