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Abstract1

The COVID-19 pandemic, which began in December 2019, prompted governments to2

implement non-pharmaceutical interventions (NPIs) to curb its spread. Despite these efforts3

and the discovery of vaccines and treatments, the disease continued to circulate globally,4

evolving into multiple waves, largely driven by emerging COVID-19 variants. Mathematical5

models have been very useful in understanding the dynamics of the pandemic. Mainly, their6

focus has been limited to individual waves without easy adaptability to multiple waves. In7

this study, we propose a compartmental model that can accommodate multiple waves, built8

on three fundamental concepts. Firstly, we consider the collective impact of all factors9

affecting COVID-19 and express their influence on the transmission rate through piecewise10

exponential-cum-constant functions of time. Secondly, we introduce techniques to model11

the fore sections of observed waves, that change infection curves with negative gradients to12

those with positive gradients, hence, generating new waves. Lastly, we implement a jump13

mechanism in the susceptible fraction, enabling further adjustments to align the model with14

observed infection curve. By applying this model to the Kenyan context, we successfully15

replicate all COVID-19 waves from March 2020 to January 2023. The identified change16

points align closely with the emergence of dominant COVID-19 variants, affirming their17

pivotal role in driving the waves. Furthermore, this adaptable approach can be extended to18

investigate any new COVID-19 variant or any other periodic infectious diseases, including19

influenza.20

Keywords: Mathematical model, COVID-19 pandemic, non-pharmaceutical interven-21

tions, delay functions, multiple waves22

1 Introduction23

COVID-19 is a disease caused by the novel coronavirus SARS-CoV-2 that emerged at the end of24

December 2019 and has since spread globally. The disease has had an adverse impact on the25

socioeconomic and health structures of many countries. In Kenya, the virus was first detected26

on 13th March 2020. Soon after, the Kenyan government implemented non-pharmaceutical inter-27

ventions (NPIs) to slow the spread of the disease, including the closure of learning institutions,28
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limiting crowding in public transport vehicles and other places to enforce social distancing, and29

mask-wearing in public areas, etc. Due to low compliance by the public and a rapid rise in infec-30

tion, the government imposed more stringent measures for instance, banning political and social31

gatherings, country-wide overnight curfew, suspension of international air travel, closure of bars32

and clubs, and closure of places of worship, among others. The government additionally imposed33

COVID-19 regulations, the violation of which constituted a criminal penalty [1]. These measures34

remained in effect from 8th April 2020 to 8th June 2020. Enforcement of the measures adversely35

affected the country’s economy and people’s livelihoods. Consequently, the government gradually36

relaxed some of the mitigation measures during the period 9th June 2020 to 8th August 2020; for37

instance, places of worship opened with limited numbers of congregants, the lockdown was lifted38

in parts of Nairobi, Mombasa and Mandera, and there was resumption of international air travel.39

The daily infections began to go down but suddenly they started to increase in late 2020, fuelled40

largely by the introduction of a new variant of COVID-19 and partly by the reopening of learning41

institutions. The rise in infection became so concerning that a lockdown was enforced on five42

counties, including Nairobi and its environs, in April and May 2021. Luckily, additional mitigation43

measures became available following the commencement of vaccination in March 2021. The pan-44

demic continued to oscillate in uneven waves of varying amplitudes, as a result of the emergence45

and spread of new variants of concern.46

Following the emergence of COVID-19, future waves were primarily driven by developing variants of47

concern [2, 3], NPIs [4, 5], vaccines and therapy [6, 7], human behaviour [8, 9], health system status48

[10] and host sensitivity to the virus and disease [11–14]. Some, if not all, of these factors, should49

be incorporated in any investigation concerning the dynamics of COVID-19 waves. As a result,50

COVID-19 has stimulated extensive research by collaborators from many disciplines determined to51

address the challenges posed by the pandemic. One such challenge involves the use of mathematical52

modelling to analyse, predict and simulate the dynamics of the pandemic, taking into consideration53

the myriad drivers of the waves. Modelling of COVID-19 is an active area of research that involves54

many varied approaches, as can be seen from a recent extensive review [15]. We will concentrate55

on compartmental models, which are the source of our current contribution. According to these56

models, the human population is usually divided into five compartments, namely Susceptible (S),57

Exposed (E), Infected (I), Recovered (R) and Dead (D) [16, 17]. By considering the rate of58

change of individuals in a compartment, and the contribution of appropriate compartments to this59

change, we obtain a system of five ordinary differential equations, including parameters that define60

the rate of flow between adjacent compartments. Models that use all of the compartments are61

named SEIRD, but those that omit the Dead compartment are called SEIR, and those that omit the62

Exposed compartment are labelled SIRD. If the Dead compartment is omitted, we could also end up63

with the classic SIR model, where R here refers to removed, namely those who have recovered or are64

dead. In order to incorporate the effects of various drivers of COVID-19, additional compartments65

may be created and appropriate interactions defined. This leads to more complicated systems with66

more ordinary differential equations and increased numbers of parameters, thus increasing the level67

of difficulty of solving the equations [18–22]. Compartmental models can also be formulated for68

more complex problems and the findings can serve as a guide to policymakers, as illustrated by the69

models for China [23], United Kingdom [5], Ukraine [24] and USA [25]. Models have also been70

developed that address limited issues in Kenya, for instance, [26–29].71

The classical SEIRD model and its derivatives are designed to yield results in a single wave, since72

the computed infection curve is smooth and has only one peak. Observed infection curves on73

the other hand are not smooth as they depict many spikes and sub-epidemics. The objective of74

incorporating the COVID-19 drivers in compartmental models is to try and replicate the spikes and75

sub-epidemics, as much as possible. Some models have been modified to achieve this replication76

and, in addition, attempt to forecast multiple waves, as shown in the following examples. Kaxiras77
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and Neofotistos [30] used the SIR model to investigate the effects of social distancing, with a78

focus on identifying features that can emulate real data. They used a microscopic model in which79

an infected individual can only infect other individuals within a range in the neighbourhood. The80

model attempts to explain spikes in a wave but there is no evidence that it can forecast another81

wave. Perakis et. al. [31] apply the discrete version of the SEIRD model and identify a time, called82

the change point, that marks the end of one wave and the beginning of the next. They postulate83

that the recovery and infection rates have jump values at the change point. Using infection data,84

they apply martingales to identify the change point and hence evaluate the associated jump values85

of the parameters. The method describes well the spikes in one wave but it is less successful in86

generating another wave. The main basis of the approach by Ghosh and Ghosh [32] is that the87

susceptible fraction increases now and again by multiple re-infection of people who have recovered.88

To achieve this, they add a delay term of the infection, multiplied by a parameter regarded as89

the rate of re-susceptibility, to the equation involving the rate of Susceptible. The same term is90

subtracted from the equation involving the rate of change of the Removed. To avoid obtaining91

a purely periodic solution, they assign suitable values to the transmission rate, depending on the92

time relative to the delay constant, while holding the removal rate constant. The results provide93

a good match for the data from India during the selected waves. Leonov et. al. [33] use the94

SEI model, with the parameters assumed to be piecewise constant, rather than constant as in the95

classical case. They add an arbitrary function of time to the equation involving the rate of change96

of infection. This additional term can be considered as a source of infections associated with all97

other miscellaneous sources. The final solution is obtained from the inverse problem. The method98

replicates spikes well but it leads to large errors when the gradients of the infection are large, as99

would be the case involving a new wave.100

To replicate observed infection curves, some compartmental models, as pointed out above, include101

various drivers of COVID-19 dynamics in additional compartments. These drivers can consist of102

a mitigation force, namely, a force that reduces the transmission rate of the disease, like the103

application of vaccines; or it can consist of a relaxation force, namely a force that increases the104

transmission rate of the disease, like increased crowding at a rally or stadium. Since there are so105

many drivers, it would be unrealistic to attempt to account for them all [31]. There exist some106

compartmental models, however, that consider the total mitigation and postulate that its effect on107

the transmission rate can be represented by a piecewise continuous function involving exponential,108

logistic, linear or constant functions [30, 34–37]. This concept was extended by Ogana et. al.[26]109

to include relaxation so that the effect of mitigation and relaxation forces on the transmission110

rate could result in a piecewise exponential-cum-constant function, where the exponential function111

decreases for mitigation, and increases for relaxation. They applied this method to the SIRD system112

to compute the first COVID-19 wave in Kenya. The method is simple and flexible and can easily be113

applied to examine different scenarios, pending more rigorous investigation on the effect of specific114

drivers of the pandemic.115

The current paper uses the method in [26] together with entirely new concepts, as described116

hereunder. We noted that the solution of the SIRD system, in the absence of any subsequent117

interventions, has a computed infection curve which dissipates with time. Furthermore, a new118

wave is formed when the observed infection curve diverges from the dissipating computed infection119

curve. We chose the “change point”, namely, the boundary between successive waves, according120

to Perakis et. al [31], among others, as the time at which this divergence commences. We were121

able to establish that at a point on the computed wave, where infection decreases, it is possible122

to computationally generate a new wave by application of an appropriate relaxation force in the123

neighbourhood of the change point. The relaxation strength can be adjusted so that the fore124

section of the generated wave closely matches the shape of the observed infection curve. Some125

observed infection waves have very low infection fractions, near the change point, with curves that126

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.09.01.23294943doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294943


4

are approximately horizontal. Furthermore, the susceptible fraction for such waves is approximately127

constant thus making it possible to approximate the fore section of the infection curve by an128

exponential function. Once the fore section of the current computed wave is generated, we choose129

a point on it, that also lies on, or close to, the observed infection curve. We then replace the130

disease variables at the chosen point on the fore section with the variables at a point in a previous131

wave, where the infection equals that at the chosen point on the fore section. Since the two points132

have the same infection value and the same direction of infection, there must be a similarity in133

the dynamics of the disease in the neighbourhoods of the two points. This procedure introduces134

a jump in the susceptible fraction and perpetuates the growth of a wave in the right direction.135

Mitigation or relaxation is then undertaken to yield the complete computed infection curve for the136

wave. Using these findings, we have computed waves that replicate the observed COVID-19 waves137

in Kenya to date. In addition, we determine the magnitudes of the major mitigation and relaxation138

forces associated with changes in the waves.139

We present the paper according to the following outline. In Section 2.1, we describe the SIRD140

model. Section 2.2 contains the derivation of the equations that describe the effects of the in-141

tervention on the transmission rate. Section 2.3 has a review of the results for the first wave as142

obtained in a previous publication. In section 2.4 we present the detailed models of the second to143

fifth waves, starting with the generation of a wave through the application of a sufficiently large144

relaxation. In Section 2.5 we present the detailed models of the sixth and seventh waves, starting145

with the generation of a wave by assuming exponential infection. Section 3.1 contains results and146

a discussion of the modelled 1st wave compared with observation. Section 3.2 contains results and147

a discussion of the modelled 2nd to 5th waves compared with observation. Section 3.3 contains148

results and a discussion of the modelled 6th and 7th waves compared with observation. Finally, we149

give a few concluding remarks and recommendations in Section 4.150

2 METHODS151

In this section, we first present the equations for the SIRD model and then derive the equations152

that describe the effects of the intervention on the disease transmission rate. We present computa-153

tional results of the effect of applying large relaxation forces at a point where infection decreases,154

particularly in the neighbourhood of transition from one wave to another. The results form the155

basis of generating the first five waves of COVID-19 in Kenya. Finally, we derive the equations for156

the generation of the 6th and 7th waves.157

2.1 Baseline Dynamics by SIRD Model158

The dynamics of COVID-19 can be investigated by a variety of methods including compartmental159

models in which, at the time, t, the population is divided into five basic classes, namely: Susceptible,160

Exposed, Infected, Recovered and Dead, denoted by, S(t), E(t), I(t), R(t) and D(t), respectively.161

Depending on the phenomena being investigated, some compartments may be excluded or new162

compartments may be added. In this paper, we will apply the SIRD model in which the Exposed163

(E) component is omitted, as shown in Figure 1.164

We assume that the total population, N , is constant over time. For simplicity, the variables are165

already normalised on division by N such that166

S(t) + I(t) +R(t) +D(t) = 1 (1)

S(t), I(t), R(t) and D(t) now represent the fractions or proportions of the Susceptible, Infected,167

Recovered and Dead in the population, at any given time t. The governing differential equations168
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Figure 1: Compartmental SIRD model.

are given as follows (see for example, [16, 26]).169

dS

dt
= −βSI, (2a)

dI

dt
= βSI − (γ + δ)I, (2b)

dR

dt
= γI, (2c)

dD

dt
= δI, (2d)

subject to the initial conditions:170

S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0, (3)

where S0, I0, R0 and D0, are the initial fractions of the Susceptible, Infected, Recovered and Dead,171

respectively.172

The system of equations (2) contains the parameters: β, the disease transmission rate; γ, the173

recovery rate; and δ, the death rate.174

Solution of System (2) together with initial conditions (3) involves determining the parameters175

β, γ, and δ that lead to the minimization of some error norm. COVID-19 was first detected in176

Kenya on 13th March 2020 and it spread till 8th April 2020, before any measures were undertaken177

to control its spread. This period serves as the reference timeframe during which the disease spread178

without any intervention, and hence we refer to it as the baseline period. With the death rate,179

δ = 0.015, approximated from the Case Fatality Rate (CFR), minimization yielded the following180

values for the other 2 parameters during the baseline period [26].181

γ = 0.0518939, β = 0.184618 (4)

From Equation (4) we obtain the reproduction number, R0 = 2.76 and the recovery days, 1
γ
= 19.3.182

If γ and β in Equation (4) are substituted into Equation (2) one can determine the trajectory of the183

infected fraction, among the other variables. The model we develop in the current paper uses the184

values in Equation (4) and assumes that interventions affect only the transmission rate, β, while185

the recovery and the death rates remain constant.186
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2.2 Effect of Interventions on the Transmission Rate187

There exist two types of forces in epidemic interventions: mitigation forces that reduce the rate188

and extent of infection and relaxation forces that increase the rate and extent. Although mitigation189

forces are generally perceived as non-pharmaceutical interventions (NPIs), arising from implemen-190

tation of government policy, we will include among them medical treatment and vaccination, as191

these actions help to reduce disease spread. Relaxation forces are generally perceived as the lifting192

of mitigation measures in order to limit the impact of the disease on society. We will include among193

them non-compliance with mitigation measures and the emergence of new variants of COVID-19,194

since both of these dramatically increase the spread of the disease. As noted earlier, there are mod-195

els that introduce more compartments in order to incorporate mitigation and relaxation forces. Our196

approach is to consider the totality of mitigation or relaxation forces without isolating individual197

components.198

In this paper, we formulate an intervention model which leads to piecewise exponential-cum-199

constant functions for the transmission rate, as a result of the effects of interventions. It takes into200

account the fact that intervention not only leads to a reduction of the transmission rate, through201

mitigation, but also can lead to a surge in the transmission rate, through relaxation. Let the daily202

events be at the time nodes denoted t0, t1, t2, · · · . Suppose any intervention (mitigation or relax-203

ation), is initiated at the time node tk then there will be a difference in the transmission rate before204

and after tk. Let βb(t) be the incoming transmission rate at the time tk. We assume that for any205

time t > tk, the rate of change of the transmission rate, as a result of intervention, is proportional206

to the transmission rate at that time. This gives the transmission rate as an exponential function207

of time. The main objective is to gradually change the incoming transmission rate, βb(t), by a208

fraction c so that the transmission rate at a future time, say tk+m, where m > 0, reaches an209

optimum value (1− c)βb(tk). It was shown that this yields [26]:210

β(t) =


βb(t), t < tk

βb(tk)e
g(t), tk ≤ t < tk+m

(1− c)βb(tk), t ≥ tk+m

(5)

where211

g(t) =
(t− tk) ln(1− c)

tk+m − tk
, c < 1. (6)

In solving Equation (2), we need to take into consideration the value of the transmission rate, β(t),212

according to Equations (5) and (6), depending on whether the time, t, is; (i) before an intervention213

takes place, (ii) after the intervention but before the optimum value is reached ; or (iii) after the214

optimum value has been achieved. The parameter m can be considered as the duration, in days,215

for the transmission to achieve the optimum value as a result of the intervention.216

From the last part in Equation (5) we note that when 0 < c < 1, then β(tk+m) < β(tk); this217

corresponds to the intervention being a mitigation, since it yields a smaller future transmission218

rate which represents a reduction by a fraction c of the incoming transmission rate. We call the219

quantity 100c the “percent mitigation”. On the other hand when c < 0 then β(tk+m) > β(tk);220

this corresponds to the intervention being a relaxation since it yields a larger future transmission221

rate which represents an increase by a fraction |c| of the incoming transmission rate. We call222

100 × |c| the “percent relaxation”. If c = 0 then β(t) = βb(tk) for t > tk. This implies that no223

intervention has taken place at tk, since the incoming transmission rate remains unchanged after224

the supposed intervention. If this transmission rate is used in solving Equation (2), the resulting225

infection curve, when t > tk, is called the non-intervention curve. We shall see later that the226

non-intervention curve plays a significant role in identifying the type of intervention appropriate227

in modelling COVID-19 waves. Previous researchers restricted c to the interval (0, 1); hence they228
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covered only mitigation forces. Through Equation (6), we extend c to negative values to account229

for spikes in the dynamics that may occur as a consequence of relaxation forces. This opens the230

way for computationally generating new COVID-19 waves.231

2.3 First wave232

Ogana et. al. [26] developed the model of the first wave in three distinct phases: baseline,233

mitigation and relaxation. We present a summary here because the methods and the findings234

are fundamental to developing the models of subsequent waves. The baseline phase is covered in235

Section 2.1. The mitigation phase commenced on 9th April 2020, following mitigation measures236

announced the day before. In modelling this phase, the best agreement with data was obtained by237

using, βb(t) = 0.184618, m = 15, and c = 0.41, (41% mitigation) in Equation (5). The relaxation238

phase commenced on 9th June 2020, following the lifting of some mitigation measures the day239

before and continued until early August. In modelling this phase, the best agreement with data240

was obtained by using βb(t) = 0.108925, m = 15 and c = −0.24, (24% relaxation) in Equation241

(5). After solution of Equation (2), consolidation of results from the three phases leads to Figure242

2 in which the modelled percent infection during the first wave is compared with data. Figure 2.243

also shows the beginning of the observed second wave.244

Figure 2: Computed and observed first wave of COVID-19 in Kenya. TW is the end of the first
wave.

2.4 Second to Fifth waves245

Modelling of the second to fifth waves is different from modelling the first wave, although they have246

in common the construction of infection scenarios arising from mitigation or relaxation processes.247

The principle behind the modelling of the second to fifth waves is the fact that, under suitable248

conditions, it is possible to generate a wave by applying a large enough relaxation force, when249

infection is decreasing. The generated wave requires some adjustment, however, to make it replicate250

the observed wave. We illustrate the process by considering what happens between the first and251

second waves, with the understanding that equivalent techniques can be employed between any252

two adjacent waves.253
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2.4.1 Relaxation at Varying Percentages When Infection Decreases254

From Figure 2 it can be seen that the computed first wave dissipates with time; it represents the255

path the infection would take in the absence of any further interventions, including the formation256

of the second wave. We note that the second wave is formed when its trajectory diverges from the257

trajectory of the computed first wave in early September 2020. We estimated that the divergence258

started around 3rd September 2020; hence this date became the change point between the first259

and second waves, namely, the time when the first wave ended and the second started. In reality260

the change is more gradual and takes place over a longer period. We carried out computational261

experimentation by applying relaxation forces, under several scenarios, with the incoming trans-262

mission rate kept at βb(t) = 0.135067, as established in [26]. The results are in Figure 3, which263

shows the effect of varying relaxation forces and the application of delay function from one wave264

to another. For the first scenario, after trying different values of m, we chose m = 30 and applied265

varying values of the relaxation ratio, c, in Equation (5).266

(a) (b) (c)

Figure 3: Effects of the applications of relaxations and the application of delay function. E is the
Change point from one wave to another, while TE is the time at E. (a) Relaxations of varying
magnitudes when the infection is decreasing; (b) Relaxations at the same magnitude but with
varying optimal duration of change of the transmission rate; (c) Choice of points for application of
delay function at the current and previous waves. G is the Point of application of delay function
condition, while TG is the corresponding time point; B is Point in previous wave where infection at
B equals infection at G and TB is the time at B.

Subsequent solution of Equation (2), for time after 3rd September 2020, yielded Figure 3a. At low267

relaxation percentages, there does not appear to be any significant effect, but as the percentages268

increase, ripples begin to form and eventually turn into sharp waves with large crests. The second269

scenario concerned the case when the waves are generated at the same relaxation force, namely270

at a given value of c, but have different values of m, as shown in Figure 3b. As m increases the271

base of the wave becomes broader while the crests of the waves become smaller and they move272

downwards. These phenomena can be replicated at suitable points in the subsequent waves, with273

equivalent results to Figures 3a and 3b. Hence, they form the foundation of our modelling the274

second to fifth waves as outlined in the next three subsections. Every wave will be divided into the275

fore and back portions, each having different mechanisms of development.276

2.4.2 Fore portion of the wave by relaxation277

The computed wave starts with a fore portion generated by application of a sufficiently large278

relaxation force. The prime candidate for such a force is a new COVID-19 variant. The force could279

be enhanced by widespread violation of mitigation measures. Let E be the change point between280

the preceding wave (Wave 1) and the current wave (Wave 2), with the associated time TE and281

infection IE (Fig. 3c). From Figure 3a we have seen that it is possible to generate a series of waves282
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by applying forces of varying relaxation percentages at the point E. To model the fore portion of283

the current wave (Wave 2), we proceed according to the following steps.284

i. Choose the initial change point, TE, as the time when the trajectory of the observed current285

wave (Wave 2) begins to diverge from the modelled tail of the preceding wave (Wave 1),286

which dissipates with time, as pointed out in Section 2.4.1.287

ii. Choose the default value m = 15 and select a coarse grid of negative values of c, preferably288

from the interval [−10, 0].289

iii. Determine the values at TE of the transmission rate, β and the disease variables S, I, R290

and D. Solve Equation (2) for t > TE while applying Equation (5), with the incoming291

transmission rate.292

iv. Adjust TE and m, if necessary, and repeat step iii., with a finer grid of c, till an infection293

curve is obtained that fits the data well, from the scenario of available curves.294

2.4.3 Application of delay function295

As Figure 3a shows, the curve obtained in step iv of Section 2.4.2 will reach a maximum and296

dissipate at large times. To avoid this fate and force the model to follow the data upwards, we pick297

a point on this curve, which lies on, or closest to the data and is not near the maximum point. Let298

this point be G, with associated time TG and infection IG (Figure 3c). From the preceding wave or299

any other suitable previous wave, identify a point B, on the left side of the wave, with associated300

time TB and infection IB. We choose B such that IB = IG, that is, the infection at time TB301

equals that at time TG (Figure 3c). Since the infections at the two points are equal, we assume302

the similarity of dynamics at the two points and hence require that the rest of the time-dependent303

variables should also be equal at the two points. We thus impose the condition304

V(TG) = V(TB), (7a)

where V refers to S, I, R, D and β such that,

SG = SB, IG = IB, RG = RB, DG = DB, βG = βB. (7b)

where the subscripts denote the values of the quantities at the corresponding points, as shown in305

Figure 3c. Equation (7) is known as the delay function condition, since values at the current time,306

TG, are assigned values at a preceding or previous time, TB. The arc E − G is what we refer to307

as the fore portion of the computed wave. Our objective is to make this arc match the observed308

infection curve as much as possible, by careful choice of the quantities TE, m, c, TG and IG. If the309

whole of the preceding wave falls below or above G, then it is not possible to obtain the point IB310

in the preceding wave, such that IG = IB, hence we seek for IB from a previous wave.311

2.4.4 Back portion of the wave312

The back portion of the computed wave begins at the end of the fore portion, namely at TG313

and proceeds for t > TG. The fore portion of the wave arises mainly from the effects of the314

resultant relaxation force due to new COVID-19 variants together with enhanced non-compliance315

to mitigation measures. The back portion, on the other hand, is influenced by resultant relaxation316

and mitigation forces as time progresses, mainly due to interventions and the continued effects of317

the variants. Given the trajectory of the observed infection, it is important to find out whether318

relaxation or mitigation should be applied at a point of intervention. Suppose the intervention319

occurs at time TV N and let the incoming transmission rate of the model be βb. We generate320
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an infection curve from TV N by using βb and then compare the trajectory with data in order to321

determine whether the intervention should be a relaxation or mitigation. This is done by using the322

following steps.323

1. Let the incoming transmission rate at TV N be βb. Choose the default value m = 15.324

2. Choose values of S, I, R andD atTV N as initial values. Solve Equation (2) for t > TV N ,325

while adjusting the transmission rate according to Equation (5), with c = 0, in order to326

generate the non-intervention curve (see Section 2.2).327

3. Compare the trajectory of the non-intervention curve with data and one of the following two328

cases will arise:329

Case 1: After TV N the data is predominantly above the non-intervention curve.330

This means that the transmission rate for the data is larger than the transmission rate of331

the model, namely βb. To obtain a model whose transmission rate is close to that of the332

data, we apply relaxation by choosing negative values of c, according to Equation (5), and333

use the new transmission rate in solving Equation (2) for t > TV N . By varying c, and334

adjusting m, if necessary, we can determine a value of the transmission rate that is close335

enough to that of the data so as to yield a model infection curve that closely fits the data. For336

clarity of computation, we let TV N = TRX to indicate that the intervention is a relaxation.337

Furthermore, the relaxation stays in effect until another intervention is encountered.338

Case 2: After TV N , the data is predominantly below the non-intervention curve.339

This means that the transmission rate for the data is smaller than the transmission rate of the340

model, namely βb. To obtain a model whose transmission rate is close to that of the data,341

we apply mitigation by choosing positive values of c, according to Equation (5), and use the342

new transmission rate in solving Equation (2) for t > TV N . By varying c, and adjusting m,343

if necessary, we can determine a value of the transmission rate that is close enough to that344

for the data so as to yield a model infection curve that closely fits the data. For clarity of345

computation, we let TV N = TMT indicate that the intervention is a mitigation. Furthermore,346

the mitigation stays in effect until another intervention is encountered.347

In modelling of the back portion, we may use relaxation, mitigation and delay function, as conve-348

nient, to align the model with the data, in the event that the model exhibits departure from the349

expected trend.350

2.5 Sixth and Seventh waves351

The methods used to generate the fore portions of the 2nd to 5th waves were applied to the 6th352

and 7th waves but they did not succeed no matter how large a relaxation force was used. We353

noticed a difference in the formation of the two sets of waves. The 2nd to 5th waves start when a354

decreasing infection diverges to the right, forms a concave shape, with a base, then increases, as355

in Figure 2 for the observed 2nd wave. The 6th and 7th waves, on the other hand, emerge from an356

almost horizontal direction and gradually increase before rising sharply rise, as in Figure 4 on the357

formation of the 6th wave.358

2.5.1 Fore portion of the wave by exponential growth359

The fore portions of the 6th and 7th waves can be modelled by exponential infection. The initial360

change point, TE, between the current and preceding waves, is determined as before by noting when361

the trajectory of the current observed wave diverges from the modelled tail of the preceding wave,362
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Figure 4: Development of the 6th wave. E is the point from 5th to 6th wave and TE the corre-
sponding time. The black curve represents the data corresponding to the 6th wave, while the red
curve corresponds to the computed tail of the 5th wave.

as noted in Figure 4 for the transition from the 5th to the 6th wave. We observed the following363

properties of the variables I and S at the beginning of the formation of the 6th and 7th waves:364

1. Values of I(t) were quite small, < 1%, in the neighbourhood of the change point, and365

increased slowly away from the change point.366

2. S(t) was approximately constant for many days after the change point, till the point say G367

in Figure 4, close to where the sharp rise in infection commences.368

For our model, the arc E −G forms the fore portion of the wave. Using the 2nd property above,369

we assume that S(t) is approximated by the mean value, S̄, from TE to TG. Equation (2b) can370

then be written371

dI

dt
= rI, (8)

where372

r = βS̄ − (γ + δ). (9)

Equation (9) has the solution373

I(t) = I(TE)e
r(t−TE) (10)

For the infection to grow we must have r > 0, implying that we must choose a transmission rate374

β such that,375

β >
(γ + δ)

S̄
. (11)

Although Equation (11) gives a wide range of choice for β, the value must be selected such that376

the computed infections from Equation (10) agree with data as well as possible. This is readily377

done by trying different values of β and comparing the exponential curve with data till a suitable378

value of β is reached. We denote such a value βXP , to indicate that it is the transmission rate379

associated with exponential infection. Using Equation (10), we compute the infected fraction by,380

I(t) = I(TE) exp {βXPS − (γ + δ) || t− TE ||} (12)
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Exponential growth cannot be allowed to proceed indefinitely. Just like in the 2nd to 5th waves, we381

terminate the fore portions of the 6th and 7th waves by enforcing the delay function condition at382

the point G, as discussed in Section 2.4.3. Hence Equation (12) is used to determine the infection383

for t such that TE ≤ t ≤ TG . Within this time interval, S(t) = S̄, a constant, while R(t) and384

D(t) are estimated from385

R(tk) = R(tk−1) + γI(tk), D(tk) = D(tk−1) + δI(tk), (13)

through integration of Equations (2c) and (2d), respectively.386

2.5.2 Back portion of the wave387

The back portion of the wave starts at TG and its modelling proceeds as described in Section 2.4.4,388

with the following points to be noted:389

• The first intervention is a relaxation at TG. It produces a model, which replicates the left390

half of the wave.391

• The second intervention is a mitigation, near the apex of the wave, and it produces a model392

which replicates the right half of the wave.393

3 RESULTS394

Presentation of results here will be done one wave at a time; thereafter all the waves will be395

consolidated into one time series. COVID-19 data was obtained from the Ministry of Health,396

Kenya [38] and Worldometer [39]. We obtained information on SARS-CoV-2 lineages and variants397

from Gathii et. al [3] and Nasimiyu et. al. [40]. After the first usage, we will refer to lineages and398

variants without attaching SARS-CoV-2 every time.399

3.1 First Wave400

The first wave was modelled by Ogana et. al. [26] and a summary of the results is given in Section401

2.3, with the complete wave shown in Figure 2. It was driven largely by the global parental SARS-402

CoV-2 lineage B.1 that lasted from March 2020 to September 2020 [3, 40]. The fluctuations in the403

wave were, however, partly influenced by the mitigation measures imposed during 8th April 2020404

to 8th June 2020 and the lifting of some of these measures from 8th June 2020. These actions405

led to unique mitigation and relaxation dynamics different from what would have happened if the406

disease had been allowed to spread without any intervention [26].407

3.2 Second to Fifth Waves408

We present the results one wave at a time. The procedures are almost identical; the differences409

occur in the dates when major events and decisions take place, and hence the attendant output.410

3.2.1 Second Wave411

The methods in Section 2.4.2, led to = 0.13507,m = 30, c = −4 (400% relaxation) and TE =412

03−Sep−20. From Section 2.4.3, we identified TG = 08−Oct−20 and IG = 0.07394. Comparison413

with previous waves led to TB = 17−Jun−20 and IB = 0.07394. Equation (7) yielded the values414

in column 3, Section A2 of Table A1. The fore portion of the wave is the arc E − G. The415

methods in Section 2.4.4, applied at TV N = TG = 08−Oct−20 with βb = 0.67533, led to the416

non-intervention curve (blue dashed curve), predominantly below data as shown in Figure 5. Hence417
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we let TRX = TV N and undertook final relaxation for t > TRX using c = −0.26 (26% relaxation)418

and m = 15. This gave the back portion of the wave which, combined with the fore portion, yielded419

the complete 2nd wave shown in Figure 5.

Figure 5: Observed and computed 2nd Wave of COVID-19 in Kenya. The blue curve represents
the no-intervention curve, black represents the data while the red is the model. E is the change
point from first to the second wave, with the corresponding time TE; G is the point of application
of delay function condition and TG the corresponding time; TW shows the end of second wave.

420

3.2.2 Third Wave421

The methods in Section 2.4.2, led to βb = 0.17018, m = 45, c = −9 (900% relaxation) and422

TE = 28− Dec−20. From Section 2.4.3, we identified TG = 10−Feb−21 and IG = 0.04099.423

Comparison with previous waves led to TB = 26−May−20 and IB = 0.04099. Equation (7)424

yielded the values in column 4, Section A2 of Table A1. The fore portion of the wave is the arc425

E−G. Enforcement of relaxation at TG resulted in a model to the left of data. To align the model426

with data, we carried out computation for t > tG, with c = 0, and chose TV N = 21−Feb−21427

with βb = 0.10892. The methods in Section 2.4.4, led to the non-intervention curve (blue dashed428

curve), predominantly below data as shown in Figure 6. Hence we let TRX = TV N and undertook429

final relaxation for t > TRX using c = −0.5 (50% relaxation) and m = 10. This gave the back430

portion of the wave which, combined with the fore portion, yielded the complete 3rd wave shown431

in Figure 6.432

3.2.3 Fourth Wave433

The 4th wave of COVID-19 in Kenya appeared in two prominent spikes of different amplitudes.434

We modeled each spike separately before combining them to form the complete 4th wave. For435

convenience of presentation, we will adopt some notations as follows. There is a change point436

from the 3rd wave to the 1st spike which we label E1; there is another change point from the 1st437

to the 2nd spike labeled as E2. We let G1 and G2 be the delay function points in the 1st and 2nd438

spikes, respectively, and B1 and B2 be the points for application of Equation (7) for values at G1439

and G2, respectively.440

First Spike: The methods in Section 2.4.2, led to βb = 0.16339, m = 30, c = −7 (700%441

relaxation) and the 1st change point, TE1 = 02-May-21. From Section 2.4.3, we identified TG1 =442
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Figure 6: Computed and observed third wave of COVID-19 in Kenya, with the no-intervention
curve shown in blue dashed curve. E represents the change point from second to the third wave
and TE the corresponding time; G is the point of application of delay function condition, at time
TG; TW represents the end of third wave.

01-Jun-21 and IG1 = 0.0724. Comparison with previous waves led to TB1 = 28-Feb-21 and443

IB1 = 0.0724. Equation (7) yielded the values in column 5, Section A2 of Table A1 The fore444

portion of the 1st spike is the arc E1−G1 . The methods in Section 2.4.4, applied at TV N = TG1 =445

01-Jun-21 with βb = 1.3071, led to the non-intervention curve (blue dashed curve), predominantly446

above data as shown in Figure 7. Hence, we let TMT = TV N and undertook final mitigation for447

t > TMT using c = 0.5 (50% mitigation) and m = 30. This gave the back portion of the 1st spike448

which, combined with the fore portion, yielded the complete 1st spike in Figure 7.

Figure 7: Computed and observed fourth wave of COVID-19 in Kenya. The blue dashed curve
represents the no-intervention curve for the first spike while blue dotted curve represents the no-
intervention curve for the second spike. E1 is the change point from 3rd wave to the 1st spike of
the 4th wave at timeTE1; G1 is the point of application of delay function condition in the 1st spike
at time TG1, while E2 is the change point from 1st to 2nd spike at time TE2 and G2 the point of
application of delay function condition in the 2nd spike at time TG2; TW is the end of the 4th wave.

449

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.09.01.23294943doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294943


15

Second Spike The methods in Section 2.4.2, led to βb = 0.079341, m = 30, c = −2.9 (290%450

relaxation). The 2nd change point, TE2 = 27-Jun-21. From Section 2.4.3, we identified TG2 = 26-451

Jul-21 and IG2 = 0.143. Comparison with previous waves led to TB2 =14-Mar-21 and IB2 = 0.143.452

Equation (7) yielded the values in column 6, Section A2 of Table A1 The fore portion of the 2nd453

spike is the arc E2 − G2. The methods in Section 2.4.4, applied at TV N = TG2 = 26-Jul-21454

with βb = 0.29571, led to the no-intervention curve blue dotted curve, predominantly above data455

as shown in Figure 7. Hence, we let TMT = TV N and undertook final mitigation for t > TMT456

using c = 0.2 (20% mitigation) and m = 15. This gave the back portion of the 2nd spike which,457

combined with the fore portion, yielded the complete 2nd spike as shown in Figure 7. Combination458

of the 1st and 2nd spikes led to the complete 4th wave, in Figure 7.459

3.2.4 Fifth Wave460

For convenience of presentation, we will adopt some notations as follows. There will be two delay461

function points which we label G1 and G2, respectively, and we let B1 and B2 be the points for462

application of Equation (7) for values at G1 and G2, respectively.463

The methods in Section 2.4.2, led to βb = 0.13071,m = 60, c = −10(1000% relaxation) and TE =464

21-Oct-21. From Section 2.4.3, we identified TG1 = 02-Dec-21 and IG1 = 0.0147. Comparison465

with previous waves led to TB1 =27-Apr-20 andIB1 = 0.0147. Equation (7) yielded the values466

in column 7, Section A2 of Table A1. The methods in Section 2.4.4, applied at TV N = TG1 =467

02-Dec-21, led to the non-intervention curve (blue dashed curve), predominantly below data in468

Figure 8. Hence, we let TRX = TV N with βB = 0.67286 and undertook relaxation for t > TRX469

using c = −4(400% relaxation) and m = 15. The resulting model followed data for a while before470

tilting to the right. To realign the model with the data, we chose a 2nd delay function point,471

before the tilt, at TG2=14-Dec-21, with IG2 = 0.0988. Comparison with previous waves led to472

TB2 =16-Jul-21 and IB2 = 0.0985. Equation (7) yielded the values in column 7, Section A4 of473

Table A1. The fore portion of the wave is the arc E −G2. The methods in Section 2.4.3, applied474

at TV N = TG2 =14-Dec-21 with βb = 0.39473 led to the non-intervention curve (blue dotted475

curve), predominantly below data in Figure 8. Hence we let TRX = TV N = TG2 and undertook476

final relaxation for t > TRX using c = −3.5(350% relaxation) and m = 5. This finalized the back477

portion of the wave, which, on combination with the fore portion, resulted in the complete 5th478

wave, in Figure 8.479

3.3 Sixth and Seventh waves480

The fore portions of the 6th and 7th waves were generated by exponential approximation, rather481

than by relaxation, as was the case with the previous waves. The results are, therefore, presented482

separately in this section.483

3.3.1 Sixth Wave484

The methods in Section 2.5.1, led to TE = 13-Mar-22, S̄ = 0.0036, βXP = 238 and TG = 14-485

May-22. Equations (12) and (13) yielded disease variables from TE to TG such that IG = 0.00817.486

Using Section 2.4.3, comparison with previous waves led to TB =16-Apr-20 and IB = 0.00827.487

Equation (7) yielded the values in column 3, Section A2 of Table A2. The fore portion of the488

wave is the arc E − G. The methods in Section 2.4.4, applied at TV N = TG =14-May-22, with489

βb = 0.84538 led to the non-intervention curve (blue dashed curve), predominantly below data490

on the left side of Figure 9. Hence, we let TRX = TV N and undertook relaxation for t > TRX491

using c = −0.15(15% relaxation) and m = 15. The solution yielded a model which closely fit492

the left hand side of the wave, as given in Figure 9. To complete the model, we effected another493
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Figure 8: Computed and observed fifth wave of COVID-19 in Kenya. The dashed and dotted blue
curves represent the non-intervention curves, red is the computed infections and black the data. E
is the change point from 4th wave to 5th wave at time TE; G1 the first point of application of delay
function condition at time TG1, and G2 the second point of application of delay function condition
at time TG2; TW is the end of 5th wave.

intervention at TV N =17-Jun-22, near the apex of the wave. The methods in Section 2.4.4, applied494

at TV N =17-Jun-22 with βb = 0.169597 led to the non-intervention curve (blue dotted curve),495

predominantly above data on the right side of Figure 9. Hence we let TMT = TV N and undertook496

mitigation for t > TMT using c = 0.82(82% mitigation) and m = 15. The solution completed the497

back portion of the curve which, on combination with the fore portion, resulted in the complete498

6th wave, as given in Figure 9.499

Figure 9: Computed and observed sixth wave of COVID-19 in Kenya. The blue curves represent
the non-intervention curves, red the computed infections and black the data. E is the change point
from 5th to 6th wave, with the corresponding time, TE, G the point of application of delay function
condition at time TG, TMT the time at which to apply mitigation and TW the end of 6th wave.

3.3.2 Seventh Wave500

The methods in Section 2.5.1, led to TE = 22-Aug-22, S̄ = 0.63, βXP = 0.11 and TG = 10-Oct-501

22. Equations (12)–(13) yielded disease variables from TE to TG such that IG = 0.0101. Using502

Section 2.4.3, comparison with previous waves led to TB =17-May-22 and IB = 0.0105. Equation503
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(7) yielded the values in column 4, Section A2 of Table A2. The fore portion of the wave is the504

arc E −G. The methods in Section 2.4.4, applied at TV N = TG =10-Oct-22, with βb = 0.029875505

led to the non-intervention curve (blue dashed curve), predominantly below data on the left side of506

Figure 10. Hence, we let TRX = TV N and undertook relaxation for t > TRX using c = −0.2(20%507

relaxation) and m = 15. The solution yielded a model which closely fit the left hand side of the508

wave, as given in Figure 10. To complete the model, we effected another intervention at TV N =509

05-Nov-22, near the apex of the wave. The methods 2.4.4, applied at TV N =05-Jun-22 with510

βb = 0.1781 led to the non-intervention curve (blue dotted curve), predominantly above data on511

the right side of Figure 10. Hence we let TMT = TV N and undertook final mitigation for t > TMT512

using c = 0.68(68% mitigation) and m = 10. The solution completed the back portion of the513

wave which, on combination with the fore portion, resulted in the complete 7th wave, as given in514

Figure 10. We noticed a lot of noise in the data from mid December 2022 before it stopped being515

posted in the public portal of the Ministry of Health website on 26 January 2023 [38].516

Figure 10: Computed and observed seventh wave of COVID-19 in Kenya. The blue dotted and
dashed curves represent the non-intervention curves, red the computed infections and black the
data. E is the change point from 6th to 7th wave at time TE, G the point of application of delay
function condition at time TG, TMT the time at which mitigation is applied and TW the end of 7th

wave.

3.4 Complete COVID-19 waves in Kenya517

Consolidation of Figure 2 and Figures 5 to 10, without the no-intervention curves, yields the518

complete COVID-19 waves in Kenya, as shown in Figure 11, where the model results are compared519

with data.520

In Table 1, we present the amplitudes and durations of the waves. The durations are based on521

the times between identified change points and may differ from those arrived at from clinical522

considerations [40]. The strongest wave was the 5th at 33.6% infected and the weakest was the523

7th wave at 13.0% infected. The longest lasting was the 1st wave, with duration of 174 days while524

the shortest was the 2nd with duration of 116 days.525

4 DISCUSSION AND CONCLUSIONS526

In this article, we have formulated, analysed and computed a COVID-19 model that is based on527

the generation of two types of new waves. The first type is a wave generated from a vertically528

decreasing infection that diverges to the right, forms a bowl-like shape before increasing upwards,529
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Figure 11: Computed and observed complete COVID-19 Waves in Kenya

Wave
1

Wave
2

Wave
3

Wave
4

Wave
5

Wave
6

Wave
7

Amplitude
(% infected)

13.1 18.0 18.6 17.1 33.6 13.6 13.0

Duration,
(Days)

174 116 125 172 143 161 157

Table 1: Kenya COVID-19 wave amplitudes in 7-day averaged percent infected and
durations in days.

as shown in the second to the fifth wave; such a wave is modelled by exerting a sufficiently large530

relaxation force. Waves were generated by using relaxation ratios ranging from c = −2.9 (290%531

relaxation) to c = 10 (1000% relaxation). The stronger the wave the larger the relaxation ratio532

required, thus reflecting the force necessary to follow the contour of the wave sufficiently, before533

application of the delay function. The second type is a wave that emerges from very low infections534

that are nearly horizontal, as shown by the sixth and seventh waves; such a wave is modelled535

through an exponential infection, involving the transmission rate for exponential infection, βXP ;536

this quantity had two vastly different values, namely 238 for the sixth wave and 0.11 for the seventh537

wave. There is no anomaly. The values are a result of choosing βXP to satisfy Equation (11), with538

S̄ = 0.00036 for the 6th wave and S̄ = 0.63 for the 7th wave. Although the models were the same539

within the two groups of waves, they were implemented to suit the characteristics of each wave.540

The results depicted in Figures 5 to 11 agree quite well with data, apart from areas where there541

are spikes, or there is noise, in the data. No other numerical results are available for comparison,542

for the complete COVID-19 waves in Kenya. Indeed the closest to this work are results for a few543

waves in India, by Gosh et. al. [32].544

The change point that determines the transition from one wave to the next is obtained by noting545

the tail of the modelled preceding wave and where the trajectory of the new observed infection546

begins to diverge from this tail. This point of divergence forms an initial guess to the change point.547

The final change point is obtained after carrying out the procedures in Section 2.4.2 and will usually548

be within 2 weeks of the initial point. In Table A3, we have indicated the timeline of events relevant549

to COVID-19 dynamics in Kenya, including relaxation and mitigation events due to intervention.550

We have also indicated the months the variants of SARS-CoV-2 were dominant, as determined551

from genomic analysis [3, 40]. Finally, we have indicated the change points at which we decided to552

generate waves by application of large relaxation forces or through exponential approximation. The553
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change points that we computed are within the months when genomic analyses showed particular554

variants of SARS-CoV-2 to be dominant; in most cases, they were actually at the beginning or in the555

middle of such months. This makes us conclude that the dominant variants of SARS-CoV-2 were556

the major sources of the relaxation forces that were capable of changing the infection trajectories.557

There were other relaxation forces relating to the lifting of, or noncompliance to, certain mitigation558

measures. In our view, such forces slightly enhanced the effects of the main drivers but they were559

not, on their own, sufficient to lead to generation of new waves.560

The duration for optimum change in the transmission rate, m, had a value of 30 for waves whose561

bases took a shorter time to form, like the 2nd wave and spikes in the 4th wave. It had larger562

values for waves whose bases took longer to form, for instance 45 for the 3rd wave and 60 for the563

5th. As the waves proceeded, their shapes were influenced by relaxation and mitigation forces from564

various sources, including interventions. This aspect was modelled through appropriate application565

of relaxation or mitigation by noting the position of the observed trajectory of infection relative to566

the no-intervention curve. The values of m here were either 10 or 15, apart from the 1st spike in567

the 4th wave for which it was 30. This implied that most interventions in the back portion of the568

wave resulted in the optimum change of the transmission rate being achieved close to the default569

value of 15 days.570

We recommend extension of the developments in this article to investigations in several directions,571

as indicated hereunder:572

1. Mathematical analyses to unravel the theory behind turning a decreasing contour of infection573

into an increasing contour through application of a large enough relaxation force. So far this574

observation is purely computational or numerical.575

2. The method used to generate the 6th and 7th waves, combined with diligent monitoring,576

can be applied to detect a future wave of COVID-19 or other epidemic.577

3. Application of smaller values of m, the optimum duration of optimum change of the trans-578

mission rate, together with use of no-intervention curve, could lead to detection of spikes of579

smaller amplitudes, although at a higher computational effort.580

4. The methods described here can be used as a predictive tool if time series techniques are581

combined with computation of no-intervention curves.582

Acknowledgements: We acknowledge Alice Wangui Wachira, Anne Kanyua Kinyua and Lucy583

Nyanchama for their assistance with data collection.584
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Appendix A696

Wave computation and timeline of COVID-19 events697

Variables and Parameters 2nd Wave 3rd Wave 4th wave 1st Spike 4th wave 2nd Spike 5th Wave
A. FRONT SECTION OF WAVES 2 - 5
A1. Generation of new wave by relaxation

Change point TE 03-Sep-20 28-Dec-20 02-May-21 27-Jun-21 21-Oct-21
Transmission rate preceding relaxation

at TE; [= β(TE)]
βb 0.13507 0.17018 0.16339 0.079341 0.13071

Relaxation ratio for wave generation c -4 -9 -7 -2.9 -10
Duration of optimal change of transmission rate m 30 45 30 30 60

Use values of S, I, R,D and β at TE

to solve system till the time for enforcing
delay-function as indicated below.
A2. Application of delay-function
Time in current wave at which

delay-function is enforced
TG 08-Oct-20 10-Feb-21 01-Jun-21 26-Jul-21 02-Dec-21

Approximate infected ratio at TG IG 0.07394 0.04099 0.0724 0.143 0.0147
Infection in previous wave that approximates IG IB 0.07394 0.04099 0.0724 0.143 0.0147

Time at which IB occurs. TB 17-Jun-20 26-May-20 28-Feb-21 14-Mar-21 27-Apr-20
Apply delay-function at TG to S, I, R,D and β

B. BACK SECTION OF WAVES 2 – 4

[Intervention: Relaxation/Mitigation]
A.CONTINUATION OF FRONT SECTION FOR WAVE 5

A3. Intervention (Relaxation) for Wave 5
From TG solve the system for L days then apply relaxation

Number of days for solution after TG L 0 11 0 0 0
Time at intervention (= TRX for c < 0

orTMT for 0 < c < 1)
TV N 08-Oct-20 21-Feb-21 01-Jun-21 26-Jul-21 02-Dec-21

Transmission rate preceding intervention
at TV N ; [= β(TV N)]

βb 0.67533 0.10892 1.3071 0.29571 0.67286

Apply Relaxation/Mitigation from non-intervention curve c -0.26 -0.5 0.5 0.2 -4
Duration of optimal change of transmission rate m 15 10 30 15 15

For waves 1 to 4, use the values at
TV N to solve the system

for t>T {V N} and obtain the rest of the wave.
For 5th wave the process continues as indicated below.
A4. Application of Second delay-function for Wave 5
L days from relaxation, apply another delay-function

Number of days to follow previous relaxation L —– —– —– —– 12
Time at which the 2nd delay-function is enforced TG2 —– —– —– —– 14-Dec-21

Approximate infected fraction at TG2 IG2 —– —– —– —– 0.0988
Infection in previous wave that approximates IG2 IB2 —– —– —– —– 0.0985

Time in previous wave where IB2 occurs. TB2 —– —– —– —– 16-Jul-21
Apply delay-function at TB2;

Follow by relaxation at T {B2}.
C. BACK SECTION OF WAVE 5

[Intervention: Relaxation]
Time for 2nd relaxation (= TG2) TRX —– —– —– —– 14-Dec-21
Transmission rate preceding
2nd relaxation; [= β(TRX)]

βb —– —– —– —– 0.39473

Relaxation ratio c —– —– —– —– -3.5
Duration of optimal change of transmission rate m —– —– —– —– 5

Solve the system for t > TRX

and obtain the rest of the wave.

Table A1: Computing the 2nd to 5th COVID-19 Waves in Kenya

Variables and Parameters 6th Wave 7th Wave

A. FRONT SECTION OF COMPUTED WAVE
A1. Generation of new wave by exponential in-
fection
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Change point TE 13−Mar−22 22−Aug−22
Infected fraction at Change Point IE 0.00255 0.00899
Constant Susceptible fraction for exponential in-
fection

S̄ 0.00036 0.63

Transmission rate for exponential infection βXP 238 0.11
Use values of S, I, R,D at TE as initial values
and solve system till the time for enforcing delay-
function as below.
A2. Application of delay-function
Time in current wave at which delay-function is
enforced

TG 14−May−22 10−Oct−22

Approximate infected fraction at TG IG 0.00817 0.0101
Infection in previous wave that approximates IG IB 0.00827 0.0105
Time at which IB occurs TB 16−Apr−20 17-May-22
Apply delay-function: Let V (IG) = V (IB), where
V is S, I, R,D and β
B. BACK SECTION OF COMPUTED WAVES
B1. Relaxation
Apply relaxation at the point of delay-function
Time of at which relaxation is enforced; [= TG] TV N = TRX 14−May−22 10−Oct−22
Transmission rate preceding relaxation at TRX ; [=
β(TRX)]

βb 0.84538 0.029875

Relaxation ratio c −0.15 −0.2
Duration of optimal change of transmission rate m 15 15
B2. Mitigation
After following the relaxation curve, determine
when to apply mitigation
Time at which mitigation is applied TV N = TMT 17−Jun−22 05−Nov−22
Transmission rate preceding relaxation at TMG; [=
β(TMT )]

βb 0.169597 0.1781

Mitigation ratio c 0.82 0.68
Duration of optimal change of transmission rate m 15 10
Use the values of S, I, R,D and β at TMT and
the indicated mitigation parameters to solve the
system for t > TMG and obtain the rest of the
wave.

Table A2: Computing the 6th and 7th COVID-19 Waves in Kenya
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WAVE: 1st DATES: MAR-2020 to SEP-2020 CHANGE POINT: 13-Mar-20

MITIGATION:
Closure of learning institutions; Restrictions on movement, restaurants, public transport, political, religious and social gatherings;
Nation-wide curfew; Lockdown in some cities; Public hygiene & social distancing; Air travel suspended.

RELAXATION:
1st COVID-19 wave; Dominant SARS-CoV-2 variant - B.1.

Lockdown & restriction on movement lifted; Air travel resumed; Other controls relaxed.
WAVE: 2nd DATES: SEP-2020 to NOV-2020 CHANGE POINT: 03-Sep-20
MITIGATION: Restrictions imposed again on restaurants, clubs, social and religious gatherings.

RELAXATION:
2nd COVID-19 wave; Dominant SARS-CoV-2 variant – Beta;
Restrictions eased on curfew, restaurants, social & religious gatherings; Schools partially open.

WAVE: 3rd DATES: DEC-2020 to APR-2021 CHANGE POINT: 28-Dec-20

MITIGATION:
Restrictions on restaurants, social & religious gatherings, public transport;
Lockdown of 5 counties (Nairobi and its environs); Vaccination starts – target of 27.25 million.

RELAXATION:
3rd COVID-19 wave; Dominant SARS-CoV-2 variant - Alpha;

Opening of learning institutions; Relaxation in public transport protocols.
WAVE: 4th DATES: MAY-2021 to OCT-2021 CHANGE POINT: 02-May-21
MITIGATION: Country-wide curfew; Restrictions on social gatherings; Vaccination (19.5% of target)

RELAXATION:
4th COVID-19 wave; Dominant SARS-CoV-2 variant - Delta;

Lockdown lifted of 5 counties (Nairobi and its environs).
WAVE: 5th DATES: OCT-2021 to FEB-2022 CHANGE POINT: 21-Oct-21
MITIGATION: Enhanced vaccination campaign (45.7% of target).

RELAXATION:
5th COVID-19 wave; Dominant SARS-CoV-2 variant - Omicron;

Country-wide curfew lifted; Holiday travels; Learning institutions open.
WAVE: 6th DATES: MAR-2022 to AUG-2022 CHANGE POINT: 13-Mar-22
MITIGATION: Enhanced vaccination campaign (64.8% of target)

RELAXATION:
6th COVID-19 wave; Dominant SARS-CoV-2 variant – Omicron, sub-variants BA.4 & BA.5;
Election campaigns; Safari rally.

WAVE: 7th DATES: AUG-2022 to JAN-2023 CHANGE POINT: 22-Aug-22
MITIGATION: Enhanced vaccination campaign (84.7%of target).

RELAXATION:
7th COVID-19 wave; Dominant SARS-CoV-2 variant - Omicron BQ1 and BQ1.1 ;

Election campaigns; Holiday travels; Learning institutions open.

Table A3: Timeline of COVID-19 events in Kenya
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