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Abstract 62 

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in 63 

excess morbidity and mortality. Using genomic data, this study elucidates biological mechanisms, key 64 

risk factors, and causal pathways underlying their comorbidity. We show that CVDs share a large 65 

proportion of their genetic risk factors with MDD. Multivariate genome-wide association analysis of 66 

the shared genetic liability between MDD and atherosclerotic CVD (ASCVD) revealed seven novel loci 67 

and distinct patterns of tissue and brain cell-type enrichments, suggesting a role for the thalamus. Part 68 

of the genetic overlap was explained by shared inflammatory, metabolic, and psychosocial/lifestyle risk 69 

factors. Finally, we found support for causal effects of genetic liability to MDD on CVD risk, but not 70 

from most CVDs to MDD, and demonstrated that the causal effects were partly explained by metabolic 71 

and psychosocial/lifestyle factors. The distinct signature of MDD-ASCVD comorbidity aligns with the 72 

idea of an immunometabolic sub-type of MDD more strongly associated with CVD than overall MDD. 73 

In summary, we identify plausible biological mechanisms underlying MDD-CVD comorbidity, as well 74 

as key modifiable risk factors for prevention of CVD in individuals with MDD.  75 
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Main 76 

Major depressive disorder (MDD) and cardiovascular disease (CVD) are highly comorbid1,2. Several 77 

mechanisms might explain the observed comorbidity2. One explanation is that genetic risk factors for 78 

MDD and CVDs overlap 3,4. While observed genome-wide genetic correlations between MDD and CVD 79 

are modest2–4, this may be because local genetic correlations of opposing directions attenuate 80 

correlations on the genome-wide level, leading to an underestimation of the genetic overlap5. The large 81 

polygenicity of MDD6 might also mask subtypes with stronger genetic relationships to CVD.  82 

 83 

The observed MDD-CVD comorbidity could also be due to non-genetic factors7. Cardiovascular risk 84 

factors like high systolic blood pressure, high body mass index (BMI), high levels of low-density 85 

lipoprotein cholesterol, high levels of physical inactivity, presence of type 2 diabetes, and smoking have 86 

all been associated with MDD8–10. Moreover, accumulating data show that psychosocial/lifestyle  87 

factors associated with MDD, like low educational attainment, exposure to childhood maltreatment, 88 

loneliness, and atypical sleep patterns, are also important risk factors for CVD11–14. 89 

 90 

One common mechanism underlying MDD, CVD, as well as their shared risk factors could be chronic 91 

inflammation. Atherosclerosis, the accumulation of fibrofatty lesions in the arterial wall, is the main 92 

cause of CVD15. The build-up of atherosclerotic plaque is a long-term inflammatory process mediated 93 

by immune components in crosstalk with arterial wall cells16. Many lines of evidence also support a 94 

role for inflammation in MDD17. Excessive or long-term psychosocial stress promote the maturation 95 

and release of inflammatory cytokines like interleukin (IL)-6, which activate the central nervous system 96 

to produce behaviors related to MDD18. Importantly, low-grade inflammation, defined by high C-97 

reactive protein levels, has been observed in more than a quarter of patients with depression19, 98 

suggesting the presence of an inflammatory subtype of MDD20, which might be especially strongly 99 

associated with CVD.  100 

 101 

The full extent of the genetic overlap between MDD and CVD has not been explored. It remains 102 

unknown if the genetic overlap is associated with specific tissues or brain cell-types, or how this overlap 103 

relates to shared risk factors such as blood pressure, psychosocial/lifestyle traits, metabolic traits, and 104 

inflammation. Moreover, causal effects linking these traits are not fully understood 21–24.  105 

 106 

Here, we dissect the genetic overlap between MDD and CVD (coronary artery disease, peripheral artery 107 

disease, heart failure, stroke, and atrial fibrillation) by leveraging state-of-the-art genomic data and 108 

methods (Fig. 1). We used newly released summary statistics from a genome-wide association study 109 

(GWAS) of MDD involving 290,000  cases6, with substantially increased statistical power compared to 110 

previous GWASs. First, we assessed the pairwise genetic overlap between MDD and CVD on the 111 

genome-wide level, as well as on the level of local partitions of the genome and overlapping causal 112 

variants with MiXeR25 and LAVA26. Using these methods, we were able to consider the direction of 113 

correlation at each locus in the genome, providing a more granular understanding of the genetic overlap 114 

between MDD and CVD. Second, we identified genetic variants and genes that contribute to the shared 115 

liability between MDD and atherosclerotic CVD (ASCVD; coronary artery disease, peripheral artery 116 

disease, heart failure, and stroke) using Genomic Structural Equation Modeling (SEM)27. We mapped 117 

identified variants to brain cell-types using novel annotations based on single-cell RNA sequencing in 118 

post-mortem human brain samples28. Third, we assessed shared risk factors explaining the association 119 

between MDD and CVD. To do so, we evaluated the polygenic overlap between MDD and well-120 

established risk factors. We then estimated genetic correlation between MDD and CVD adjusting for 121 

risk factors, and the genetic correlation between the shared genetic liability between MDD and ASCVD 122 
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and risk factors. Finally, we used Mendelian Randomization (MR) to investigate putative causal effects 123 

and assess mediation through shared risk factors for MDD and CVD. In brief, this study leverages recent 124 

large-scale GWAS data and triangulates results from current genomic methods to elucidate etiological 125 

pathways underlying the comorbidity between MDD and CVD. 126 

 127 

Figure 1. Graphical abstract illustrating the study approach. The comorbidity between MDD and CVD 128 

is investigated using genetic and causal inference methods, including assessing overlap with and 129 

mediation through shared risk factors (metabolic, psychosocial/lifestyle, inflammatory, and blood 130 
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pressure; Supplementary Table 1). The risk factor group psychosocial/lifestyle is abbreviated to 131 

psychosocial. Created with BioRender.com (license agreements VG26BG3VTL, MK26BG46H3).  132 
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Results 133 

Most genetic risk factors for CVD overlap with MDD 134 

There were weak to moderate genome-wide genetic correlations between MDD and CVDs, as estimated 135 

with linkage disequilibrium score regression (LDSC29; Extended Data Fig. 1, Supplementary Table 2). 136 

Information on source GWASs for all traits is given in Supplementary Table 1. The strongest 137 

correlations were noted for peripheral artery disease (rg=0.30, SE=0.04, P=1×10-13), heart failure 138 

(rg=0.29, SE=0.03, P=1×10-24), and coronary artery disease (rg=0.25, SE=0.02, P=9×10-45), while 139 

smaller but statistically significant correlations were observed for stroke and atrial fibrillation (rg=0.18 140 

and rg=0.11, P<1×10-7). ASCVDs showed strong correlations among each other, while atrial fibrillation 141 

was only moderately genetically correlated to the ASCVDs (Extended Data Fig. 2a, Supplementary 142 

Table 2). To aid interpretation of these results, we also analyzed specific MDD symptoms. Poor appetite 143 

or overeating was consistently the symptom that showed the strongest genetic correlation to the CVDs 144 

(Extended Data Fig. 1a).  145 

 146 

We then estimated local genetic correlations between MDD and CVDs in each of 2,495 distinct genomic 147 

regions used in LAVA26. The distribution of local genetic correlations is displayed in Fig. 2a, with 148 

points exceeding the horizontal line representing partitions with a genome-wide significant correlation 149 

(PFDR<0.05). We found 54 significant local correlations between MDD and CVDs, 40 of which were 150 

for MDD and coronary artery disease.  Most significant local correlations were positive (90%), although 151 

results were mixed for peripheral artery disease and heart failure, with 50% and 25% of the partitions, 152 

respectively, showing negative correlations with MDD (Supplementary Table 4). We also investigated 153 

local genetic correlation between MDD and the CVDs in 16 loci in the human leukocyte antigen (HLA) 154 

region (Extended Data Fig 1b). Out of 50 assessed local genetic correlations, 8 were significant, 155 

indicating that this region is a hotspot of genetic correlation between MDD and CVDs.  156 

 157 

Next, we investigated genetic overlap on the level of risk variants using MiXeR25 (Supplementary 158 

Tables 5-6). We identified more variants for MDD than for the CVDs, suggesting that MDD is more 159 

polygenic than CVD. To verify these results, we estimated polygenicity using a complementary 160 

Bayesian approach implemented in SBayesS30, which showed estimates that were highly correlated 161 

with those of MiXeR (Extended Data Fig. 2b , Supplementary Table 7). 162 

 163 

Bivariate MiXeR results showed that CVDs shared a large proportion of their causal variants with MDD 164 

(from 64% in atrial fibrillation to 92% in heart failure, Fig. 2b) whereas MDD shared only a small 165 

proportion of its causal variants with CVDs (<20%). Note that for peripheral artery disease the 166 

performance metrics of the model indicate that this finding needs to be interpreted with caution 167 

(Supplementary Table 6). Both shared genetic variants and local genetic correlations exhibit strong 168 

degrees of effect direction concordance (Fig. 2c), suggesting that genetic risk variants for CVDs are 169 

strongly correlated with a genetic subcomponent of MDD. 170 
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 171 
Figure 2. Genetic overlap between MDD and CVD beyond genome-wide genetic correlation. (a) 172 

Volcano plots based on LAVA results showing genomic loci (green dots) with the local genetic 173 

correlation between MDD and each of the CVDs (x-axis) and the corresponding P-value (y-axis). Loci 174 

exceeding the horizontal line are significant at PFDR<0.05. Multiple testing was performed separately 175 

for each trait over all considered loci (b) Venn diagrams based on MiXeR results showing the number 176 

of causal variants that are unique to MDD (left circle), unique to CVD (non-overlapping part of right 177 

circle), or shared between MDD and CVD (overlapping part of circles). (c) Genetic correlation 178 

estimated by LDSC (x-axis) against the percentage of MDD variants that are shared with the CVD trait 179 

as estimated by MiXeR (first plot), the percentage of CVD variants that are shared with MDD (second 180 

plot), and the percentage of CVD variants that are shared with MDD that have concordant effect 181 

directions (third plot). The fourth plot shows the percentage of local genetic correlations from LAVA 182 

that have concordant effect directions on the y-axis. a-c Sample sizes and information for underlying 183 

summary statistics GWASs are reported in Supplementary Table 1. 184 

MDD=Major Depressive Disorder, PAD=Peripheral Artery Disease, CAD=Coronary Artery Disease, AF=Atrial Fibrillation, 185 
HF=Heart Failure  186 
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Shared genetic liability to MDD and CVD 187 

To further characterize the genetic overlap, we explicitly modelled the shared liability between MDD 188 

and CVD as a higher-order latent factor using Genomic SEM. We excluded atrial fibrillation because it 189 

deteriorated the model fit (CFI=0.918, SRMR=0.072) and had the lowest factor loading (=0.56, 190 

SE=0.05), so that the interpretation of the latent factor changed to representing ASCVD. The final 191 

model had an excellent fit with Comparative Fit Index CFI>0.999 and Standardized Root Mean Squared 192 

Residual SRMR=0.021. The factor loading for MDD was =0.32. The loadings for the ASCVDs ranged 193 

from =0.63 for stroke (SE=0.06, P=4.37×10-41) to =0.85 for heart failure (SE=0.07, P=2.97×10-56) 194 

(loadings standardized on the latent factors are shown in Fig. 3a). For comparison, we also fit a latent 195 

factor for the ASCVDs alone (without MDD), which showed similar fit and parameter estimates 196 

(CFI>0.999, SRMR=0.013) (Extended Data Fig. 3a). This shows that shared genetic liability to different 197 

ASCVDs as well as to ASCVDs and MDD (to a lesser extent) can be explained by a single underlying 198 

factor. 199 

 200 

The GWAS on the latent MDD-ASCVD factor resulted in 205 independent genome-wide significant 201 

loci (Fig. 3b, independent at R2<0.1 and distance≥250kb, Supplementary Table 8). We did not observe 202 

genomic inflation, indicating that results were not strongly affected by population stratification (LDSC 203 

intercept=1.02). Almost three quarters (74.6%) of the genome-wide statistically significant SNPs 204 

showed a high Q heterogeneity, suggesting that their effects were more in line with an independent 205 

pathway than a common pathway model (see methods). Most of this heterogeneity was due to MDD, 206 

as the GWAS for latent ASCVD without MDD showed fewer genome-wide statistically significant 207 

SNPs with a high heterogeneity (30.6%; Extended Data Fig. 3b).  208 

 209 

For the latent MDD-ASCVD factor, we filtered out variants that showed significant heterogeneity and 210 

considered only variants where the latent MDD-ASCVD factor was the best model for the follow-up 211 

analyses. We retained 72 independent loci underlying the shared genetic liability (Fig. 3b, 212 

Supplementary Table 9). The top SNP after filtering was rs11670056 in the ELL gene on chromosome 213 

19, which is part of the transcription elongation factor complex and has previously been associated with 214 

a range of CVDs, blood traits, BMI, and educational attainment (enrichment in associations with other 215 

traits for significant SNPs are shown in Extended Data Fig. 4a). There were 19 top SNPs that were 216 

significant eQTLs for one or multiple genes (top 10 are annotated in Fig. 3b, full results are shown in 217 

Supplementary Table 10). Besides ELL, multiple genes on chromosome 10 around INA and CNNM2 218 

were identified. INA is involved in structural neuron regulation whereas CNNM2 is involved in ion 219 

transportation and has previously been associated with psychiatric as well as cardiovascular traits.  220 

 221 

From the latent MDD-ASCVD GWAS summary statistics we extracted seven novel loci that were not 222 

among the risk loci in the MDD and ASCVD GWASs that constituted the latent factor (Extended Data 223 

Fig. 4b, Supplementary Table 11). The top SNPs in these loci have not been identified in any GWAS 224 

recorded in the GWAS catalog before, but four of them have shown suggestive associations (P<0.05) 225 

with metabolic traits (rs11065577, rs11606884, rs2838351, and rs500571).  226 

 227 

Using partitioned LDSC, we observed that the heritability of the latent MDD-ASCVD factor was 228 

enriched in genes with expression specific to endothelial and blood vessel tissues, which was also 229 

observed for latent ASCVD, but not for MDD (Fig. 3c, Supplementary Table 12). To gain deeper 230 

insights into brain-specific mechanisms, we leveraged high-resolution human brain single-nucleus 231 

RNAseq data28 and identified four human brain cell-types that exhibited enriched MDD-ASCVD 232 

heritability, including deep layer corticothalamic and 6b cells, midbrain-derived inhibitory neurons, 233 
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miscellaneous neurons, and vascular cells (Fig. 3d, Supplementary Table 13). Notably, three of the four 234 

cell-types were uniquely associated with the latent MDD-ASCVD factor, displaying no enrichment for 235 

either latent ASCVD without MDD or MDD only, suggesting that the genetic variance for MDD-236 

ASCVD comorbidity has a distinct functional signature.  237 

 238 

To externally validate the MDD-ASCVD phenotype, we computed polygenic risk scores (PRS) based 239 

on the summary statistics for the latent MDD-ASCVD factor, as well as for MDD and latent ASCVD, 240 

and found them to significantly predict ASCVD and MDD diagnoses in UK Biobank (UKB) (all 241 

P<2×10-13; Supplementary Tables 14-15; note that source and target samples were overlapping and the 242 

R2 values should only be interpreted relative to one another). The PRS for latent ASCVD and the latent 243 

MDD-ASCVD factor explained similar amounts of variance in ASCVD (Fig. 3e). This is in line with 244 

the MiXeR findings (Fig. 2b), suggesting that most causal variants for ASCVD are shared with MDD. 245 

In contrast, as most causal variants for MDD are not shared with ASCVD, the PRS for the latent MDD-246 

ASCVD factor explained less than half as much variance in MDD as the MDD PRS.  247 

 248 

Next, we assessed genetic correlations between the latent MDD-ASCVD factor and MDD symptoms. 249 

We found that poor appetite or overeating and suicidal thoughts are the symptoms most strongly 250 

correlated with MDD-ASCVD. In contrast, poor appetite or overeating is among the least genetically 251 

correlated symptoms to MDD (Extended Data Fig. 4c). 252 

 253 

Finally, we estimated genetic correlation of attention deficit and hyperactivity disorder (ADHD), 254 

anxiety disorders, post-traumatic stress disorder, bipolar disorder, and schizophrenia, with MDD,  255 

MDD-ASCVD, and ASCVD. We found that ADHD, anxiety disorder, and PTSD were genetically 256 

correlated with ASCVD (Extended Data Fig. 4d). In addition, PTSD and ADHD showed similar genetic 257 

correlations for MDD and MDD-ASCVD, which might suggest that the variants that are common to 258 

MDD and ASCVD explain most of the genetic correlation between MDD and these disorders.259 
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 260 
Figure 3. Shared genetic liability factor for MDD-ASCVD. (a) Latent factor model as specified in 261 

Genomic SEM with the ‘observed’ variables in rectangles and the latent variables in circles. Factor 262 

loadings (standardized on the latent factors) are given in black and variances in blue. Sample sizes for 263 

underlying GWAS summary statistics are reported in Supplementary Table 1 (b) Latent MDD-ASCVD 264 

factor GWAS results. The x-axis shows genomic position, and the y-axis shows statistical significance 265 

as –log10(P). Genome-wide significant SNPs that were filtered out because of significant heterogeneity 266 

QSNP are displayed in grey. The top 10 eQTL genes are displayed with dashed vertical lines indicating 267 

their position. (c) Enrichment results in GTEx tissues for the latent MDD-ASCVD factor, with latent 268 

ASCVD (without MDD) and MDD-only as comparison. (d) Enrichment results for the latent MDD-269 

ASCVD factor, latent ASCVD, and MDD-only in brain cell types. (e) Proportion of variance explained 270 

in MDD and CVD phenotypes in the UKB (defined using ICD-codes listed in Supplementary Table 14) 271 

by each of 3 PRSs for the latent MDD-ASCVD factor, latent ASCVD, or MDD-only. c, d Enrichment 272 

is measured using significance testing in a two-sided t-test displayed as -log10(P). Only tissues with a 273 

significant association (PFDR<0.05) are shown. Multiple testing was performed over tested tissues/cell-274 

types. 275 
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MDD=Major Depressive Disorder; MDD-ASCVD=common factor for MDD and ASCVD; ASCVD=common factor for the 276 
atherosclerotic cardiovascular diseases 277 

Polygenic overlap between MDD and risk factors  278 

Next, we aimed to identify risk factors that contribute to the genetic and phenotypic association between 279 

MDD and CVD. First, we assessed the genome-wide genetic correlations between MDD and risk 280 

factors. Confirming previous findings, we observed strong to moderate genetic correlations of MDD 281 

with psychosocial/lifestyle factors, such as loneliness (rg=0.68, SE=0.02), childhood maltreatment 282 

(rg=0.55, SE=0.02), and exercise (rg=-0.33, SE=0.02) (Fig. 5, Extended Data Fig. 6). Among metabolic 283 

factors, MDD showed the strongest genetic correlation with type II diabetes (rg=0.19, SE=0.018), 284 

followed by levels of high-density lipoprotein cholesterol (rg=-0.14, SE=0.01) and triglycerides 285 

(rg=0.18, SE=0.02). MDD showed weak but statistically significant genetic correlations with other 286 

metabolic factors (i.e., BMI, non-high-density lipoprotein, low-density lipoprotein, and total 287 

cholesterol) (rg<0.15). We observed significant genetic correlations for MDD with the inflammatory 288 

markers IL-6 (rg=0.22, SE=0.06) and C-reactive protein (rg=0.15, SE=0.02). We did not observe genetic 289 

correlation of MDD with blood pressure traits. As a comparison, for CVDs, the largest genetic 290 

correlations were found between heart failure and BMI (rg=0.55, SE=0.03) and type II diabetes (rg=0.49, 291 

SE=0.03) (Extended Data Fig. 5, Supplementary Table 2). Results for MDD symptoms largely followed 292 

the pattern of MDD diagnosis, although changed appetite showed stronger genetic correlations with 293 

metabolic factors than did MDD diagnosis (Extended Data Fig. 6, Supplementary Table 3).  294 

 295 

Causal variant and local genetic correlation analysis revealed several distinct patterns of polygenic 296 

overlap between MDD and risk factors. We found that psychosocial/lifestyle factors, childhood 297 

maltreatment, and BMI showed similar levels of polygenicity to MDD (Extended Data Fig. 2b, 298 

Supplementary Tables 5 and 7). In addition, they exhibited a large degree of shared variants and many 299 

local genetic correlations with MDD (Fig. 4a, Extended Data Fig. 7, Supplementary Tables 4 and 6). 300 

Out of these factors, loneliness and childhood maltreatment also showed high levels of effect direction 301 

concordance (93% and 73% of shared causal variants and 85% and 75% of significant local genetic 302 

correlations for loneliness and childhood maltreatment were in the same direction; Fig. 4b, correlation 303 

coefficients are shown in Supplementary Tables 4 and 6). Combined with high polygenicity, such 304 

concordance translates to large genome-wide genetic correlations. In contrast, educational attainment, 305 

smoking, exercise, physical activity, BMI, and sleep duration had similar levels of polygenicity and a 306 

large degree of polygenic overlap with MDD, but low effect direction concordance, suggesting that 307 

genome-wide genetic correlations underestimate the polygenic overlap with MDD for these traits.  308 

 309 

Genetic factors for blood pressure traits showed unique patterns of polygenic overlap in that they were 310 

polygenic (>5,000 causal variants; Extended Data Fig. 2b) but did not overlap strongly with genetic risk 311 

factors for MDD (<0.30 of risk variants overlapping; Fig. 4a). Moreover, risk variants that did overlap 312 

showed low degree of effect direction concordance (48%-57% of shared variants in the same direction; 313 

Fig. 4b). We observed 97 significant local genetic correlations for the three blood pressure traits, 60% 314 

of which were positive. These findings suggest that MDD and blood pressure share variants that exhibit 315 

both positive and negative correlations, which are cancelled out in the genome-wide estimate.  316 

 317 

Type II diabetes, lipid traits, and C-reactive protein showed low polygenicity (<2,500 causal risk 318 

variants). Total cholesterol, non-high-density lipoprotein, and low-density lipoprotein did not share the 319 

majority of their risk variants with MDD, and shared variants showed low degrees of effect direction 320 

concordance. However, like the CVDs, type II diabetes, triglyceride levels, and C-reactive protein levels 321 

shared most of their risk variants with MDD, and these variants showed high degrees of concordance 322 
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(>85% of shared variants in the same direction). High-density lipoprotein shared most of its risk variants 323 

with MDD, in consistently opposite directions.  324 

 325 
Figure 4. Local and causal-variant level genetic correlations between MDD and risk factors. The legend 326 

is shared among all panels. (a) Venn diagrams based on MiXeR results showing the number of causal 327 

variants that are unique to MDD (left circle), the risk factor (non-overlapping part of right circle) or 328 

shared between MDD and the risk factor (overlapping part of circles). (b) Genome-wide genetic 329 

correlation estimated by LDSC (rg, x-axis) against the percentage of MDD causal variants that are 330 

shared with the risk factor as estimated by MiXeR (top left), the percentage of risk factor causal variants 331 

that are shared with MDD (top right), the percentage of risk factor causal variants that are shared with 332 

MDD that have concordant effect directions (bottom left). The bottom right plot shows the percentage 333 
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of local genetic correlations from LAVA that have concordant effect directions on the y-axis. 334 

Cardiovascular traits are also shown for comparison. a, b Standard errors for MiXeR, LAVA, and LDSC 335 

results are reported in Supplementary Tables 2-6. Sample sizes for GWAS summary statistics are 336 

reported in Supplementary Table 1. Note that IL6 was excluded from MiXeR results because it failed 337 

performance checks (see methods).  338 

Psychosocial=Psychosocial/Lifestyle; PAD=Peripheral Artery Disease, CAD=Coronary Artery Disease, AF=Atrial 339 
Fibrillation, HF=Heart Failure, DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; 340 
Edu=Educational attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood Maltreatment; T2D=Type II Diabetes; 341 
TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; TC=Total Cholesterol; 342 
LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein;  343 

Risk factors explain part of the genetic correlation between MDD and CVD 344 

To assess the degree to which risk factors explain the genetic overlap between MDD and CVD, we 345 

estimated genetic correlations adjusted for risk factors (individually or as a group) using Genomic SEM 346 

(Fig. 5a; results per individual risk factor are shown in Extended Data Fig. 8 and Supplementary Table 347 

Table 16). The largest reduction in point estimate was observed for the genetic correlation between 348 

MDD and peripheral artery disease after adjustment for the group of psychosocial/lifestyle factors, 349 

indicating that these risk factors explain much of the genetic correlation between MDD and peripheral 350 

artery disease. Similarly, the genetic correlation between MDD and coronary artery disease, as well as 351 

the latent CVD factor, were attenuated after adjusting for psychosocial/lifestyle factors. The reduction 352 

was mainly driven by loneliness (Extended Data Fig. 8). Genetic correlations of MDD with peripheral 353 

artery disease and stroke were no longer significant after adjusting for psychosocial/lifestyle factors. 354 

We also observed some attenuation in the genetic correlation between MDD and CVD after adjusting 355 

for childhood maltreatment, metabolic factors, or inflammatory markers, although confidence intervals 356 

overlapped. 357 

 358 

Next, we specified the risk factors as mediators instead of covariates in the Genomic SEM model and 359 

compared the path estimates from MDD to CVD. Observing attenuation in the association between 360 

MDD and CVD when a risk factor is modelled as a mediator rather than a covariate supports the 361 

interpretation that the risk factor mediates some of the link between MDD and CVD. For all 362 

psychosocial/lifestyle factors together, the inflammation traits, and for type II diabetes, the 95% 363 

confidence intervals did not overlap between the mediator and covariate models, suggesting that these 364 

risk factors are mediating part of the link between MDD and CVD (Supplementary Table 17). 365 

 366 

Finally, we estimated genetic correlations between the risk factors and the latent MDD-ASCVD factor 367 

(Fig. 5b) and found that the latent MDD-ASCVD factor was substantially more genetically correlated 368 

with blood pressure traits, C-reactive protein levels, and metabolic factors than MDD only, suggesting 369 

that these factors characterize the genetic liability to MDD-ASCVD rather than to MDD alone. 370 

 371 

  372 
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 373 

 374 

Figure 5. Genome-wide correlations between MDD and risk factors. (a) Genetic correlation between 375 

MDD and CVD before and after adjustment for groups of risk factors (color coded). (b) Comparison of 376 

genetic correlation between MDD (dark green) and the latent CVD-ASMDD factor (lilac) and 377 

individual risk factors. a, b Points and error bars represent correlations and 95% CIs. Sample sizes for 378 

GWAS summary statistics are reported in Supplementary Table 1. 379 

Psychosocial=Psychosocial/Lifestyle; MDD=Major Depressive Disorder; AF=Atrial Fibrillation; CAD=Coronary Artery 380 
Disease; HF=Heart Failure; PAD=Peripheral Artery Disease; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; 381 
PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood Maltreatment; 382 
T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; 383 
TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 384 

Causal pathways linking MDD and CVD 385 

We investigated putatively causal relationships between MDD and CVD using two-sample MR. Results 386 

from the inverse variance-weighted (IVW) estimator are presented in Fig. 6a-c (full results including 387 

sensitivity analyses Supplementary Table 18). Instruments were Steiger filtered, i.e., SNPs explaining 388 

significantly more variance in the outcome than the exposure were excluded. The results provide 389 

support for a causal effect of MDD liability on all CVDs, with the strongest effects observed for 390 

coronary and peripheral artery disease. There was no statistically significant pleiotropy for the CVD 391 

outcomes, and the results were consistent across weighted median, mode, and Egger sensitivity 392 

analyses, providing support for the IVW estimates. Concerning risk factors, we observed no support for 393 

a causal effect of MDD liability on levels of blood pressure, physical activity, sleep duration, or IL6. 394 

However, increased liability to MDD was associated with increased risk of loneliness, smoking, type II 395 

diabetes, and levels of C-reactive protein (Fig. 6a). The results were again consistent across sensitivity 396 

analyses. There was statistically significant pleiotropy between MDD and triglycerides, rendering this 397 

effect uninterpretable. The average instrument strength of MDD was F=33. Heterogeneity across 398 

instruments was statistically significant for most outcomes, suggesting variable effects (Supplementary 399 

Table 18).  400 

 401 
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We also investigated the potential causal effect in the other direction with genetic instruments to CVDs 402 

and risk factors as exposures and MDD as outcome (Fig. 6b). We provide evidence for a statistically 403 

significant causal effect of stroke, loneliness, smoking, exercise, educational attainment, childhood 404 

maltreatment, high-density lipoprotein, and BMI on MDD risk (Fig. 6b), which was robust across the 405 

sensitivity analyses. No robust effects were observed for other CVDs, blood pressure, other metabolic 406 

traits, or inflammatory markers. 407 

 408 

When using genetic instruments for the latent MDD-ASCVD factor to predict the risk factors, 409 

statistically significant effects were observed for pulse pressure and type II diabetes (Extended Data 410 

Fig. 9c). There was statistically significant pleiotropy only for systolic blood pressure. There were small 411 

effects on BMI, childhood maltreatment, educational attainment, high-density lipoprotein, exercise, 412 

loneliness, and smoking, but these were less robust across sensitivity analyses (Supplementary Table 413 

18). For most outcomes, there was statistically significant instrument heterogeneity.  414 

 415 

We extended univariable results with multivariable MR to assess if there was support for causal effects 416 

of MDD on CVD explained by the risk factors. We included only risk factors that were statistically 417 

significantly predicted by MDD in the univariable MR analysis. Fig. 6c shows that, as in the Genomic 418 

SEM analyses, the effect of MDD on CVD was attenuated after adjusting for groups of risk factors, 419 

although confidence intervals were wide. Results for individual risk factors are shown in Extended Data 420 

Fig. 10 and Supplementary Table 19. The effect of MDD liability on peripheral artery disease, heart 421 

failure, stroke, and atrial fibrillation risk was no longer statistically significant after adjusting for the 422 

groups of metabolic or psychosocial/lifestyle factors, although the confidence intervals overlapped with 423 

those from the unadjusted estimates. Likewise, the effect of MDD on atrial fibrillation was no longer 424 

statistically significant after adjusting for childhood maltreatment. In Fig. 6d we show a schematic 425 

overview of results from all MR analyses. 426 

 427 

To investigate possible bias due to sample overlap, we repeated the main IVW analyses using MDD 428 

summary statistics based on GWAS excluding the UKB sample (the main source of overlap). We 429 

observed small differences in the estimates, but the interpretation remained the same for all results 430 

(Extended Data Fig. 9a-b, Supplementary Table 20). Furthermore, we repeated the analyses using 431 

Latent Heritable Confounder (LHC) MR, which is robust to sample overlap31. The results pattern was 432 

similar, although the point estimates were slightly attenuated for CVD risk (e.g., no longer statistically 433 

significant for heart failure and atrial fibrillation) and became stronger for most other traits (Extended 434 

Data Fig. 9c). We conclude that although sample overlap impacted the point estimates, the interpretation 435 

of results remained similar. 436 

  437 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2023.09.01.23294931doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294931
http://creativecommons.org/licenses/by/4.0/


 

 438 
Figure 6. Results from univariable and multivariable MR (IVW estimates). (a) Effect of liability to 439 

MDD (exposure) on CVD and risk factors (outcomes). (b) Effects in the opposite direction with MDD 440 

as outcome and CVD and risk factors as exposures. (c) Effects of MDD on CVD while adjusting for 441 

groups of risk factors in multivariable MR. (d) Schematic overview of levels of evidence for causal 442 

effects, with solid lines indicating convincing evidence (consistent across sensitivity analyses) for such 443 

effects, and dashed lines indicating evidence for some of the relationships tested within the trait 444 

categories. The arrows from the risk factors to the association between MDD and the CVDs indicate 445 

that the combined risk factors attenuated the association so that it was no longer statistically significant. 446 

a-d Points and error bars represent regression coefficients and 95% CIs. Sample sizes for GWAS 447 

summary statistics are reported in Supplementary Table 1. The term beta refers to the log odds ratio. 448 

* Indicates that the observed statistically significant association suffered from pleiotropy; possible 449 

causal effect should not be interpreted. 450 

Psychosocial=Psychosocial/Lifestyle; MDD=Major Depressive Disorder; MDD-ASCVD=common factor for CVD and MDD 451 
and ASCVD; PAD=Peripheral Artery Disease; HF=Heart Failure; STR=Stroke; CAD=Coronary Artery Disease; AF=Atrial 452 
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Fibrillation; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; 453 
Phys. Act.=Physical activity; Child. Mal.= Childhood Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-454 
Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; TC=Total Cholesterol; LDL=Low-Density Lipoprotein; 455 
IL6=Interleukin-6; CRP=C-Reactive Protein; MR=Mendelian randomization IVW=Inverse Variance Weighted. 456 

Discussion 457 

Here, we showed that genetic risk factors for CVD overlap strongly with MDD. We modeled the shared 458 

genetic liability between MDD and ASCVD as a latent factor and showed that, distinct from MDD 459 

alone, it is associated with gene expression specific to thalamic and vascular cell-types in the brain and 460 

is genetically correlated with immunometabolic factors and blood pressure. Further, we showed that the 461 

association between MDD and CVD is partly explained by modifiable risk factors and provide evidence 462 

that it is likely causal in nature. 463 

 464 

In line with previous results32–35 we found weak to moderate genome-wide genetic correlations between 465 

MDD and CVDs. Analysis on the level of shared risk variants showed that MDD was substantially 466 

more polygenic than the CVD traits and that most risk variants for CVD were in fact shared with MDD 467 

and had concordant effect directions. In addition, we found many positive local genetic correlations 468 

between MDD and CVD, especially for coronary artery disease although that might reflect the fact that 469 

the coronary artery disease GWAS have substantially larger effect sample size than the GWASs of the 470 

other CVDs. Interestingly, we found that the HLA region was a hotspot for local genetic correlation 471 

between MDD and CVDs. These findings suggest that genetic overlap between MDD and CVD is 472 

underestimated in genome-wide correlation analyses.  473 

 474 

We modelled the shared liability between MDD and ASCVD as a latent factor and performed a GWAS 475 

on the factor. Atrial fibrillation deteriorated the fit of the latent factor and it was therefore excluded. 476 

This was in line with results that showed that atrial fibrillation was substantially less genetically 477 

correlated with the ASCVDs than they were with each other. Combined, these results suggest that atrial 478 

fibrillation and ASCVDs have partly distinct sources of genetic variation. We identified many loci for 479 

MDD-ASCVD, some of which were uniquely associated with the shared liability and not with the 480 

constituent traits. We found that heritability for the MDD-ASCVD latent factor was enriched for genes 481 

specifically expressed in vascular braincells, deep layer corticothalamic 6b (projecting to the thalamus), 482 

and midbrain-derived inhibitory neurons (predominantly located in the thalamus). This cell-type 483 

enrichment signature was not found for MDD or ASCVD alone, suggesting that a distinct mechanism 484 

involving thalamic circuits underlies the shared liability to MDD-ASCVD. Altered thalamic function 485 

has indeed been implicated previously in CVD36–38 and MDD39,40, and white matter integrity in thalamic 486 

radiations show associations with aortic area and myocardial wall thickness, suggesting that it has a role 487 

in the ‘heart-brain’ connection41.  488 

 489 

MDD showed a high degree of genetic overlap with risk factors. We showed that MDD was 490 

substantially more polygenic than blood pressure traits, lipid traits, and C-reactive protein. In contrast, 491 

psychosocial/lifestyle traits were equally polygenic to MDD and showed a large degree of overlap with 492 

MDD. Interestingly, the local and variant-level analysis indicated that blood pressure traits shared a 493 

substantial proportion of their risk variants with MDD (in line with a previous report42), which was 494 

masked at the genome-wide level due to their opposing effect directions. Similarly, BMI and lipid traits 495 

showed discordant effect directions to MDD in overlapping risk variants as well as opposite directions 496 

in local genetic correlations. Finally, C-reactive protein shared almost three quarters of its risk variants 497 

with MDD, most of which were in the positive direction, indicating a genetic relationship between C-498 

reactive protein and MDD that was masked by the large polygenicity of MDD. Overall, these findings 499 
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refine our understanding of the polygenic overlap between MDD and risk factors shared between MDD 500 

and CVD, and indicate that it is stronger and more complex than has previously been reported. 501 

 502 

We estimated genome-wide genetic correlations between MDD and CVD adjusting for risk factors and 503 

found that psychosocial/lifestyle factors explain a substantial part of the genetic correlation between 504 

MDD and CVD and highlight loneliness as an important factor in the relationship between MDD and 505 

CVD.  506 

 507 

We found that, compared to MDD, the latent MDD-ASCVD factor was characterized by genetic 508 

correlations with immunometabolic factors and blood pressure, suggesting that the shared genetic 509 

liability to MDD and ASCVD is associated with an immunometabolic subtype of depression. The 510 

existence of an immunometabolic subtype of depression has been proposed previously, based on a long 511 

line of evidence of oxidative stress and neuroendocrine and inflammatory dysregulation in MDD, that 512 

are preferentially associated with atypical symptoms of MDD (e.g., weight gain and oversleeping)43. 513 

Indeed, we find that poor appetite or overeating is the MDD symptom with the consistently greatest 514 

genetic correlations to the CVDs, and it is among the most genetically correlated with MDD-ASCVD, 515 

while it is among the least correlated symptoms to MDD, although confidence intervals were too wide 516 

to be conclusive. We did not find large genetic correlations between sleep duration measured using an 517 

accelerometer over one week and the MDD-ASCVD factor. However, statistically significant variants 518 

for the MDD-ASCVD factor were strongly enriched in statistically significant variants for self-reported 519 

short sleep duration (<6 hours per night)44 suggesting that short sleep duration is more related to MDD-520 

ASCVD comorbidity than overall sleep duration.  521 

 522 

Mental disorders that are highly comorbid with MDD, such as psychotic disorders, anxiety disorders 523 

and PTSD, have also been shown to be associated with CVD45. We find that ADHD, anxiety disorders 524 

and PTSD show genetic correlations with ASCVD and MDD-ASCVD. For ADHD and PTSD, the 525 

genetic correlation was similar between MDD and MDD-ASCVD. Future work should estimate latent 526 

factors representing shared and distinct sources of genetic covariance between MDD, ADHD, anxiety 527 

disorders, and PTSD and investigate how those factors relate to ASCVD.  528 

 529 

We found robust support for the likelihood of causal effects of MDD on CVD. Previous two-sample 530 

MR studies have observed associations between genetic liability to MDD and risk of coronary artery 531 

disease but results for risk of heart failure have been inconsistent32,33,46,47. Another study found an effect 532 

of genetic liability to MDD on risk of stroke48. Using more recent GWAS data, we confirmed an effect 533 

of genetic liability to MDD on coronary artery disease and stroke and found robust associations for 534 

heart failure and peripheral artery disease.  535 

 536 

Except for stroke, we found limited evidence for a causal effect of CVDs on MDD, which is contrary 537 

to literature suggesting that such effects exist24. The MDD sample is mainly based on large volunteer-538 

based studies that might select against individuals with CVD. Indeed, participants in the UKB study are 539 

healthier than the general population49. In addition, interpretation of the MR estimate in this case is 540 

complicated by the fact that CVD is a time-varying exposure with late age-of-onset50. However, we do 541 

find that genetic instruments capture the well-established association between stroke and subsequent 542 

MDD51. Therefore, the findings in our study offer some indication that the association between CVDs 543 

and subsequent MDD might have been overestimated in previous studies, possibly due to reverse 544 

causation, surveillance bias, or unmeasured confounding.   545 

 546 
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We observed effects of genetic liability to MDD on most of the risk factors. We did not observe 547 

associations between genetic liability to MDD and blood pressure traits, although the presence of 548 

correlated and anti-correlated genetic components complicates interpretation. Indeed, using genetic 549 

instruments for the latent MDD-ASCVD factor, we did observe strong associations for pulse pressure. 550 

Previous MR studies of the association of C-reactive protein and IL-6 levels with MDD risk have also 551 

shown inconsistent results52,53. We did not find an effect of genetic instruments for inflammatory 552 

markers on MDD. However, we did find associations between genetic liability to MDD and increased 553 

C-reactive protein levels, lipid levels, and type II diabetes, offering evidence that MDD might lead to 554 

long-term dysregulated immunometabolic pathways43. Likewise, in line with previous evidence54, we 555 

provided support for a causal effect of liability to MDD on smoking, which, in turn, can lead to 556 

inflammation. These results are in line with results based on genetic covariance estimated from all 557 

genetic variants that tentatively supported a mediating role for C-reactive protein and IL6 levels in the 558 

association between MDD and ASCVD. 559 

 560 

Analyzing risk factors explaining the effect of genetic liability to MDD on CVDs, we observed that 561 

only the association between genetic liability to MDD and coronary artery disease remained statistically 562 

significant after adjusting for psychosocial/lifestyle or metabolic covariates in a multivariable MR 563 

analysis. In addition, we found that smoking status attenuates the association between genetic liability 564 

to MDD and peripheral artery disease, for which smoking is a particularly strong risk factor55. 565 

Interestingly, we find that loneliness is an equally important factor explaining the relationship between 566 

MDD and peripheral artery disease, as well as heart failure, which is in line with the results from the 567 

adjusted genome-wide genetic correlation analysis discussed above. This emphasizes the need for 568 

interventions and preventive policies for reducing loneliness in the population, which has a further 569 

increased prevalence during the COVID-19 pandemic and has been described as a pandemic itself56,57. 570 

 571 

For most CVDs, no risk factor group could fully explain the genetic association between MDD and the 572 

CVD. This suggests that there are other mechanisms at work as well, which are not captured by the 573 

genetic data used in the study. For instance, GWAS measure lifetime genetic risk (up to the point of the 574 

maximum age in the sample) and cannot capture dynamic processes of cumulative and interactive risk. 575 

Relatedly, the statistical genetic tools we employed cannot formally distinguish between mediation and 576 

covariation pathways. Future studies should triangulate our findings using longitudinal observational 577 

and experimental data. Follow-up studies could also investigate the out-of-sample predictive power and 578 

clinical usefulness of polygenic risk scores for the shared liability to MDD-ASCVD, and evaluate their 579 

ability to identify individuals at risk for immunometabolic depression, as we could not investigate this 580 

due to sample overlap in the present study. Another limitation is that the bivariate MiXeR model was 581 

not able accurately estimate the polygenic overlap between MDD and IL6. The likely reason the MiXeR 582 

model failed in this case is because the two traits have very different genetic architectures with MDD 583 

being highly polygenic and IL6 being the least polygenic of the traits in the study, combined with the 584 

low sample size of the IL6 GWAS. In addition, to assess generalizability, these findings should be 585 

replicated with data from different ancestry sources. The lack of large genetic datasets from non-586 

European populations is a crucial limitation that is widely acknowledged and yet difficult to circumvent. 587 

Observational studies have shown that MDD and CVDs could demonstrate different associations 588 

depending on ancestry58,59, and more genetic and non-genetic research is needed to understand such 589 

differences.  590 

 591 

To our knowledge, this is the first study moving beyond bivariate genetic overlap to investigate the 592 

latent genetic liability shared between MDD and ASCVD. Our triangulation of genome-wide, local, 593 

and variant-level methods provides compelling evidence that MDD and CVD, and their shared risk 594 
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factors are more strongly overlapping genetically than has previously been reported. Similarly, using 595 

genome-wide, variant-level, and genetic instrument methods we show how shared risk factors explain 596 

the likely causal association between MDD and CVD. For both MDD and CVDs, we have used updated 597 

GWAS summary statistics, with an up to 3-fold increase in sample size compared to previous reports 598 
32–35.  599 

 600 

This study dissected the architecture of polygenic overlap between MDD and CVD, and their shared 601 

risk factors to elucidate mechanisms linking these comorbid diseases. Our findings suggest that the 602 

shared genetic liability to MDD and ASCVD has a distinct genomic signature compared to MDD or 603 

any CVD separately. Moreover, the shared genetic liability shows stronger genetic correlations with 604 

immunometabolic risk factors than MDD alone, in line with the idea of an inflammatory60 or 605 

immunometabolic43 subtype of MDD especially associated with atherosclerotic CVDs, highlighting the 606 

role of inflammation in MDD-ASCVD comorbidity. Indeed, we found that the HLA region is a hotspot 607 

of local genetic correlation between MDD and the CVD traits, that genetic liability to MDD is 608 

associated with C-reactive protein levels, and tentative support that inflammatory markers mediate 609 

some of the link between MDD and ASCVD. We highlight loneliness and smoking as important targets 610 

for intervention to reduce the risk of MDD and CVD, as well as CVD in individuals with MDD. 611 

Building on this work, tools can be developed to identify individuals at risk for developing 612 

immunometabolic depression (e.g., using blood tests of high-density lipoprotein and C-reactive protein 613 

levels) and target them for cholesterol-lowering or anti-inflammatory medical interventions.   614 
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615 

Methods 616 

Data sources 617 

All data sources were summary statistics from the largest and most recent GWAS to date (see 618 

Supplementary Table 1). The MDD symptoms GWAS have not been published, although they have 619 

been used in other publications61. The symptom GWASs were based on Patient Health Questionnaire 620 

(PHQ-9) items measured in the UKB, that captures most, but not all, core symptoms of MDD, and were 621 

published online62. The disease trait GWASs were mostly based on electronic health record diagnoses. 622 

The physical activity and sleep duration traits were measured in the UKB using an accelerometer over 623 

a one-week period63.  624 

 625 

The summary statistics were cleaned using the cleansumstats pipeline 626 

(https://github.com/BioPsyk/cleansumstats). SNPs were aligned and harmonized against reference data. 627 

Analyses were conducted on the TSD cluster, maintained by the University of Oslo, using singularity 628 

containers. Containers are packaged applications with their environmental dependencies that are used 629 

to standardize analyses across different sites, ensuring correct software versions and parameters64. All 630 

GWAS studies were ethically approved and were conducted in compliance with ethical guidelines. 631 

Ethics approval for the UK-Biobank study was given by the North West Centre for Research Ethics 632 

Committee (11/NW/0382). The work described here was approved by UK-Biobank under application 633 

number 22224. 634 

Genetic overlap  635 

Genome-wide genetic correlation  636 

To assess shared liability between MDD, CVD, MDD symptoms, and risk factors, we estimated genetic 637 

overlap on a genome-wide, polygenic, and local level. First, for the genome-wide level, we estimated 638 

genetic correlation between each of the traits using LD score regression (LDSC29). We excluded the 639 

human leukocyte antigen (HLA) region from the main analysis because its complex LD structure can 640 

bias both heritability and genetic correlation results65. However, a sensitivity analysis including the HLA 641 

region showed very similar results to the main analysis (not shown). Note that LDSC performs well in 642 

the presence of sample overlap. 643 

Local genetic correlation 644 

We used Local Analysis of (co)Variant Association (LAVA26) to assess genetic correlation in regions 645 

of the genome. We assessed local genetic correlation in 2,495 genomic regions that cover the autosomes 646 

and have been defined to minimize LD between the regions, while simultaneously keeping the regions 647 

approximately equal in size. These regions are provided with the LAVA software package. We only 648 

considered local genetic correlation in loci where both traits showed marginally significant heritability 649 

(P<0.05). For these loci, we adjusted local genetic correlation P-values for multiple testing using the 650 

Benjamini-Hochberg method. This adjustment was done separately for all pairs of traits considered.  To 651 

match the results from LDSC and MiXeR, we excluded the HLA region from the main analyses. For 652 

local genetic correlation between MDD and the CVD traits, we performed an additional analysis in the 653 

HLA region.  654 

Polygenic overlap 655 

To investigate polygenic overlap beyond genetic correlation, we used MiXeR v1.325 to assess the 656 

number of shared and distinct non-zero genetic variants between MDD and another trait required to 657 
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explain at least 90% of heritability in the two traits, referred to as ‘causal’ variants. Because it assesses 658 

overlap regardless of the effect direction of each variant, it gives a more adequate picture of localized 659 

correlations that could cancel each other out when estimating the genome-wide genetic correlation. We 660 

excluded the HLA region, following the software recommendations25. A sensitivity analysis of genetic 661 

overlap between MDD and the CVD traits including the HLA region showed very similar results to the 662 

main analysis (not shown). To assess stability of point estimates and estimate their standard deviations, 663 

we fitted the MiXeR model 20 different times for 2 million randomly selected SNPs with minor allele 664 

frequency of at least 5%. The number of 20 runs follows recommendations published previously66. The 665 

averaged results were then plotted in Venn diagrams to visualize the polygenic overlap. The MiXeR 666 

model was evaluated for each trait using by 1) comparing the AIC of the univariate MiXeR model with 667 

the LDSC model, which does not include a parameter to directly estimate polygenicity (Supplementary 668 

Table 5); 2) comparing the AIC of the bivariate MiXeR model with the AIC of the model with the least 669 

possible amount of polygenic overlap required to explain observed genetic correlation; 3) comparing 670 

the AIC of the bivariate MiXeR model with the AIC of the model with maximum amount of polygenic 671 

overlap (in such a model, all risk variants of the least polygenic trait are also risk variants of the other 672 

trait), and finally 4); evaluating the stability of the point estimates over the 20 runs (Supplementary 673 

Table 6). These metrics have been described in detail previously66. Except for the univariate test, the 674 

MiXeR model failed these checks for IL6, which was therefore excluded from the results. The MiXeR 675 

model performed poorly for the IL6 likely because it is a trait with low polygenicity and was measured 676 

in a relatively small sample (Extended Data Fig. 2, Supplementary Table 1). 677 

 678 

To complement the univariate polygenicity analysis in MiXeR, we estimated polygenicity in a Bayesian 679 

model implemented in SBayesS30. We used a 15,000 sample MCMC chain with a 5,000-sample burn-680 

in. The SBayesS methods did not converge for peripheral artery disease, possibly due to lower number 681 

of cases in the GWAS. 682 

Shared liability to MDD and ASCVD 683 

To move beyond bivariate association to multivariate overlap, we conducted factor analysis on MDD 684 

and the CVDs using Genomic SEM27 to assess if genetic latent factors could explain the genetic 685 

covariance between the traits. Genomic SEM uses LDSC to estimate the genetic covariance matrix and 686 

uses that in a SEM framework to identify multivariate relationships in the data. A Comparative Fit Index 687 

CFI>.90, Standardized Root Mean Square Residual SRMR<.03, and standardized factor loadings >0.3 688 

were set as criteria for acceptable model fit. The best model fit was found for a factor with coronary 689 

artery disease, peripheral artery disease, heart failure, and stroke as indicators, which we interpret as a 690 

genetic factor for ASCVD. To model a genetic factor for shared liability to MDD and ASCVD, we 691 

defined a higher-order factor with this ASCVD factor plus MDD as indicators. The standardized loading 692 

of the first indicator (coronary artery disease) was set to 1. The residual variance of the ASCVD factor 693 

was forced to be 0, so that all variance was forced into the MDD-ASCVD factor. For comparison, we 694 

also estimated a common factor model for ASCVD without MDD, which is visualized in Extended Data 695 

Fig. 3a.  696 

 697 

Subsequently, we conducted a summary statistics-based GWAS on the MDD-ASCVD second-order 698 

latent factor to identify variants associated with this latent liability. We used the package-default 699 

diagonally weighted least squares estimator (DWLS). To derive genome-wide significant independent 700 

loci we used the plink clumping procedure as implemented in FUMA67, with R=0.6 and distance=250 701 

kb, and reference data from 1000 genomes. To assess the heterogeneity of the SNP effects, we also fit 702 

an independent pathway model for each SNP, where each indicator was regressed on the SNP directly 703 

instead of forcing the effect through the latent factor. We compare the common pathway 𝜒SNP
2,com

 to the 704 
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independent pathway 𝜒SNP
2,ind

 to derive QSNP. For our follow-up analyses, we filtered out all SNPs that 705 

had effects that were more consistent with an independent pathway model at 𝑃QSNP<0.05. This stringent 706 

procedure filters out SNPs with heterogenous effects on MDD and the ASCVD factor. This way, 707 

variants are excluded that should be considered risk variants for MDD or CVDs separately rather than 708 

risk variants for MDD-ASCVD. 709 

 710 

Using FUMA, we checked if genome-wide significant SNPs for the MDD-ASCVD factor were 711 

enriched in genome-wide significant SNPs for traits in the GWAS-catalog. Then, to define unique loci, 712 

we overlaid the independent genomic risk loci (now clumped at R2=0.1 and 3000 kb window) for MDD-713 

ASCVD with the risk loci for the constituent traits (MDD, peripheral artery disease, coronary artery 714 

disease, heart failure, and stroke). We used the ‘intersect’ function in bedtools to see if the risk regions 715 

were overlapping. If they were independent (according to the clump criteria) they were regarded as 716 

novel loci. We also identified genes whose regulation is significantly impacted by the top significant 717 

SNPs to interpret the biological implications of our findings. For this, we use eQTL estimates from 718 

FUMA based on PsychENCODE reference data68. Using the same procedures (though without filtering 719 

out heterogeneous SNPs) we conducted a GWAS for the the ASCVD genetic factor.  720 

 721 

To externally validate the latent MDD-ASCVD GWAS results, we computed PRS using LDpred2 722 

(automatic mode with HapMap3 reference data). We compared the MDD-ASCVD PRS with a PRS 723 

based on MDD only, and with a PRS based on latent CVD without MDD. As a target sample we used 724 

the UKB. Summary statistics for ASCVD traits excluding the UKB were unavailable, and we chose to 725 

leave the UKB in for all traits. Sample overlap is likely to lead to overfitting, resulting in an inflation 726 

of explained variance. However, this is less of a concern when comparing PRS among themselves, 727 

rather than assessing absolute predictive value. As target phenotypes, we extracted CVD and MDD 728 

cases according to healthcare registry ICD codes from data field 41270 (see Supplementary Table 12). 729 

We used logistic regression analysis to predict case status from each PRS while controlling for the first 730 

10 principal components for ancestry, sex, and year of birth. Continuous variables were standardized 731 

and centered. We estimated Nagelkerke’s R2 to capture explained variance in the disease traits. 732 

Tissue and cell-type analysis 733 

To gain insight into the biological mechanisms underlying the common liability to MDD and ASCVD, 734 

we performed a tissue and cell-type analysis using partitioned LDSC. Cell-type identification was based 735 

on the top decile of specifically expressed genes (referred to as top decile expression proportion [TDEP] 736 

genes). The methodology has been described extensively in previous studies69–71.  737 

 738 

We identified TDEP genes for brain cell-types from single-nucleus RNA-seq data measured in 739 

dissections of three adult human post-mortem brain samples for the Adult Human Brain Atlas28, part of 740 

the Human Cell Atlas. We used the manually annotated 31 superclusters and 461 clusters provided by 741 

the atlas28. We considered a curated set of 18,090 protein-coding autosomal genes, excluding those in 742 

the HLA region (because the method relies on LDSC), with expression in at least one of the 461 cell-743 

clusters.  744 

 745 

To establish TDEP genes for 16 human tissues, we utilized bulk RNA-seq data from GTEx v872.  In 746 

line with previous research, we removed tissues with <100 donors and non-natural tissues (e.g., cell 747 

lines) as well as testis tissues (expression outlier)69. Prior to analysis in partitioned LDSC, we expanded 748 

the boundaries of TDEP genes by 100kb to include possible enhancers or promoters.  749 

 750 
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We tested the associations between GWAS traits and tissue/cell-types by investigating heritability 751 

enrichment within the TDEP genes for each tissue/cell-type. To ensure that annotation enrichment could 752 

not be better explained by other overlapping annotations, we adjusted for enrichment in 53 previously 753 

defined baseline LDSC annotations (LDSC v1.0.1) of coding, UTR, promoter, intronic, various 754 

enhancers, histone marks and other epigenetic marks, genomic regions71. 755 

Pathways of association between MDD and CVD 756 

Mediation in Genomic SEM 757 

We employed several different techniques to assess whether the association between MDD and CVD 758 

could be explained by shared risk factors. First, we estimated the genome-wide genetic correlations 759 

adjusting for the effects of risk factors using Genomic SEM. To aid interpretation, we added the 760 

covariates in groups, controlling for all trait groups separately (psychosocial/lifestyle, childhood 761 

maltreatment, metabolic, or inflammation traits; see Supplementary Table 1). We only included traits 762 

in the covariate groups that showed significant genome-wide genetic correlation with MDD. Note that 763 

we did not adjust for blood pressure traits, since none of the blood pressure traits showed genome-wide 764 

significant correlation with MDD. Attenuation of genetic correlation after adjustment was taken to 765 

indicate that shared risk factors account for some (or all) of the association between MDD and CVD.  766 

 767 

Next, we modeled the risk factors explicitly as mediators in Genomic SEM. If the direct effect is 768 

attenuated in the mediation model as compared to the covariate model, we view this as tentative support 769 

for the existence of mediation (following procedures suggested by the software developers73). Note 770 

however that this interpretation relies on untestable assumptions. Finally, we also tested the effects of 771 

individual risk factors (both as covariates and mediators) instead of grouping them. 772 

Univariable and multivariable Mendelian randomization  773 

To test if the associations between MDD and CVD and risk factors were causal, we used Mendelian 774 

Randomization (MR). We assessed the effects of MDD on the CVDs and risk factors, the effect of the 775 

CVDs and risk factors on MDD, and the effect of latent MDD-ASCVD on risk factors. MR uses genetic 776 

variants as instrumental variables to assess the presence of causal effects of an ‘exposure’ on an 777 

‘outcome’. Core assumptions include that the instrumental variables are robustly associated with 778 

exposure and are not associated with the outcome (other than through the effect from exposure) or 779 

unmeasured confounders. We used the inverse variance weighted (IVW) estimate in the two-sample 780 

MR R-package74 as our main estimate. As instrument SNPs, we selected independent GWAS hits at 781 

P<5×10-8, R2< 0.001, and distance <5Mb. In the analysis of the effect of genetic instruments of 782 

peripheral artery disease, physical activity, childhood maltreatment, and IL6 on MDD risk, we allowed 783 

instruments with higher P-values to be able to reach a total of 10 instruments (P<1e-5). For the MDD-784 

ASCVD exposure, we used SNPs that showed no significantly heterogenous effects in the Genomic 785 

SEM model (Qpval>.05, see above), in order to limit the possibility of pleiotropic effects of this, by 786 

nature, heterogenous instrument.  787 

 788 

We performed several sensitivity analyses to test and adjust for violation of MR assumptions. All 789 

analyses were Steiger filtered, meaning that all SNPs that explained significantly more variance in the 790 

outcome than the exposure were excluded as instruments75. Weighted median and mode regression were 791 

used to correct for effect size outliers that could represent pleiotropic effects76. MR-Egger regression 792 

was used to assess pleiotropy (pleiotropy leads to a significant intercept) and correct for it (unless I2 793 

indicated NOME violation of the NO Measurement Error [NOME] assumption, in which case we did 794 

not report MR-Egger results 77,78). Second, to assess the strength of our instruments, we used Cochran’s 795 

Q to assess heterogeneity in the SNP effects79 and the F-statistic to control for weak instrument bias80. 796 
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Third, we performed sensitivity analyses to gauge the effect of sample overlap in the GWASs that were 797 

used. Although sample overlap has been suggested to not greatly impact MR results when the source 798 

GWASs have a large sample size and the overlap is limited81, we wanted to ensure sample overlap did 799 

not lead to bias in our findings. We assessed the genetic covariance intercepts for all MDD-trait pairs 800 

from the LDSC analyses and observed that most were more than 1 SD away from 0, indicating that 801 

sample overlap was present (Supplementary Table 2). We repeated the analyses with MDD summary 802 

statistics leaving out the UKB sample, which is the sample responsible for most of the overlap and 803 

compared the results. Also, we repeated the analyses using Latent Heritable Confounder MR (LHC-804 

MR31), which aims to correct for the presence of unmeasured heritable confounders as well as sample 805 

overlap. 806 

 807 

Subsequently, we test the adjusted pathways using multivariable MR (MVMR) analyses. The difference 808 

with the mediation test in Genomic SEM is that we now use instrumental variables that corroborate a 809 

causal interpretation. Because MVMR relies on simple regression analysis, it cannot formally test 810 

mediation; instead, the causal estimate is adjusted for the risk factor. To support a directional 811 

interpretation, we included only risk factors as mediators that were significantly affected by MDD 812 

according to the univariable analysis results. In MVMR, only an IVW estimate can be derived. Steiger 813 

filtering was performed on the exposure-outcome association. These analyses were not replicated in 814 

LHC, which does not accommodate multivariable analyses. For ease of interpretation, we again grouped 815 

the mediators and adjusted for all mediators in a group concurrently. We only included a mediator in a 816 

group if it was significant in the univariate analysis. Additionally, we performed analyses adjusting for 817 

single mediators. We selected instruments for each variable in a model by a clumping step with the 818 

same parameters as in the univariate MR case (P<5×10-8, R2< 0.001). We then combined instruments 819 

for all variables in a model into a single set of instruments and performed another clumping step with 820 

the same parameters. These instruments were then aligned to the same effect allele. We estimated the 821 

effect of genetic liability to MDD on CVD traits adjusting for covariates using multivariate MR with 822 

the MVMR R-package82.  823 

Data availability 824 

Links to download publicly available published GWAS summary statistics data used as inputs in this 825 

study are listed in Supplementary Table 1. Single nucleus RNA sequencing data in the adult human 826 

brain can be found at https://github.com/linnarsson-lab/adult-human-brain. Researchers can request 827 

access to the UK-Biobank data resources at https://www.ukbiobank.ac.uk/enable-your-research/apply-828 

for-access; data for PRS analysis described in this study were accessed under accession number 22224. 829 

Gene expression data from human tissues can be found at https://www.gtexportal.org/home/datasets. 830 

Summary statistics for MDDCVD are available upon request.  831 

Code availability 832 

Code used for processing and analyzing data in this work will be uploaded to 833 

https://github.com/jacobbergstedt. Code for singularity containers can be found at 834 

https://github.com/comorment. 835 
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Extended Data Fig. 1 | Genetic correlation of MDD and MDD symptoms with CVDs. 

(a) Results are based on LD Score Regression analysis. Points and error bars represent genetic correlation and 95% 

CIs. Sample sizes for GWAS summary statistics are reported in Supplementary Table 1. (b) Local genetic correlation 

between MDD and CVDs in 16 loci in the HLA region. Only loci with marginally significant local heritability for 

both traits are shown. Points above the vertical line are significant based on multiple testing adjustment for considered 

loci performed for each CVD trait separately. 

MDD=Major Depressive Disorder; AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery 

Disease 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2023.09.01.23294931doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294931
http://creativecommons.org/licenses/by/4.0/


 

  1063 

       

  

   

   

   

  

   

   

          

   

      

   

   

   

   

  

        

           

          

     

        

  

   

 

     

     

     

               

                                            

 
 
 
 
 
  

  
 
  
 
 
  
 
  
  
 
  
 
 
  

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2023.09.01.23294931doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294931
http://creativecommons.org/licenses/by/4.0/


 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

  1077 

Extended Data Fig. 2 | Genetic correlation and polygenicity for MDD, CVD, and risk factors. 

(a) Heatmap of the genetic correlations between MDD, the CVDs, and the risk factors, with the color indicating the 

effect direction (negative: red, positive: blue) and the size and shade of the square illustrating the size of the 

correlation. Results are based on LD Score Regression analysis. (b) Estimates of number of non-zero variants for 

from SBayesS for each trait (y-axis) and estimates of non-zero variants required to explain 90% of trait heritability 

for each trait from MiXeR (x-axis) for MDD, the CVDs, and the risk factors. Note that for PAD polygenicity 

estimates did not converge for SBayeS, possibly because of few number of cases. 

MDD=Major Depressive Disorder; AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery 

Disease; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical 

activity; Child. Mal.=Childhood Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-

High-Density Lipoprotein; TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 
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  1078 Extended Data Fig. 3 | Common latent factor underlying atherosclerotic CVD. 

(a) Latent atherosclerotic CVD (ASCVD) model, defined by stroke, peripheral artery disease (PAD), heart failure 

(HF), and coronary artery disease (CAD). All ‘observed’ traits are based on GWAS summary statistics. Results are 

from confirmatory factor analysis in Genomic SEM, and standardized factor loadings are given for each path. 

Circular dashed arrows give the trait variance. (b) Manhattan plot of the GWAS on ASCVD, with each dot 

representing a SNP with its position on the x-axis and its P-value on the y-axis. Genome-wide significant SNPs with 

a significant heterogeneity QSNP (with a strong effect on one or some of the indicators that was not well explained 

through the common latent factor) are displayed in grey. The dashed line indicates the genome-wide significance 

threshold (P<5e-8). 
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Extended Data Fig. 4 | The genomic signature of MDD-ASCVD. 

(a) Enrichment for the MDD-ASCVD GWAS SNPs in genome-wide significant SNPs for traits in the GWAS catalog 

computed using FUMA. The traits are as reported in the original study. Note that sleep duration here is a 

dichotomization of self-reported sleep. Full name in GWAS catalog of the trait “Coronary artery disease*” is 

“Coronary artery disease (myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery 

bypass grafting, angina or chromic ischemic heart disease)”. The dashed black line indicates the significance 

threshold after Benjamini-Hochberg adjustment. Adjustment for multiple testing was conducted over all traits in the 

GWAS catalog (>3500 traits). (b) The five SNPs that were significantly associated with MDD-ASCVD, but not with 

any of the constituent traits, with their P-value in the GWAS of the constituent traits. The dashed line indicates the 

genome-wide significance threshold (P<5e-8). (c) Genetic correlation of PHQ-9 MDD symptoms with MDD, and 

MDD-ASCVD, with bars representing 95% confidence intervals. Results are based on LD Score Regression analysis. 

(d) Genetic correlation of MDD, MDD-ASCVD, and ASCVD with five psychiatric disorders, with bars representing 

95% confidence intervals. Results are based on LD Score Regression analysis.  

ADHD = Attention Deficit and Hyperactivity Disorder; PTSD = Posttraumatic Stress Disorder. 
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Extended Data Fig. 5 | Genetic correlation between CVD and risk factors 

Results are based on LD Score Regression analysis. Points and error bars represent correlations and 95% CIs. Sample 

sizes for GWAS summary statistics are reported in Supplementary Table 1. Open dots indicate a non-significant 

genetic correlation.  

AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery Disease; DBP=Diastolic Blood Pressure; 

SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood 

Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; 

TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 
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Extended Data Fig. 6 | Genetic correlation between MDD traits and risk factors 

Results are based on LD Score Regression analysis. Points and error bars represent correlations and 95% CIs. Sample 

sizes for GWAS summary statistics are reported in Supplementary Table 1. Open dots indicate a non-significant 

genetic correlation.  

MDD=Major Depressive Disorder; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational 

attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-

Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; 

CRP=C-Reactive Protein 
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Extended Data Fig 7 | Local genetic correlations between MDD and risk factors. 

Volcano plots based on LAVA results. Local genetic correlation between MDD and each of the risk factors (x-axis) 

and the corresponding -log10 transformed P-value (y-axis). Correlations were estimated in the loci that showed 

marginally significant local heritability in 2,495 considered genomic regions. Loci exceeding the horizontal line are 

significant at 𝑃FDR<.05.  Multiple testing was adjusted for individually for each trait over considered loci. 

Psychosocial=Psychosocial/Lifestyle; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational 

attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-

Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; 

CRP=C-Reactive Protein 
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Extended Data Fig. 8 | Genetic correlation between MDD and CVD when adjusting for individual risk factors  

Results from Genomic SEM. Bars represent 95% confidence intervals. Reference estimates of the association without 

any adjustment are printed in black. 

AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery Disease; DBP=Diastolic Blood Pressure; 

SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood 

Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; 

TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 
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Extended Data Fig. 9 | Assessment of evidence for causal associations between MDD, CVD, and risk factors. 

Results from univariable and multivariable Mendelian randomization (MR) analysis (Inverse variance weighted 

estimates are shown) (a) Effect of liability to MDD (exposure) on CVD and risk factors (outcomes) after excluding 

the UKB sample from MDD (which was responsible for most of the sample overlap in the exposure and outcome 

GWAS summary statistics). (b) Estimated fffect of CVD and risk factors on MDD after excluding the UKB. (c) 

Results from LHC-MR, that corrects for heritable confounders and sample overlap, with the standard inverse variance 

weighted MR estimate given as reference, for the effect of MDD on CVD and risk factors. (d) Effect of liability to 

MDD-ASCVD on outcomes and risk factors. A-c Statistically significant pleiotropic estimates are indicated with a 

red asterisk. The term beta refers to the log odds ratio. 

Psychosocial=Psychosocial/Lifestyle; AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery 

Disease; DBP=Diastolic Blood Pressure; SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical 

activity; Child. Mal.=Childhood Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-

High-Density Lipoprotein; TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 
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Extended Data Fig. 10 | Effects of liability to MDD on CVDs when adjusting for individual risk factors  

Results from multivariable Mendelian randomization. Bars represent 95% confidence intervals. Reference estimates 

of the association without any adjustment are printed in black. 

AF=Atrial Fibrillation; CAD=Coronary Artery Disease; HF=Heart Failure; PAD=Peripheral Artery Disease; DBP=Diastolic Blood Pressure; 

SBP=Systolic Blood Pressure; PP=Pulse Pressure; Edu=Educational attainment; Phys. Act.=Physical activity; Child. Mal.=Childhood 

Maltreatment; T2D=Type II Diabetes; TG=Triglycerides; HDL=High-Density Lipoprotein; NonHDL=Non-High-Density Lipoprotein; 

TC=Total Cholesterol; LDL=Low-Density Lipoprotein; IL6=Interleukin-6; CRP=C-Reactive Protein 
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