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Abstract 22 
 23 
Observational studies suggest that mammographic density (MD) may have a role in the unexplained 24 
protective effect of childhood adiposity on breast cancer risk. Here, we investigated a complex and 25 
interlinked relationship between puberty onset, adiposity, MD, and their effects on breast cancer using 26 
Mendelian randomization (MR). 27 
 28 
We estimated the effects of childhood and adulthood adiposity, and age at menarche on MD 29 
phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)) using MR and 30 
multivariable MR (MVMR), allowing us to disentangle their total and direct effects. Next, we examined 31 
the effect of MD on breast cancer risk, including risk of molecular subtypes, and accounting for genetic 32 
pleiotropy. Finally, we used MVMR to evaluate whether the protective effect of childhood adiposity on 33 
breast cancer was mediated by MD. 34 
 35 
Childhood adiposity had a strong inverse effect on mammographic DA, while adulthood adiposity 36 
increased NDA. Later menarche had an effect of increasing DA and PD, but when accounting for 37 
childhood adiposity, this effect attenuated to the null. DA and PD had a risk-increasing effect on breast 38 
cancer across all subtypes. The MD single-nucleotide polymorphism (SNP) estimates were extremely 39 
heterogeneous, and examination of the SNPs suggested different mechanisms may be linking MD 40 
and breast cancer. Finally, MR mediation analysis estimated that 56% (95% CIs [32% - 79%]) of the 41 
childhood adiposity effect on breast cancer risk was mediated via DA. 42 
 43 
In this work, we sought to disentangle the relationship between factors affecting MD and breast cancer. 44 
We showed that higher childhood adiposity decreases mammographic DA, which subsequently leads 45 
to reduced breast cancer risk. Understanding this mechanism is of great importance for identifying 46 
potential targets of intervention, since advocating weight gain in childhood would not be 47 
recommended. 48 
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Introduction  49 
 50 
Breast cancer is the most common cancer in women worldwide [1]. Incidence rates continue to rise 51 
globally [2], and thus there is an urgent need to identify new and modifiable breast cancer risk factors. 52 
It is also critical to investigate the links between protective traits and breast cancer as those may reveal 53 
new mechanisms for targeted intervention. Observational and Mendelian randomization (MR) studies 54 
have shown that adiposity in childhood may reduce the risk of breast cancer in later life [3]–[7], and 55 
that this effect is direct and independent of adult body size. MR is an approach to causal inference 56 
that uses genetic variants as instrumental variables (IVs) to infer whether a modifiable health exposure 57 
influences a disease outcome [8] [9]. In previous work [10], we used an MR framework to investigate 58 
the biological mechanism underlying the protective effect of childhood adiposity by reviewing several 59 
potential mediators, including hormonal, reproductive, and glycaemic traits. However, none of the 60 
investigated mediators sufficiently explained the protective effect of childhood adiposity on breast 61 
cancer risk. A mediator that has not yet been thoroughly investigated is mammographic density (MD), 62 
an established risk factor for breast cancer [11], [12]. 63 
 64 
MD refers to the radiological appearance of fibroglandular vs adipose tissue in the breast and is 65 
frequently quantified in three phenotypes: dense area (fibroglandular tissue, DA), non-dense area 66 
(adipose tissue, NDA) and percent density (dense area as a proportion of total breast size, PD). DA 67 
and PD are associated with an increased risk of breast cancer, whereas NDA is independently 68 
associated with a decreased risk [13]. A high DA and PD elevate breast cancer risk as tumours are 69 
more likely to arise in fibrous tissue, as well as being more difficult to detect in dense areas on a 70 
mammography exam [14]. MD is highly heritable [15] and the risk of developing cancer is 4-6 fold 71 
higher in women with extremely dense vs fatty breasts [14], but MD appears to be similarly associated 72 
with all breast cancer molecular subtypes [16], [17]. Although the association between MD and breast 73 
cancer is well-established, the molecular and cellular events that lead to the development of MD and 74 
why it is associated with increased cancer risk are not well understood [18].  75 
 76 
Growing evidence points to associations between childhood adiposity, puberty onset, and adult 77 
mammographic density (reviewed in [18]). Puberty is a critical time for breast development, during 78 
which the breast epithelial and stromal compartments undergo extensive growth and tissue 79 
remodelling [19]. Later age at menarche has been shown to positively associate with higher MD [20], 80 
[21], despite being associated with a decreased risk of breast cancer [22] [23].   Adiposity at different 81 
developmental stages also affects MD, as increased body size in adolescence is associated with a 82 
higher abundance of adipose non-dense tissue and lower dense area and percent density in adulthood 83 
[18], [20], [24], [25]. Childhood adiposity also has a well-established effect of decreasing age at 84 
menarche [26], which in turn leads to higher adult adiposity [27]. Taken together, these traits appear 85 
to have a complex and interlinked relationship that impacts breast development and growth, and 86 
ultimately breast cancer risk. Several recent observational studies have suggested that childhood 87 
adiposity may confer long-term protection against breast cancer via its effect on mammographic breast 88 
density [28]–[31]. The effect of MD on breast cancer has also been analysed using different MR 89 
methods [10], [32], [33]. While the overall picture reported from these studies supported 90 
observationally known associations, there were some differences depending on the MR method 91 
employed suggesting sensitivity to the underlying assumptions. 92 
 93 
Here, we explore the mediating role of mammographic density in the protective effect of high childhood 94 
adiposity on breast cancer risk, using data from genome-wide association study (GWAS) studies of 95 
childhood body size, adult body size, age at menarche, mammographic density, and breast cancer 96 
within a Mendelian randomization framework.  97 
 98 

 99 
 100 
 101 
 102 
 103 
 104 

 105 
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Results 106 
 107 
Study overview  108 
 109 
In this study, we aimed to investigate the mediating role of mammographic density in the protective 110 
effect of childhood adiposity on breast cancer risk. Figure 1 presents a flow diagram of the 111 
relationships between the investigated traits. The summary of all analyses conducted is presented in 112 
Table 1. First, we examined the effect of body size (childhood and adulthood) on mammographic 113 
density (dense area, non-dense area, percent density) using univariable MR and multivariable MR 114 
(MVMR) [25]. We then reviewed the role of age at menarche in the childhood body size effect on MD 115 
phenotypes. Next, using data from the Breast Cancer Association Consortium (BCAC) [35][36] 116 
(Supplementary Table S1), we assessed the effect of MD phenotypes on breast cancer risk. We further 117 
investigated pleiotropy among the genetic instruments for the MD phenotypes using a variety of 118 
advanced sensitivity analysis methods [37]–[39], PheWAS [40], and pathway analysis, to dissect their 119 
heterogeneous effect and improve the understanding of the MD effect on breast cancer. Finally, we 120 
performed MVMR of childhood body size and MD phenotypes with breast cancer risk and mediation 121 
analysis to assess the direct and indirect effects of both traits and evaluate the role of MD in the poorly 122 
understood protective effect of childhood body size on breast cancer.  123 
 124 
This study is reported as per the guidelines for strengthening the reporting of Mendelian randomization 125 
studies (STROBE-MR) [41] [42]. 126 
 127 

 128 
 129 

Figure 1. Flow diagram of relationships between traits investigated in this study. Blue arrows indicate a negative 130 
(decreasing / protective) effect and pink arrows show a positive (increasing / causal) effect relationship, as previously 131 
reported in the literature. The numbers signpost the analysis sections, which are mentioned throughout the text and 132 
correspond to the numbers in the analysis summary in Table 1.  133 

 134 
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Table 1. Summary of analyses conducted. The table is split into sections (#) for convenient reference throughout the 149 
text. Mammographic density (MD) is available as three phenotypes: Dense area (DA), non-dense area (NDA), and 150 
percent density (PD); data source: Sieh et al (2020) [32]. Breast cancer outcomes include data from BCAC 2017 and 151 
2020 (overall samples, ER+/ER- samples and five molecular subtypes: Luminal A, Luminal B1, Luminal B2, HER2-152 
enriched, and triple-negative; summarised in Supplementary Table S1; data sources: [35][36]). Childhood/adult size 153 
body and age at menarche data are UK Biobank phenotypes from Richardson et al (2020) [5]. In the table, when several 154 
exposures/outcomes are listed (e.g. MD phenotypes or cancer subtypes), this indicates that MR analysis was done 155 
separately for each, unless they are two exposures in MVMR. MR – Mendelian randomization, MVMR – multivariable 156 
MR, BCAC – Breast Cancer Association Consortium 157 
 158 

# Analysis type Exposure trait(s) represented as 
genetic instruments 

Phenotypic outcome traits(s)  
(when applicable) 

Results 
available in 

1 

MR Childhood body size Mammographic density (DA, NDA, PD) Figure 2a, 
Table S3 MR Adult body size Mammographic density (DA, NDA, PD) 

MVMR Childhood body size,  
Adult body size Mammographic density (DA, NDA, PD) Figure 2b, 

Table S5 

2 
MR Age at menarche Mammographic density (DA, NDA, PD) Figure 2a, 

Table S7 

MVMR Childhood body size,  
age at menarche Mammographic density (DA, NDA, PD) Figure 2c 

Table S9 

3 

MR Dense area (DA) Breast cancer (overall and subtypes) 
Figure 3a, 
Table S11 MR Non-dense area (NDA) Breast cancer (overall and subtypes) 

MR Percent density (PD) Breast cancer (overall and subtypes) 

4 

MVMR Childhood body size,  
Dense area (DA) Breast cancer (overall and subtypes) 

Figure 3b, 
Table S13 MVMR Childhood body size,  

Non-dense area (NDA) Breast cancer (overall and subtypes) 

MVMR Childhood body size,  
Percent density (PD) Breast cancer (overall and subtypes) 

5 

MR-PRESSO Mammographic density (DA, NDA, PD) Breast cancer overall sample  
Figures 4a,  
S4a, S6a 
Table S16 

Radial-MR Mammographic density (DA, NDA, PD) Breast cancer overall sample  
Figures 4b,  
S4b, S6b 
Table S17 

MR-Clust Mammographic density (DA, NDA, PD) Breast cancer overall sample  
Figures 4c-d,  
S4c-d, S6c-d 
Table S18 

6 PheWAS Mammographic density (DA, NDA, PD) N/A Figure 5, S5, S7 
Tables S19-S21 

7 Pathway analysis Mammographic density (DA, NDA, PD) N/A Tables S22-27 

8 Mediation analysis Childhood body size,  
Dense area (DA) (as a mediator) Breast cancer overall sample  

Supplementary 
Note 2 

 159 
 160 
 161 

The effect of childhood and adult body size on mammographic density  162 
 163 
We used univariable MR to evaluate the total effect of childhood and adult body sizes on each MD 164 
phenotype (analysis #1 in Table 1 and Figure 1). This analysis was performed using MD GWAS data 165 
unadjusted for adult BMI to avoid double adjustment for BMI in MVMR analyses; the details of this 166 
and subsequent analyses using MD GWAS data adjusted for adult BMI (i.e. the data from the  original 167 
publication of MD GWAS [32]) are available in Supplementary Note 1. We found evidence that larger 168 
body size, both during childhood and as an adult, reduces dense area and percent density, but 169 
increases non-dense area (Figure 2a, Supplementary Table S3). The estimates from these analyses 170 
reflect the standard deviation (SD) change in MD phenotype for each change in childhood and adult 171 
body size category. We also performed multivariable MR including both childhood and adult body 172 
size to estimate the direct effects of body size at each age on MD conditional on the other age (Figure 173 
2b, Supplementary Table S5). In this analysis, a direct effect was demonstrated for both traits, 174 
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however, larger childhood body size had a stronger effect on decreasing dense area, while larger 175 
adult body size had a stronger effect on increasing non-dense area (adipose tissue area of the 176 
breast). The direct effect on percent density was greater from adult body size, but its magnitude was 177 
considerably reduced in MVMR for both measures.  178 
 179 

 180 

 181 
 182 

Figure 2. Univariable MR (total effect) and multivariable MR (direct effect) results of childhood body size, 183 
adult body size, and age at menarche effect on MD phenotypes (dense area, non-dense area, percent density) 184 
(unadjusted for BMI at GWAS level). (a) Total effect of each exposure on MD outcomes. (b) Direct effects of 185 
childhood and adult body sizes on MD outcomes. (c) Direct effects of childhood body size and age at menarche on 186 
MD outcomes. The effect is measured as the standard deviation (SD) change in MD phenotype per body size category 187 
or age at menarche SD change. Bars indicate 95% confidence intervals around the point estimates from MR/MVMR 188 
IVW analyses. The empty circle data points highlight the results where confidence intervals overlap the null.  189 

 190 
 191 

The effect of childhood body size and age at menarche on mammographic density  192 
 193 
In this MR analysis, we sought to analyse childhood body size and age at menarche together to 194 
evaluate their total and direct effects on MD phenotypes (analysis #2 in Table 1 and Figure 1). In 195 
univariable MR (Figure 2a, Supplementary Table S7), childhood body size and age at menarche had 196 
strong opposing effects on MD (DA and PD), which is in agreement with published studies [20] [21], 197 
[25]. In MVMR (Figure 2c, Supplementary Table S9) the direct effect of body size conditional on age 198 
at menarche is similar to the total effect, while the effect of age at menarche is attenuated to overlap 199 
the null. Adiposity in childhood reduces MD and lowers the age at menarche (as shown in [10]), while 200 
younger age at menarche has a negative effect on MD (i.e. the inverse of higher age at menarche 201 
increasing MD in Figure 2a). The attenuation of age at menarche effect can be explained in the 202 
following way: (1) the direct effect of childhood adiposity is maintained in MVMR when accounting 203 
for age at menarche, suggesting that adiposity affects MD independently of starting puberty earlier, 204 
(2) the menarche effect in univariable results is not present in MVMR results suggesting that it is 205 
largely due to unaccounted increased childhood adiposity (and its effect on the initiation of puberty). 206 
Collectively, our results show that the density-decreasing effect of larger childhood body size is not 207 
acting via lowering the age at menarche, and that childhood body size and age at menarche may 208 
have entirely different mechanisms linking them to breast cancer. 209 

 210 
 211 
The effect of mammographic density on breast cancer 212 
 213 
Next, we evaluated the effect of BMI-unadjusted MD phenotypes on breast cancer (analysis #3 in 214 
Table 1 and Figure 1) using IVW MR estimation. The total effect of MD phenotypes on breast cancer 215 
subtypes is presented in Figure 3a (Supplementary Table S11). Overall, we found a consistent trend 216 
in the direction of effect across all breast cancer subtypes for each MD exposure trait: dense area 217 
and percent density increased the risk, while non-dense area decreased the risk, which is in line with 218 
the observational data. Despite being consistent, many estimates were imprecise, however, there 219 
was stronger evidence for a positive effect of dense area on overall breast cancer, ER+ breast 220 
cancer, and several subtypes. The individual SNP-specific effects within all MD phenotypes’ total 221 
estimates were heterogeneous (detailed below under Sensitivity analysis), and therefore, in the 222 

a b c 
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Dissecting the mammographic density effect using robust MR methods section we explore 223 
those effects using various sensitivity and outlier detection methods. The direct effects from the 224 
MVMR analysis in Figure 3b are discussed in a later section.  225 
 226 

 227 
 228 
Figure 3. (a) The total (univariable MR) and (b) direct (accounted for childhood body size, MVMR) effect of 229 
MD phenotypes (unadjusted for BMI) on breast cancer (overall sample from BCAC 2017 and subtype 230 
samples). The plots show the odds of breast cancer per SD increment in MD phenotype. Bars indicate 95% 231 
confidence intervals around the point estimates from IVW and IVW-MVMR analyses. The empty circle data points 232 
highlight the results where confidence intervals overlap the null. 233 
 234 

 235 
 236 
Sensitivity analysis 237 
 238 
To investigate potential violations of the MR assumptions and validate the robustness of the two-239 
sample IVW MR results, we performed additional MR analyses using MR-Egger [43] and weighted 240 
median [44] approaches, both of which provide sensitivity analyses that are more robust to particular 241 
forms of horizontal pleiotropy. The Egger intercept was used to explore the potential for the presence 242 
of directional horizontal pleiotropy, and Cochran’s Q statistic [45] was calculated to quantify the 243 
extent of heterogeneity among SNPs, which is indicative of potential pleiotropy. For MVMR we tested 244 
instrument strength, using a conditional F-statistic [46] and examined heterogeneity using an 245 
adapted version of the Q-statistic (QA).  246 
 247 
The estimated total effects of childhood and adult body size measures on MD phenotypes were 248 
consistent across MR sensitivity analyses with Egger intercept 0.01 or lower.  The F-statistics were 249 
> 10 and Q-statistics did not indicate excessive heterogeneity (Supplementary Table S4). In MVMR, 250 
the conditional F-statistics were also above 10, indicating that weak instrument bias is unlikely to be 251 
present [46]. The presence of directional pleiotropy was assessed by estimating QA statistics, which 252 
also were not notably large (Supplementary Table S6). 253 
 254 
The direction of effect was consistent among the MR methods when assessing age at menarche 255 
effect on MD phenotypes, but there was less robust evidence of effect in the weighted median result. 256 
The F-statistic for age at menarche was above 10; the Egger intercept was substantially close to 257 
zero (~0.002), indicating little evidence of directional pleiotropy [47]. The Cochran’s Q value was 258 
large with p-values <2e-10, indicating high heterogeneity (Supplementary Table S8). In MVMR of 259 
age at menarche and childhood body size, the F-statistics were above 10, and QA was similar to the 260 
Q value in the univariable analysis (Supplementary Table S10). 261 
 262 

a b 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.09.01.23294765doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.01.23294765
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

7 

In the main IVW analysis of MD phenotypes effect on breast cancer outcomes, the evidence was 263 
present only in selected exposure-outcome pairs, as described in the previous section. Applying 264 
sensitivity methods to those results showed some inconsistency, with MR-Egger producing imprecise 265 
results. The weighted median approach, which relies on at least 50% of the variants’ total weight 266 
being from valid instruments [44], provided evidence for an effect in substantially more analyses than 267 
IVW, which relies on 100% of variants being valid instruments, indicating that some variants may be 268 
outliers (Supplementary Table S11). The Egger intercept in the analyses of non-dense area and 269 
percent density with subtype outcomes suggested likely presence of horizontal pleiotropy. The 270 
intercept in analyses of dense area, where evidence of effect was present in IVW, was smaller, 271 
indicating that dense area phenotype is less subject to pleiotropy. The MD phenotypes’ instrument 272 
strength was good (F-statistics > 10) suggesting that weak instruments are unlikely to be a source 273 
of serious bias in the univariable analysis. Steiger filtering did not indicate that MD phenotypes’ 274 
instruments explained more variance (R2) in breast cancer rather than in MD phenotypes, and 275 
therefore, were not excluded from the analysis. Interestingly, we identified substantial heterogeneity 276 
for all MD phenotypes, suggested by very high Q-values with small p-values. High heterogeneity 277 
may be indicative of one or more variant outliers in the analysis, which was explored with additional 278 
sensitivity in the next section. The sensitivity analysis details are available in Supplementary Table 279 
S12.  280 
 281 
Dissecting the mammographic density effect using robust MR methods 282 
 283 
To explore the high heterogeneity in the genetic instruments for the MD phenotypes, we applied 284 
several methods that aim to dissect heterogeneity and assess potential horizontal pleiotropy through 285 
outlier detection (analysis #5 in Table 1). In this investigation, we focused only on the overall breast 286 
cancer sample outcome. 287 

 288 
We used MR-PRESSO [37] and Radial-MR [39] (see Methods) to identify the variant outliers 289 
(Supplementary Tables S16-17). For dense area, both methods determined the same set of SNPs 290 
as outliers (Figures 4a and 4b). The outlier-corrected total IVW estimates are presented below the 291 
single SNP forest plots (outlier SNPs are highlighted), alongside the results of other MR methods. 292 
With outliers removed, the point estimate (OR 1.40 [1.26: 1.56]) is similar to the original IVW result 293 
(OR 1.38 [1.002: 1.90]), but the confidence intervals are more precise. Consequently, the outlier-294 
corrected IVW estimates of dense area had stronger evidence of effect on breast cancer, and were 295 
similar to weighted median method results (OR 1.25 [1.12: 1.39]). 296 
 297 
Next, we used MR-Clust [38] to investigate the presence of clustered heterogeneity among the 298 
genetic variants. MR-Clust groups genetic variants into clusters with similar estimates for the causal 299 
effect of the exposure on the outcome (i.e. based on their direction, magnitude, and precision). A 300 
cluster may represent a distinct pathway through which exposure is related to the outcome, and 301 
investigating heterogeneous estimates in this way may reveal additional information about the 302 
exposure-outcome relationship (see Methods for further details). MR-Clust detected three distinct 303 
clusters (‘cluster_1’, ‘cluster_2’, ‘cluster_3’), a ‘null’ cluster, and two ‘junk’ SNPs that were not 304 
assigned to any of the clusters (Figure 4c, Supplementary Table S18). We see that the heterogeneity 305 
outliers flagged by MR-PRESSO and Radial-MR (Figures 4a and 4b) represent separate clusters in 306 
MR-Clust (Figure 4d). ‘Cluster_2’ (blue) is equivalent to the outlier-corrected estimate from those 307 
earlier analyses and the variants in this cluster are positively associated with an increase in both 308 
dense area and breast cancer risk. ‘Cluster_3’ (orange) and a positive ‘junk’ SNP are associated 309 
with breast cancer to a higher magnitude (Figure 4c) and therefore form a separate cluster. 310 
Interestingly, the SNPs in ‘cluster_1’ are protective of breast cancer despite being associated with 311 
increased density. It is important to note that both the inverse association (‘cluster_1’) and the same 312 
direction but higher magnitude association (‘cluster_3’) clusters add to the overall heterogeneity of 313 
the total estimate. 314 
 315 
The results for non-dense area and percent density phenotypes are presented in Supplementary 316 
Figures S4 and S6. We similarly found outliers and clusters in those traits’ instruments. However, 317 
due to the lower number of instruments available for these traits, the results from MR-PRESSO and 318 
Radial-MR should not be overinterpreted. The outlier-corrected IVW estimates (non-dense area – 319 
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OR 0.75 [0.65: 0.86] and percent density – OR 1.29 [1.16: 1.44]) were similar to the weighted median 320 
method results (OR 0.74 [0.63: 0.87] and OR 1.32 [1.14: 1.53], respectively) (Supplementary Tables 321 
S16 and S17). In MR-Clust, for non-dense area and percent density, there were also variants that 322 
associated with breast cancer in the opposite direction to the overall and expected effect from the 323 
exposure (e.g. negatively associated with breast cancer risk but positively associated with a factor 324 
causal for breast cancer, or vice versa) – two ‘negative effect’ outliers for percent density and one 325 
‘positive effect’ outlier for non-dense area). 326 
 327 
 328 

 329 
Figure 4. Exploring the heterogeneity of genetic instruments of dense area phenotype on overall breast 330 
cancer (BCAC 2017). (a) Single SNP forest plot (Wald Ratio estimates), with SNPs identified as outliers by MR-331 
PRESSO marked in blue. The outlier corrected estimate is presented along with the standard MR methods estimates. 332 
(b) Single SNP forest plot with SNPs identified as outliers by Radial-MR marked in yellow. The outlier corrected 333 
estimate is presented along with the standard MR methods estimates. (c) MR-Clust scatter plot showing genetic 334 
association with dense area and breast cancer per SD change in dense area. Each genetic variant is represented by 335 
a point. Error bars are 95% confidence intervals of the Wald Ratio for each variant. Colours represent the clusters, 336 
and dotted lines represent the cluster means, the point size denotes cluster inclusion probability. The “null” cluster, 337 
coloured pink, relates to variants with null effect, whilst the black “junk” cluster are variants that were not assigned to 338 
any cluster. The error bars denote the standard error estimates of the Wald Ratio for each instrumental variable. (d) 339 
Single SNP forest plot with SNPs coloured by the cluster membership assigned by MR-Clust (using the same colours 340 
as in the scatter plot). The IVW MR estimates for each cluster are presented below single SNP estimates. IVW – 341 
inverse-variance weighted; MRE – multiplicative random effects 342 
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PheWAS 343 
 344 
We carried out a phenome-wide association study (PheWAS) analysis [40] on the genetic 345 
instruments for the MD phenotypes to examine their associations with other traits (analysis #6 in 346 
Table 1). We aimed to review the differences between associations by clusters identified with MR-347 
Clust and evaluate whether outlier SNPs may be strongly associated with other phenotypes, which 348 
may explain the horizontal pleiotropic effect and hint at alternative causal pathways for those outliers. 349 
 350 
The PheWAS results for the dense area phenotype are plotted in Figure 5. The SNPs that were 351 
identified as outliers in previous analyses and that formed distinct clusters from the main effect 352 
clusters, have a higher number of associations with other traits, highlighting their pleiotropic effect. 353 
In the plot, we use the diamond shape to indicate dense area SNPs that associate strongly (p-value 354 
< 5e-08) with breast cancer. Those SNPs correspond to ‘cluster_3’, ‘cluster_1’, and ‘junk’ cluster 355 
SNPs in the MR-Clust results, here similarly flagging their association with breast cancer risk, which 356 
may be happening via a different pathway other than through dense area. 357 
 358 
PheWAS plots for non-dense area and percent density are available in Supplementary Figures S5 359 
and S7. For those phenotypes, similarly, we found associations with breast cancer for the outlier 360 
SNPs. All found associations are available in Supplementary Tables S19-21. 361 
 362 

 363 
Figure 5. PheWAS results for dense area phenotype genetic variants, ordered by SNP effect and cluster 364 
membership (from MR-Clust). The data points are other traits associated with dense area SNPs (y-axis) at p-value 365 
<5e-08 (x-axis, -log10 scale, capped at value 50). The colour shows the cluster membership, in the same palette 366 
and order as in Figures 4c/4d. Data points represented by solid ‘diamond’ shapes are breast cancer outcomes; 367 
‘plus’ shapes are all other traits. 368 

 369 
 370 
Gene and pathway overview 371 
 372 
To gain some biological context for the identified outlier SNPs and distinct clusters, we mapped 373 
instrument SNPs to genes (Supplementary Tables S22-24; see gene-labelled forest plots in 374 
Supplementary Figure 8) and identified pathways that those genes are involved in (analysis #7 in 375 
Table 1). Performing a formal gene-set enrichment analysis was not possible here due to the limited 376 
number of SNPs available for each phenotype/cluster. Therefore, instead, we created a simple 377 
overview of pathway sets that came up for genes in positive and negative effect clusters 378 
(Supplementary Table S25-27, Supplementary Figure 9).  379 
 380 
For dense area, we found a number of unique pathways that only appeared in genes/SNPs with a 381 
negative effect. Among those genes, most were described in the functional analyses of previously 382 
published MD GWAS [48], [49], [32], such as MKL1/MRTFA (rs73169097 – negative ‘null’ cluster 383 
SNP) and MTMR11 (rs11205303), both of which have dense phenotype-increasing effect but are 384 
protective against breast cancer. The potential tumour-inhibiting and tumour-promoting role of MKL1 385 
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was previously acknowledged in [48]. MTMR11 is negatively associated with both dense area and 386 
percent density (but as a result of LD clumping it is an instrument only for dense area). It appears to 387 
be involved in phosphoinositides/phosphatidylinositol metabolism pathways, which are also 388 
implicated in cancer. For percent density, the genes in negative clusters were also previously 389 
described in published functional analyses - OTUD7B (rs12048493) and ZNF703 (rs4286946) [49], 390 
[50]. Interestingly, the positive outlier in non-dense area instruments is also mapped to ZNF703 391 
(rs75772194), which is also associated with breast size. The complete overview of 392 
cluster/genes/pathways is available in Supplementary Tables S25-27. 393 
 394 
 395 
The direct effect of mammographic density and childhood body size on breast cancer 396 
risk 397 
 398 
In the earlier sections, we reviewed the total effect of MD phenotypes on breast cancer risk (Figure 399 
3a) and explored it using various sensitivity analyses. In this section, we dissect the direct effects of 400 
childhood body size and MD phenotypes on breast cancer risk using MVMR (analysis #4 in Table 1 401 
and Figure 1). In Figure 3b (Supplementary Table S13), we see the direct effect of MD on breast 402 
cancer accounting for childhood body size, presented alongside the total effect for comparison. 403 
There is evidence of a positive direct effect from the dense area on all breast cancer subtypes. The 404 
point estimates are similar to those of the total effect, but with more precise confidence intervals. 405 
There is evidence of a negative effect from non-dense area on Luminal B1 and triple-negative 406 
subtypes, while the effects on other samples have been further attenuated towards the null. For 407 
percent density, the magnitude of effect and the uncertainty around the point estimate is reduced in 408 
MVMR analysis, with little evidence for an effect of PD on all breast cancer subtypes when 409 
accounting for childhood body size. It should be noted that IVW MVMR estimates may also be 410 
potentially biased by pleiotropy in the same way as total effect estimates in univariable MR.  411 
 412 
From the same MVMR analysis as the results in Figure 3b, we have also estimated the direct effect 413 
of childhood body size on breast cancer accounted for MD phenotypes. Figure 6 presents the total 414 
effect of childhood body size on breast cancer (overall and subtypes) (Supplementary Table S15) 415 
along with the direct effect accounted for each MD phenotype (Supplementary Table S13). The total 416 
effect is strongly protective against all outcomes. In previous work, this protective effect was not 417 
disrupted by accounting for any hypothesised mediators [10]. In this analysis, we see that accounting 418 
for MD phenotypes attenuates the protective effect making the confidence intervals overlap the null, 419 
suggesting that MD may have a role in partially explaining it. When accounting for the dense area, 420 
the effect attenuation is seen for all outcomes except the ER- sample. For percent density, the effect 421 
on breast subtypes is attenuated but to a lesser extent, which may suggest that dense area 422 
phenotype has a stronger mediating role than percent density. For non-dense area, the effect is 423 
attenuated also on a subset of breast cancer subtypes. Interestingly, the effect on ER- subtype is 424 
the least affected, suggesting there might be some difference in how MD affects ER- breast cancer 425 
risk.  426 
 427 
It is important to note that the number of MD instruments in this MVMR analysis was limited 428 
(Supplementary Table S2). These MVMR results are also affected by weak instrument bias, as F-429 
statistics are low in these analyses: childhood body size and dense area (F-stat, 17 and 7, 430 
respectively) non-dense area (6 and 3), percent density (7 and 4), respectively (Supplementary Table 431 
S14).  432 
 433 
 434 
 435 
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 436 
Figure 6. The total and direct effects of childhood body size (accounted for MD phenotypes – dense area, 437 
non-dense area, percent density (unadjusted for BMI at GWAS level)) on breast cancer (overall sample from 438 
BCAC 2017 and subtype samples). The plots show the odds of breast cancer per body size category change. Bars 439 
indicate 95% confidence intervals around the point estimates from IVW and IVW-MVMR analyses. The empty circle 440 
data points highlight the results where confidence intervals overlap the null. 441 
 442 
 443 
Mediation analysis 444 
 445 
We performed mediation analysis using MR and MVMR results to assess the role of mammographic 446 
density (specifically, dense area) in the relationship between childhood body size and breast cancer. 447 
This investigation was also done focussing only on the overall breast cancer sample (analysis #8 in 448 
Table 1).  449 
 450 
We estimated the indirect effect via MD, using both Product and Difference methods for mediation 451 
analysis (see Methods). Both methods produced similar indirect point estimates in the same 452 
direction, -0.23 [95% CIs; -0.33: -0.13] and -0.22 [-0.48: 0:05], respectively. The proportion of the 453 
mediated effect via dense area using the Product method estimate was 0.56, indicating that dense 454 
area may account for 56% [32%-79%] of the childhood body size protective effect on breast cancer 455 
(see Supplementary Note 2 for mediation analysis calculations).  456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 

 468 
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Discussion 469 
 470 
The protective effect of higher childhood adiposity on breast cancer risk has been reported in both 471 
observational and MR studies [3]–[7]. However, the mechanism behind this effect has been 472 
challenging to decipher, even after reviewing nearly 20 potential mediators [10]. A few observational 473 
studies have suggested that mammographic density may have a role in this relationship [28]–[31]. 474 
In this study, we explored the mediating role of MD in the protective effect of higher childhood 475 
adiposity on breast cancer risk using Mendelian randomization, examining the complex relationships 476 
between childhood body size, adult body size, age at menarche, mammographic density, and breast 477 
cancer risk. 478 
 479 
Firstly, we investigated the factors that may affect MD – adiposity at different life stages and age at 480 
menarche. We found that higher childhood and higher adulthood adiposity decrease dense area and 481 
percent density, while both increase the non-dense (adipose tissue) area. In multivariable MR 482 
analysis, however, the independent direct effect of childhood adiposity was stronger for decreasing 483 
dense area, while adult adiposity was stronger for increasing non-dense area. The inverse effect of 484 
higher body size on density is likely explained by increasing breast adiposity, reducing the proportion 485 
of fibroglandular components, and increasing adipocyte differentiation of stromal cells, thus reducing 486 
collagen production [51]. As breast tissue undergoes substantial development during puberty, it is 487 
reasonable that childhood rather than adult adiposity is a more important factor for dense area. The 488 
stronger effect of adult adiposity on the non-dense area is likewise logical, as the change in MD with 489 
age is reflected in glandular tissue reduction and an increase in fat [52]. We also showed that 490 
adjustment for BMI in GWAS may lead to an unexpected and misleading result in MR analysis 491 
(Supplementary Note 1), if BMI (i.e. heritable covariate) also has a role in the studied relationship 492 
[53] [54].  493 

 494 
The previously observed association of age at menarche with breast density [20] was replicated in 495 
our MR analysis, with later menarche increasing dense area and percent density and decreasing 496 
non-dense area. In MVMR with childhood body size, however, the effect of age at menarche on MD 497 
phenotypes was attenuated. Greater adiposity in childhood reduces dense area and percent density 498 
and lowers the age at menarche [10], while earlier menarche decreases dense area and percent 499 
density. Therefore, the attenuation of its effect in MVMR indicates that the menarche effect observed 500 
in the univariable analysis may be due in part to increased adiposity (and its effect on the initiation 501 
of puberty). Collectively, our results suggest that the density-decreasing effect of childhood body size 502 
is not acting predominantly via lowering the age at menarche.  503 
 504 
This finding draws attention to prior MR studies showing little evidence of effect of age at menarche 505 
on breast cancer risk [10], [55]. Interestingly, in MVMR analyses when accounting for BMI, there is 506 
a shift from the neutral effect to a causal effect with earlier age at menarche increasing the risk. It 507 
is likely that the total effect of age at menarche is driven (and disguised) by childhood BMI SNPs 508 
in the age at menarche GWAS instruments, and accounting for BMI in MVMR separates the 509 
independent effects of childhood BMI and age at menarche on breast cancer risk. Taken together 510 
with our finding that MD is not affected by age at menarche when accounting for body size, this 511 
suggests that the mechanisms linking childhood adiposity and age at menarche to breast cancer 512 
could be entirely different and operate in opposite directions. Uncovering the mechanistic links in 513 
both relationships (as partly done in this work with respect to childhood body size) will identify 514 
different pathways that could be modifiable, and together could contribute a very substantial 515 
component of modifiable breast cancer risk. Another important consideration relating to 516 
mechanistic links is the distinction between mutagenesis and promoters in breast cancer causation 517 
[56], which may also contribute to the differential effects of childhood adiposity and age at 518 
menarche on breast cancer risk.  519 

 520 
The central relationship explored in our study is that of MD and breast cancer, and whether MD helps 521 
explain the inverse association of childhood adiposity and breast cancer risk. When examining the 522 
total effect of MD phenotypes on breast cancer risk (overall and subtypes), we observed consistent 523 
trends in the direction of effects, with dense area and percent density increasing the risk and non-524 
dense area decreasing the risk, in line with observational results [12][13]. We found evidence of a 525 
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positive effect from the dense area on breast cancer risk overall and for certain subtypes, but for 526 
other MD exposure/breast cancer outcome pairs the evidence was insufficient. The results produced 527 
by the IVW method may potentially be biased by pleiotropy, therefore the detected high levels of 528 
heterogeneity were further explored in our analysis and will be discussed below. It is also worth 529 
mentioning that our results may slightly differ from the previously published MR results using related 530 
data [10], [32], [33], which could be explained by the differences in the MR methods employed, the 531 
approach to instrument selection, and the fact that the MD GWAS was unadjusted for BMI in this 532 
study.  533 

 534 
While the total effect of MD on breast cancer was imprecisely estimated, IVW-MVMR of MD 535 
phenotypes with childhood body size showed strong evidence of a risk-increasing direct effect from 536 
the dense area on all breast cancer subtypes, with less evidence for a negative effect of non-dense 537 
area and a lack of evidence for an effect of percent density. This highlighted the possibility that dense 538 
area is the more important risk factor for breast cancer, however in observational studies [12], 539 
percent density has been found to have a stronger association because it combines the effects of 540 
both dense area and non-dense area which have distinct genetic aetiologies [32]. The direct effect 541 
of childhood body size on breast cancer was attenuated in this MVMR analysis, suggesting a 542 
potential mediating role of mammographic density in the relationship between them. This is the first 543 
time we have observed an attenuation of the effect of childhood body size; in our previous work, 544 
where many potential mediations were assessed, the body size effect remained unaffected [10]. 545 
Interestingly, this attenuation of effect was not present in analyses of ER-negative breast cancer, 546 
suggesting that there might be some differences in how MD affects this disease subtype. We 547 
considered including adult body size and age at menarche as covariates in MVMR, however, we 548 
opted not to pursue this analysis due to concerns about the statistical power.   549 

 550 
In addition to the effect changes observed in MVMR, we conducted a formal mediation analysis with 551 
the dense area phenotype. Both mediation methods we applied produced very similar indirect effect 552 
estimates (-0.23 and -0.22, Product and Difference methods, respectively). Such agreement of 553 
estimates was not the case for other mediators we reviewed in our previous work [10]. The 554 
confidence intervals around these estimates were more precise for the Product method -0.23 [-0.33: 555 
-0.13]). The calculated proportion mediated via dense area suggested that 56% [32%-79%] of 556 
childhood adiposity’s protective effect could be due to it decreasing the dense area in childhood, 557 
which leads to reduced breast cancer risk in adulthood. 558 

 559 
The above finding is promising, however, the relationship of MD phenotypes with breast cancer is 560 
complex and, as shown in our sensitivity analyses, the genetic variants used in the analysis have 561 
heterogeneous estimates and are potentially highly pleiotropic. We thoroughly evaluated the dense 562 
area, non-dense area, and percent density genetic instruments using several robust MR outlier 563 
detection methods and an MR clustering method, MR-Clust, to decompose heterogeneity in the 564 
results. For dense area and percent density, we found a set of outlier SNPs that together formed 565 
‘negative effect’ clusters, which mapped to genes that were associated with higher dense 566 
area/percent density, but a decreased cancer risk. This has been previously reported for the same 567 
identified genes, e.g. MLK1 in [48] and MTMR11 in [49]. Similarly, for the non-dense area, we found 568 
one SNP with the opposite effect on breast cancer to the overall effect direction. The PheWAS 569 
analysis highlighted the fact that outlier SNPs, which also form separate clusters of MD effect on 570 
breast cancer, were highly pleiotropic, with the majority also associated with breast cancer. Several 571 
methods for outlier correction showed that removing those SNPs results in stronger and more 572 
consistent effects of MD phenotypes on breast cancer risk.  573 
 574 
The discovery of multiple MD variants that are also breast cancer susceptibility loci, highlights their 575 
shared genetic component and the critical role MD plays as an intermediate phenotype for the 576 
disease. The inconsistency in the direction of associations between some MD-associated SNPs and 577 
breast cancer risk is perplexing, and is the reason for the observed heterogeneity in MR estimates. 578 
One potential explanation for discrepancies in these variants may be that multiple alternative 579 
pathways are involved, and are acting across different life stages, which differentially affect breast 580 
development and the risk of breast cancer. There is also a strong possibility that not all contributors 581 
to MD influence breast cancer risk. Understanding, and correctly classifying the driving components 582 
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of MD (reviewed in [57]) into those that influence breast cancer risk, and using those for future studies 583 
could increase results precision and the degree of mediation detected. Motivated by a recent study 584 
that explored a similarly heterogenous effect of IGF-1 on type 2 diabetes using MR-Clust and 585 
pathway analysis [58], in our work, we attempted to characterise pathways that may be underlying 586 
the identified positive and negative effect clusters. In our case, however, due to the limited number 587 
of instruments, pathway gene-set enrichment analysis was not feasible. An extensive pathway 588 
analysis based on the MD GWAS used in our work was reported in the original publication [32].  589 

 590 
The limitations of our study, including the precision of estimates and pathway analysis, can be 591 
attributed to the small sample size of the currently available MD GWAS data and the consequent low 592 
number of robustly associated genetic instruments. Despite using one of the largest MD GWAS 593 
cohorts to date (N=24,192) [32], the number of instruments was still relatively small (albeit higher 594 
than in earlier studies, such as [48], [59]). A summary table of all published MD GWAS studies is 595 
provided in a recent review [60]. A similarly sized MD GWAS conducted on data from the BCAC 596 
cohort (N=24,579-27,900) [61] has recently been released, but due to the unavailability of effect 597 
sizes, it is not possible to validate our findings using this resource. Once larger MD GWAS studies 598 
become available, and more SNPs with robust associations are identified, our results could be 599 
replicated. A higher number of instruments would also enable more informative clustering and 600 
pathway analyses, despite the likely maintained heterogeneity amongst individual estimates. 601 
Furthermore, the estimation of childhood body size indirect effect via MD would also likely be more 602 
precise.  603 

 604 
It is important to highlight a few recent developments in studying the genetics of mammographic 605 
density. Firstly, the first-ever GWAS of breast tissue structure patterns (also referred to as texture 606 
features) has recently been published [62], which is an emerging independent breast cancer risk 607 
factor [63]. Texture variation can differ substantially between women, despite having the same 608 
percent density. Including this trait in the MD phenotype analyses (including MR) can produce 609 
additional insights into the development of breast cancer. Secondly, as exploring proximal molecular 610 
mediators is becoming more widespread, the analysis of MD phenotypes in the BCAC cohort [61] 611 
also included a transcriptome-wide association study (TWAS). The study revealed additional novel 612 
associations between imputed breast tissue expression level and MD phenotypes. Some of the 613 
identified genes were located in proximity to GWAS loci, suggesting the observed genotype–614 
phenotype association for MD may be mediated through gene expression. Further, a recent 615 
transcriptomic study [64] evaluating differentially expressed pathways in breast tissue samples from 616 
obese vs normal weight adolescents, identified inflammation-related genes as among the most highly 617 
activated upstream regulators in the obese breast tissue samples. 618 
 619 
Our study thoroughly explores the links between adiposity, puberty timing, and mammographic 620 
density, and breast cancer. The major finding of this study is that mammographic density, specifically 621 
dense area, potentially accounts for 56% of the protective effect of childhood adiposity on breast 622 
cancer. Understanding this mediating pathway is crucial since simply advocating for weight gain in 623 
childhood is clearly not a desirable goal. This finding is exciting because showing that adult MD is 624 
modifiable during the pubertal growth period means there could be opportunities to intervene during 625 
adolescence to reduce lifetime MD and associated breast cancer risk [18]. Further understanding of 626 
the underlying mechanism and biological pathways is required to explore potential avenues for 627 
intervention. In the study, we also showed that the density-increasing effect of later menarche may 628 
be due to lower adiposity in adolescence, which is associated with later puberty rather than an effect 629 
of age at menarche directly. The mechanisms linking childhood body size and age at menarche to 630 
breast cancer risk could therefore be entirely different and acting in opposing directions. Lastly, we 631 
found that genetic instruments for MD are heterogenous and pleiotropic, and there are likely several 632 
pathways underlying the role of mammographic density in influencing breast cancer risk. As MD 633 
GWAS sample sizes increase, this relationship can be further investigated, enhancing our 634 
understanding of the genetic basis of MD and its role in the aetiology of breast cancer. 635 
 636 
 637 
 638 
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Methods 639 
 640 
Data sources 641 
 642 
The mammographic density GWAS data used in this study is a meta-analysis of two studies (Hologic 643 
study, N=20,311 and GE study, N=3881; in total N=24,192) of non-Hispanic white women aged 644 
between 40-74 years from a larger population-based study, RPGEH (Research Program on Genes, 645 
Environment and Health), administered by Kaiser Permanente Northern California (KPNC) Division 646 
of Research [65], [66]. The cohort details and study design have been described previously in the 647 
original publication of this data [32]. Genotypes were re-imputed with an expanded reference panel, 648 
including the Haplotype Reference Consortium in addition to the 1000 Genomes Project Phase III 649 
data, to improve accuracy for less common variants. The GWAS analyses were adjusted for age at 650 
mammogram, BMI, genotype reagent kit, and the first ten principal components of ancestry as 651 
described previously [32]. Three mammographic density phenotypes were analysed: dense area 652 
(DA), non-dense area (NDA), and percent density (PD). The original MD GWAS published by Sieh 653 
et al in 2020 [32] was adjusted for BMI. For this study, the GWAS was rerun without this adjustment 654 
(“unadjusted GWAS”) on a slightly smaller subset of 24,158 women from the original cohort. 655 
 656 
Childhood body size, adult body size, and age at menarche data used in this study were obtained 657 
from UK Biobank [67]. UK Biobank is a population-based health research resource consisting of 658 
approximately 500,000 people, aged between 40–69 years, who were recruited between the years 659 
2006 and 2010 from across the UK. The study design, participants and quality control (QC) methods 660 
have been described in detail previously [67]. The GWAS of childhood body size and adult body size 661 
used in this study were performed by Richardson et al [5] on UK Biobank data (N= 246,511; female-662 
only data). Childhood body size is a categorical trait describing body size at age 10, with three 663 
categories (‘thinner than average’, ‘about average’, ‘plumper than average’), from a questionnaire 664 
completed by adult participants of UK Biobank. Adult body size measure was converted from 665 
continuous adult BMI in UK biobank into three groups based on the proportions of childhood body 666 
size data to ensure that the GWAS results of both measures are comparable [5].  The genetic scores 667 
for childhood and adult body size were independently validated in three separate cohorts (the HUNT 668 
study (Norway) [68], Young Finns Study [69], and ALSPAC (UK) [5]), which confirmed that the 669 
genetic instruments extracted by Richardson et al [5] can reliably separate childhood and adult body 670 
size as distinct exposures, in addition to being robust to differential measurement error in simulations 671 
performed in the original study. Age at menarche GWAS summary data (N=143,819) was accessed 672 
through OpenGWAS [70] (gwas.mrcieu.ac.uk) under ID ukb-b-3768. 673 
 674 
The breast cancer data used in the study is from the Breast Cancer Association Consortium (BCAC) 675 
cohort of 2017 (N=228,951; overall sample and ER+/ER- samples, assessed from OpenGWAS 676 
under IDs: ieu-a-1126, ieu-a-1127, ieu-a-1128) [35] and the latest release of BCAC in 2020 677 
(N=247,173; overall sample and five molecular subtypes: Luminal A, Luminal B1, Luminal B2, HER2-678 
enriched, and triple-negative breast cancer) [71] (details in Supplementary Table S1). The cohort 679 
design and genotyping protocol details are described elsewhere 680 
(bcac.ccge.medschl.cam.ac.uk/bcac-groups/study-groups/, 681 
bcac.ccge.medschl.cam.ac.uk/bcacdata/). The study groups in the BCAC cohort do not include UK 682 
Biobank or MD GWAS cohorts. The overall sample results presented throughout the paper are for 683 
BCAC 2017 data. The results for BCAC 2020 overall sample are available in all relevant 684 
Supplementary tables, and are not shown here due to their similarity.  685 
 686 
 687 
Mendelian randomization 688 
 689 
Mendelian randomization (MR) is an application of instrumental variable analysis where genetic 690 
variants are used as instruments to estimate the causal relationship between a modifiable health 691 
exposure and a disease outcome [8] [9]. There are three core assumptions that genetic variants 692 
need to satisfy to qualify as valid instruments for the causal inference: (1) variants have to be reliably 693 
associated with exposure of interest, (2) there cannot be any confounders of the instrument and the 694 
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outcome, and (3) variants cannot be independently associated with the outcome, via pathway other 695 
than through the exposure (i.e. horizontal pleiotropy) [72]. 696 
 697 
The analyses in this work were performed using the two-sample (univariable) MR approach, which 698 
relies on using GWAS summary statistics of two non-overlapping samples for exposure and outcome 699 
[73]. Two-sample MR analyses were performed using the inverse-variance weighted (IVW) method 700 
[74]. Alongside IVW, other complementary MR methods were applied to assess the robustness of 701 
the causal estimates and to overcome any potential violations of the MR assumptions (e.g. horizontal 702 
pleiotropy) (see Sensitivity analysis for further details). 703 
 704 
We used the two-step MR framework to assess whether an intermediate trait acts as a causal 705 
mediator between the exposure and the outcome of interest [75], [76]. Multivariable Mendelian 706 
randomization (MVMR) was used to estimate the independent direct effects of two traits together on 707 
the outcome [77] [78]. The genetic variants included in MVMR analysis have to be reliably associated 708 
with one or both exposures but not completely overlap (i.e. no perfect collinearity), and have to satisfy 709 
the MVMR-extended second and third assumptions of the standard MR analysis [46]. Diagnostic 710 
methods and sensitivity tests for the robustness of MVMR estimates [46] [79] are described under 711 
Sensitivity analysis.  712 
 713 
All analyses were conducted using R (v4.2.1). Univariable MR analyses and sensitivity tests were 714 
performed using the TwoSampleMR R package (v0.5.6) [80], which was also used for accessing 715 
GWAS summary data deposited in OpenGWAS [70] (gwas.mrcieu.ac.uk). Multivariable MR was 716 
carried out using the MVMR R package (version 0.2) [77]. 717 
 718 
For all exposure traits, the instruments were extracted by selecting SNPs with p-value under the 719 
5x10-8 threshold and clumping the resulting set of variants with r2 = 0.001 using the default LD 720 
(linkage disequilibrium) reference panel in TwoSampleMR (1000 Genomes Project, European data 721 
only). When extracting instruments from the outcome (breast cancer) GWAS summary statistics, 722 
unavailable SNPs were substituted by proxies with a minimum LD r2 = 0.8. The rest of the settings 723 
were kept to defaults as per the package version number. The number of instruments used in the 724 
analysis for all exposures: childhood body size (115), adult body size (173), age at menarche (190), 725 
dense area (21), non-dense area (8), percent density (11). 726 
 727 
Sensitivity analysis 728 
 729 
In addition to the standard MR analysis (IVW), we used MR-Egger [43] and weighted median [44] 730 
MR methods to evaluate the validity of the analysed genetic instruments and to overcome and 731 
accommodate potential violations of the core MR assumptions. These complementary methods help 732 
to support the causal effects found with IVW, as a single method cannot account for all biological 733 
and statistical properties that may impact MR estimates. Also a variety of specialised tests were 734 
applied, as recommended in [80]. 735 
 736 
To assess overall horizontal pleiotropy (violation of assumption 3), the intercept in the MR-Egger 737 
regression [43] was evaluated, and the heterogeneity among the genetic variants was quantified 738 
using Cochran’s Q-statistic [45]. The intercept term in MR-Egger regression is a useful indication of 739 
whether directional horizontal pleiotropy is driving the results of an MR analysis, under the 740 
assumption that any pleiotropic effects are uncorrelated with the magnitude of the SNP exposure 741 
association. When the Egger intercept is close to zero (e.g. < 0.002) and the P-value is large, this 742 
can be interpreted as no evidence of a substantial directional (horizontal) pleiotropic effect.  743 
 744 
When the Q-statistic for heterogeneity (difference in individual ratio estimates) is high and the 745 
corresponding p-value is small, this suggests evidence for heterogeneity and possibly horizontal 746 
pleiotropy. A high Q-statistic can also be used as an indicator of one or more variant outliers in the 747 
analysis, which may also violate the MR assumptions. In univariable MR, heterogeneity may be 748 
indicative of horizontal pleiotropy that does not act through one of the exposures. In MVMR, 749 
heterogeneity is quantified by QA-statistic (also a further modification of Cochran’s Q), and small QA 750 
indicates a lack of heterogeneity in the per-SNP effects [46].  751 
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 752 
We derived F-statistics in both univariable and MVMR to evaluate the instrument strength [81] [46], 753 
with F > 10 indicating sufficient strength for minimal weak instrument bias in the analysis. We also 754 
evaluated the possibility of reverse causation via Steiger filtering and assessed whether each 755 
instrument explains more variance (R2) in the exposure rather than in the outcome [82].  756 

 757 
 758 
Additional sensitivity and outlier analyses 759 
 760 
To explore the excessive heterogeneity and potential pleiotropy identified in the effect of MD on 761 
breast cancer, we explored the genetic instruments using several outlier detection methods. 762 
 763 
First, we applied MR-PRESSO [37], a method that detects overall pleiotropic bias through outlier 764 
detection by assessing each genetic variant's contribution to the overall heterogeneity. This method 765 
discards influential outliers from the IVW method and uses a distortion test to evaluate the 766 
significance of the distortion between the causal estimate before and after the removal of the outlier 767 
variants, providing an outlier-corrected pleiotropy-robust causal estimate as a result. The analysis 768 
was run using the MR-PRESSO R package (v1.0), using the default parameters.  769 
 770 
We also used the approach implemented in Radial-MR [39] (R package v1.0) to identify outliers with 771 
the most weight in the MR analysis and the largest contribution to Cochran’s Q statistic for 772 
heterogeneity. The analysis was conducted with a p-value threshold (alpha parameter) set to 773 
Bonferroni corrected for the number of SNPs tested in the analysis (p < 0.05/number of instruments 774 
in the exposure) and using modified second-order weights (weight parameter).  775 

 776 
Finally, to investigate the presence of clustered heterogeneity and assess the possibility of there 777 
being several distinct causal mechanisms by which MD may influence breast cancer risk, we 778 
performed clustered Mendelian randomization using MR-Clust [38] (R package v0.1.0). MR-Clust is 779 
a heterogeneity-based clustering algorithm that extends the typical MR assumption that a risk factor 780 
can influence an outcome via a single causal mechanism [83] to a framework that allows one or more 781 
mechanisms to be detected. The heterogeneity and outliers in the main MR result may indicate that 782 
different genetic variants influence the risk factor in distinct ways, e.g., via distinct biological 783 
mechanisms.  784 
 785 
MR-Clust assigns variants to K clusters, where all variants have similar causal ratio estimates, a 786 
“null” cluster (variants with a null effect), and a “junk” cluster (non-null variants that do not fit into any 787 
of the K clusters). In our analysis, the clusters were formed of variants that had a great conditional 788 
probability of assignment (score > 0.9), keeping the results conservative. Due to the limited number 789 
of instruments in MD exposure, we kept all clusters regardless of their size (visualised using the MR-790 
Clust package built-in scatter plot).  791 
 792 
The outliers identified by MR-PRESSO and Radial-MR analyses, as well as clusters of SNPs 793 
detected by MR-Clust, were displayed using single-SNP forest plots to explore individual SNPs 794 
heterogeneity. The single-SNP forest plots show the effect of the exposure on the outcome for each 795 
SNP separately (i.e. Wald ratio). The plots also included the IVW MR estimate with the identified 796 
outliers excluded, and the invididual estimates for identified clusters.  797 
 798 
PheWAS  799 
 800 
To further examine the genetic instruments of the MD phenotypes and better understand the 801 
potential sources of effect heterogeneity, we performed a phenome-wide association study 802 
(PheWAS) analysis [40]. We used PhenoScanner V2 (phenoscanner R package v1.0) [84] [85] and 803 
OpenGWAS database (gwas.mrcieu.ac.uk/phewas/, accessed via ieugwasr R package v0.1.5) [70] 804 
to query publicly available GWAS data for associations with the SNPs from the MD phenotypes. The 805 
query was restricted to European ancestry datasets, retrieving SNP-trait associations of p-value <5e-806 
08.  807 
 808 
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We presented PheWAS results for each MD SNP grouped by clusters determined by the MR-Clust 809 
algorithm. This helped us to review the association differences between clusters of SNPs with the 810 
traits identified in GWAS databases, which might explain some of the observed heterogeneity in the 811 
MR results.  812 
 813 
 814 
Gene and pathway exploration 815 
 816 
To explore the functional relevance of the identified clusters of MD instruments, we mapped 817 
instrument SNPs of each MD phenotype to genes and identified the pathways thay are involved in. 818 
For gene mapping we used the SNP2Gene function of FUMA (the Functional Mapping and 819 
Annotation of GWAS) platform [86], where we used a 500-kb positional map, and included genes 820 
whose expression was associated with the locus in GTEx v8 (breast or adipose tissues). We 821 
extracted pathways using the enrichR R package (v3.1) [87] (including pathway definitions from 822 
Reactome, KEGG, GO terms, and WikiPathway databases). We also used the 823 
ReactomeContentService4R R package (v1.4.0) [88] to obtain more recent Reactome data 824 
(Reactome data in enrichR is only up until 2016). The pathway data was collected for a broader 825 
context only, and no formal gene-set overrepresentation analysis was performed. 826 
 827 

 828 
Mediation analysis 829 
 830 
Mediation analysis is used to quantify the effects of an exposure on an outcome, which act directly 831 
or indirectly via an intermediate variable (i.e., mediator) [89]. Identifying mediators of the relationship 832 
between the exposure and the outcome enables intervention on those mediators to mitigate or 833 
strengthen the effects of the exposure [34]. 834 
 835 
The total effect of exposure on outcome includes both a direct effect and any indirect effects via one 836 
or more mediators. The total effect is captured by a standard univariable MR analysis. To decompose 837 
direct and indirect effects, we used the results from two-step MR and MVMR in two mediation 838 
analysis methods: Difference method and Product method.  839 
 840 
For the Difference method, to estimate the indirect effect, we subtracted the direct effect of exposure 841 
on the outcome from MVMR (in analysis with the mediator) from the total effect of exposure on the 842 
outcome (univariable MR) [55]. In Product method (also known as ‘product of coefficients’), the 843 
results from two steps of two-step MR analysis (i.e., the effect of exposure on the mediator and the 844 
effect of the mediator on the outcome) are multiplied to get the indirect effect [90], [75]. Here, we 845 
used the direct effect of the mediator on the outcome from MVMR as the second term in the 846 
calculation [89]. To estimate the standard error (SE) and later confidence intervals (CIs) of the 847 
indirect effect, we used ‘Propagation of errors’ approach for the Difference method estimate (as 848 
outlined in [55]) and Delta method (also known as Sobel test [91]) for the Product method estimate. 849 
Further details on performing mediation analysis are available in the Supplementary materials of our 850 
previous work [10]). The mediation analysis calculations are presented in Supplementary Note 2.  851 
 852 
Code availability 853 
 854 
All analyses in this study are available at: https://github.com/mvab/mammographic_density_mr  855 
 856 
Data availability 857 
 858 
The GWAS data for BCAC 2017 breast cancer (ieu-a-1126, ieu-a-1127, ieu-a-1128) and age at 859 
menarche (ukb-b-3768) was accessed from OpenGWAS (https://gwas.mrcieu.ac.uk). The BCAC 2020 860 
molecular subtype data is available at  https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ 861 
oncoarray/oncoarray-and-combined-summary-result/. Childhood and adult body size GWAS data was 862 
published in ref [5].  863 
 864 
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This study uses data from a GWAS of mammographic density (ref [32]). The RPGEH genotype data 865 
are available upon application to the KP Research Bank 866 
(https://researchbank.kaiserpermanente.org/).  Additional relevant information is available from the 867 
authors upon reasonable request. 868 
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