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2	
	

Abstract 12	

A key challenge for public health policy makers is determining when an infectious disease 13	

outbreak has finished. Following a period without cases, an estimate of the probability that no 14	

further cases will occur in future (the end-of-outbreak probability) can be used to inform 15	

whether or not to declare an outbreak over. An existing quantitative approach, based on a 16	

branching process transmission model, allows the end-of-outbreak probability to be 17	

approximated from disease incidence time series, the offspring distribution and the serial 18	

interval of the pathogen (the Nishiura method). Here, we show how the end-of-outbreak 19	

probability under the same transmission model can be calculated exactly if data describing 20	

who-infected-whom (the outbreak transmission tree) are available alongside the disease 21	

incidence time series. When such data are available, for example from contact tracing studies, 22	

our novel approach (the traced transmission method) is straightforward to use. We 23	

demonstrate this by applying the traced transmission method to data from previous outbreaks 24	

of Ebola virus disease and Nipah virus infection. For both outbreak datasets considered, we 25	

find that the traced transmission method would have determined that the outbreak was over 26	

more quickly than the Nishiura method. This highlights that consideration of contact tracing 27	

data may allow stringent control interventions to be relaxed quickly at the end of an outbreak, 28	

with only a limited risk of outbreak resurgence. 29	

 30	

Keywords: mathematical modelling; infectious disease epidemiology; outbreaks; end-of-31	

outbreak declaration; interventions; public health measures; resurgence; local extinction  32	
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Introduction 33	

Infectious disease outbreaks require coordinated public health responses that limit the 34	

impacts of disease while avoiding unnecessary interventions. After an outbreak is brought 35	

under control, an important consideration is when the outbreak can be declared over safely. 36	

An end-of-outbreak declaration allows public health measures to be relaxed, but such a 37	

declaration must only be made when there is a low risk of a resurgence in cases [1,2]. World 38	

Health Organization (WHO) guidance for diseases such as Ebola virus disease (EVD) 39	

recommends that the acute phase of an outbreak is declared over when no new cases have 40	

been detected over a period of time that is equal to twice the theoretical maximum incubation 41	

period following the recovery or death of the last reported case (42 days for EVD [3]). 42	

Simple rules for determining when to declare an outbreak over, based on fixed time periods 43	

without new cases, are straightforward to apply. However, the risk of a resurgence in cases in 44	

fact depends on specific features of the particular outbreak under consideration. Previous 45	

analyses have found that this risk depends on factors including the reproduction number, the 46	

extent of case underreporting, and the time between symptom onset and removal of the last 47	

detected case [4,5]. This indicates that there is a need for quantitative approaches that can be 48	

applied to guide decisions about when to declare an outbreak over, accounting for features of 49	

the outbreak under consideration. 50	

There has been recent interest in using mathematical modelling to estimate the probability 51	

that no further cases of disease will occur in future (the end-of-outbreak probability), based 52	

on the observed outbreak data up to the current date [1,2]. If the end-of-outbreak probability 53	

can be estimated in real-time during an outbreak, then this quantity facilitates evidence-based 54	

removal of public health interventions. For example, an outbreak could be declared over as 55	

soon as the estimated end-of-outbreak probability exceeds a pre-specified threshold that is set 56	
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based on the policy maker’s level of risk tolerance [1]. Several methods exist for estimating 57	

the end-of-outbreak probability [1,4–14]. The most commonly used approach [6–9], and 58	

therefore the basis from which we began our research here, was introduced by Nishiura et al. 59	

[6] (the Nishiura method) and is based on a branching process transmission model. The 60	

Nishiura method has the advantage of enabling the end-of-outbreak probability to be 61	

approximated straightforwardly using three inputs (Figure 1): (1) disease incidence time 62	

series (the number of cases recorded on each day of the outbreak up to the current time); (2) 63	

the serial interval distribution (the probability distribution describing the number of days 64	

between the symptom onset dates of an infector-infectee transmission pair); and (3) the 65	

offspring distribution (the probability distribution characterising the number of secondary 66	

cases generated by an infected host).  67	

However, even if these inputs are known exactly, and transmission does indeed occur 68	

according to a branching process, the Nishiura method only provides an approximation of the 69	

end-of-outbreak probability (see Methods). Here, we provide a new approach (the traced 70	

transmission method) for calculating the end-of-outbreak probability exactly under the 71	

branching process transmission model used by Nishiura et al. [6] (Figure 1), which can be 72	

applied in scenarios in which information is available about who-infected-whom. 73	

Specifically, our approach uses the outbreak transmission tree, which can be obtained or 74	

estimated via contact tracing [7,15], in combination with the inputs to the Nishiura method. 75	

We consider two case studies of outbreaks of viral, zoonotic diseases: an EVD outbreak in 76	

Likati Health Zone, Democratic Republic of the Congo (DRC) in 2017 [16] and an outbreak 77	

of Nipah virus infection in Bangladesh in 2004 [17]. For each outbreak, we compare 78	

estimates of the end-of-outbreak probability obtained using the Nishiura method to analogous 79	

estimates using the traced transmission method. We demonstrate that our exact approach, 80	

with contact tracing data incorporated, leads to different estimates than the Nishiura method 81	
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while remaining straightforward to apply. To encourage uptake of the novel traced 82	

transmission method to inform when outbreaks of a range of directly transmitted pathogens 83	

can be declared over, we also implement it in an online software application, available via 84	

https://github.com/nabury/End_of_outbreak_app.  85	
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 86	

Figure 1. Schematic showing the inputs required for the Nishiura method and the traced transmission 87	

method for estimating the end-of-outbreak probability, and the type of output produced. Both methods 88	

require disease incidence time series (input 1), the serial interval distribution (input 2) and the offspring 89	

distribution (input 3). The traced transmission method also requires the outbreak transmission tree (input 4). 90	

Blue arrows therefore indicate the inputs required for both methods, and the orange arrow indicates the 91	

additional input required for the traced transmission method. The output of both methods is an estimate of the 92	

INPUT 1: Case data INPUT 2: Serial interval

INPUT 3: Offspring distribution INPUT 4: Transmission tree

OUTPUT: End-of-outbreak probability

Traced 
transmission 
method only
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end-of-outbreak probability on a particular day (i.e., the probability that no further cases occur in future, based 93	

on the disease incidence time series data observed up to and including that day). 94	

Methods 95	

Notation 96	

Here, we define the notation used throughout this section and the remainder of this article: 97	

• 𝑝(𝑦) is the probability mass function of the offspring distribution (in other words, the 98	

probability that a randomly chosen infected individual infects 𝑦 other people). In each 99	

outbreak case study, we assumed a negative binomial offspring distribution with mean 100	

𝑅 (the reproduction number) and dispersion parameter 𝑘, so that 101	

𝑝(𝑦) =
Γ(𝑘 + 𝑦)
𝑦! Γ(𝑘) 𝑝!

"(1 − 𝑝!)# , for	𝑦 = 0,1,2, … , 105	

where 𝑝! = 𝑅/(𝑅 + 𝑘) and Γ(𝑧) is the Gamma function. The choice of a negative 102	

binomial offspring distribution enables the effect of superspreading to be accounted 103	

for [18]. Specific parameter values used for the two case studies are given below. 104	

• 𝑤(𝑥) is the probability mass function of the (discrete) serial interval distribution (i.e., 106	

the probability that the interval between the symptom onset dates of an infector-107	

infectee transmission pair is 𝑥 days, where we assumed that only non-negative serial 108	

intervals can occur), and 𝐹(𝑥) is the corresponding cumulative distribution function. 109	

For each outbreak case study, a discrete serial interval distribution was obtained by 110	

using the method described by Cori et al. [19] to discretise a published estimate of the 111	

continuous serial interval distribution (the distribution of time periods between the 112	

precise symptom onset times of infector-infectee transmission pairs). For further 113	

details, see web appendix 11 of that article. 114	
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• 𝑡 is the current time, at which we want to estimate the end-of-outbreak probability 115	

(the probability that no cases occur after day 𝑡). 116	

• The cases recorded up to and including the current time, 𝑡, are labelled with integer 117	

IDs 𝑖 = 1,2, … ,𝑚 (ordered by symptom onset date). The corresponding symptom 118	

onset dates are denoted by 𝑡$, 𝑡%, … , 𝑡&. 119	

• 𝑎' is the number of recorded cases who were infected by individual 𝑖 up to (and 120	

including) the current time, 𝑡. 121	

The end-of-outbreak probability 122	

Below, we describe the Nishiura method and the traced transmission method for estimating 123	

the end-of-outbreak probability. Both of these methods are based on a branching process 124	

transmission model in which each infected host generates a number of cases that is sampled 125	

from the offspring distribution. These secondary cases then arise in the disease incidence time 126	

series after time periods (following the infector) that are sampled independently from the 127	

serial interval distribution. However, whereas the existing Nishiura method only 128	

approximates the end-of-outbreak probability under this transmission model (as explained 129	

below), the novel traced transmission method enables the end-of-outbreak probability to be 130	

calculated exactly whenever the outbreak transmission tree is known. 131	

Nishiura method 132	

Using the notation described in the previous subsection, in the Nishiura method [6] each case 133	

to date, 𝑖, is considered in turn. The offspring and serial interval distributions are used to 134	

calculate the probability, 𝑞', that every secondary case generated by individual 𝑖 develops 135	

symptoms no later than the current time, 𝑡, assuming nothing is known about the number (or 136	

symptom onset dates) of secondary cases already generated by individual 𝑖 (up to time 𝑡). 137	
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Specifically, 138	

𝑞' =?𝑝(𝑦)𝐹(𝑡 − 𝑡')"
(

")!

. 142	

The end-of-outbreak probability can then be approximated by 139	

Prob(outbreak	over	on	day	𝑡) ≈M𝑞'

&

')$

=M?𝑝(𝑦)𝐹(𝑡 − 𝑡')"
(

")!

.
&

')$

 143	

If the offspring distribution is a negative binomial distribution, then this formula simplifies to 140	

Prob(outbreak	over	on	day	𝑡) ≈MN
1 − 𝑝!

1 − 𝑝!𝐹(𝑡 − 𝑡')
	O
#&

')$

, 144	

as shown in the Supplementary Material. 141	

However, this is only an approximation of the end-of-outbreak probability under the assumed 145	

branching process transmission model because the remaining case data are not accounted for 146	

when calculating 𝑞' (the probability that previous case 𝑖 generates no future secondary cases). 147	

Even if the transmission tree is not known, the symptom onset dates of other recorded cases 148	

still provide some information about how many secondary cases may have been generated by 149	

each case 𝑖; this information is not used in the Nishiura method. In other words, the risk that a 150	

past case generates future infections is assumed to be independent of the number of infections 151	

that the individual has already generated, but this assumption may not hold in the branching 152	

process transmission model on which the Nishiura method is based. Specifically, under a 153	

negative binomial offspring distribution, the probability of an individual generating future 154	

cases increases with the number of cases generated to date – this reflects, for example, that a 155	

more infectious individual is likely to have generated more secondary cases to date (and is 156	

also more likely to generate future cases) than a less infectious individual who developed 157	

symptoms on the same date [18]. Therefore, the Nishiura method only approximates the end-158	

of-outbreak probability, irrespective of whether or not the transmission tree is known. 159	
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Traced transmission method 160	

If the transmission tree up to the current time, 𝑡, is known (so that, in particular, the number 161	

of secondary cases, 𝑎', generated to date by each existing case, 𝑖, is known), then assuming 162	

that transmissions occur according to a branching process as described above, the end-of-163	

outbreak probability can be calculated exactly and is given by 164	

Prob(outbreak	over	on	day	𝑡) =M
𝑝(𝑎')

∑ Q*!+,, R(1 − 𝐹(𝑡 − 𝑡'))
,𝑝(𝑎' + 𝑙)(

,)!

&

')$

. 167	

This expression is derived in the Supplementary Material. Again, in the case of a negative 165	

binomial offspring distribution, this can be simplified, here giving 166	

Prob(outbreak	over	on	day	𝑡) =MQ1 − 𝑝!(1 − 𝐹(𝑡 − 𝑡'))R
(#+*!)

&

')$

. 168	

 169	

Outbreak case studies 170	

Case study 1: Ebola virus disease, Likati, Democratic Republic of the Congo 171	

The first case study we considered is an EVD outbreak that occurred in the Likati Health 172	

Zone of DRC in 2017 [16]. Eight EVD cases were reported between 27 March and 11 May 173	

2017, and symptom onset dates were recorded; five cases were confirmed and the remaining 174	

three were probable. Four of the infected individuals died [16]. The transmission tree was 175	

constructed using contact tracing and the symptom onset date of each case [16] (Figure 2A). 176	

The Ebola offspring distribution was modelled as a negative binomial distribution with 177	

reproduction number 𝑅 = 2.1 and dispersion parameter 𝑘 = 0.18 [20] (Figure 2B). We 178	

assumed a gamma-distributed continuous serial interval distribution with mean 15.3 days and 179	
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standard deviation 9.3 days [20], and discretised this distribution using the method of [19] as 180	

described above (Figure 2C). 181	

End-of-outbreak probabilities were estimated each day (based on the data up to and including 182	

that day) from the symptom onset date of the first reported case until 100 days after the 183	

symptom onset date of the last reported case (total duration 146 days), using both the 184	

Nishiura method and the traced transmission method. 185	

Case study 2: Nipah virus, Bangladesh 186	

The second case study we considered is an outbreak of Nipah virus infection in the Faridpur 187	

district of Bangladesh between 19 February and 16 April 2004 [17]. Using laboratory testing 188	

and contact tracing, 36 cases were identified of which 23 were laboratory confirmed and 27 189	

died [17]. The number of daily cases (by symptom onset date) peaked at nine on 1 April 2004 190	

[17]. The probable transmission tree is shown in Figure 3A [17]. Two individuals (IDs 𝑖 = 10 191	

and 𝑖 = 30) were not traced to any other cases [17], and were therefore considered as 192	

imported cases in our analyses (i.e., we assumed that they were not infected by any other case 193	

in the dataset). The individual with ID 𝑖 = 6 was a local religious leader and had contact with 194	

22 of the cases in this outbreak [17]. 195	

The offspring distribution for this outbreak was modelled using a negative binomial 196	

distribution with reproduction number 𝑅 = 0.48 and dispersion parameter 𝑘 = 0.06 [21,22] 197	

(Figure 3B). We assumed a gamma distributed continuous serial interval distribution with 198	

mean 12.7 days and standard deviation 3.0 days [23], again discretised using the method of 199	

[19] (Figure 3C). End-of-outbreak probabilities were calculated daily from the date of the 200	

first case until 20 days after the last case (total duration 78 days). 201	
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In both case studies, we assumed that cases were reported on their symptom onset dates, 202	

thereby neglecting reporting delays when we estimated the end-of-outbreak probabilities. The 203	

symptom onset dates of reported cases are referred to as “case dates” in the remainder of this 204	

article. 205	

Results 206	

Real-time estimation of the end-of-outbreak probability 207	

We first used both the Nishiura method and the novel traced transmission method to obtain 208	

end-of-outbreak probability estimates for the 2017 Likati EVD outbreak (Figure 2D). As 209	

would be expected, for both methods, the estimated end-of-outbreak probability increased 210	

over successive days without cases and decreased when new cases occurred.  211	

While the general temporal trends were similar under both approaches, the extent of temporal 212	

variations in end-of-outbreak probability estimates was generally more pronounced for the 213	

traced transmission method. For example, on 17 April 2017 there had only been one reported 214	

case of EVD, with symptom onset date 21 days previously. The end-of-outbreak probability 215	

was estimated to be 0.8 using the Nishiura method, compared to a higher value of 0.96 using 216	

the traced transmission approach. On 2 May 2017, following six further cases, the estimated 217	

end-of-outbreak probability reached its lowest value for both approaches: 0.08 for the 218	

Nishiura method, and a lower value of 0.001 for the traced transmission method. Similarly, 219	

the end-of-outbreak probability increased more rapidly following the final case date for the 220	

traced transmission method than for the Nishiura method, with the probability first exceeding 221	

0.99 on 22 June 2017 and 3 July 2017 using the two methods, respectively. 222	
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 223	

Figure 2. (A) Transmission tree for the 2017 EVD outbreak in the Likati Health Zone of DRC [16]. (B) 224	

Offspring distribution assumed for Ebola (negative binomial with reproduction number, 𝑅 = 2.1 and dispersion 225	

parameter, 𝑘 = 0.18 [20]). (C) Serial interval distribution assumed for Ebola. The continuous serial interval was 226	

assumed to be gamma-distributed with mean 15.3 days and standard deviation 9.3 days [20]. This distribution 227	

was then discretised using the method from [19]. (D) Estimated daily end-of-outbreak probabilities. Reported 228	

cases are represented by the green bars, with the left y-axis showing the daily number of cases. The line plots 229	

represent the estimated probability that the outbreak is over for each day of the outbreak for both the Nishiura 230	

method (blue) and the traced transmission method (orange). These probabilities are displayed on the right y-231	

axis. 232	

We then applied the two methods for estimating the end-of-outbreak probability to the data 233	

from the 2004 outbreak of Nipah virus infection in Bangladesh (Figure 3D). Again, following 234	

a cluster of new cases, the estimated end-of-outbreak probability generally fell lower for the 235	

traced transmission method than for the Nishiura method – for example, on 1 April 2004 236	

(when there were nine new symptomatic cases, the highest daily number during the 237	
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outbreak), the end-of-outbreak probability was 0.0001 for the traced transmission method and 238	

0.07 for the Nishiura method. The end-of-outbreak probability also increased more rapidly 239	

following the final recorded case for the traced transmission method than for the Nishiura 240	

method. 241	

 242	

Figure 3. (A) Transmission tree for the 2004 outbreak of Nipah virus infection in Bangladesh. (B) Offspring 243	

distribution assumed for Nipah virus infection (negative binomial with reproduction number, 𝑅 = 0.48 and 244	

dispersion parameter, 𝑘 = 0.06 [21,22]). (C) Serial interval distribution assumed for Nipah virus infection. The 245	

continuous serial interval was assumed to follow a gamma distribution with mean 12.7 days and standard 246	

deviation 3.0 days [23]. This distribution was then discretised using the method from [19]. (D) Estimated daily 247	

end-of-outbreak probabilities. Reported cases are represented by the green bars, with the left y-axis showing the 248	

daily number of cases. The line plots represent the estimated probability that the outbreak is over for each day of 249	

the outbreak for both the Nishiura method (blue) and the traced transmission method (orange). These 250	

probabilities are displayed on the right y-axis. 251	
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End-of-outbreak declaration thresholds 253	

In principle, an outbreak could be considered over whenever the estimated end-of-outbreak 254	

probability exceeds a pre-determined threshold. This threshold can be set according to the 255	

policy maker’s willingness to accept a risk of future cases occurring (a lower threshold 256	

corresponds to a faster end-of-outbreak declaration, but with a higher risk that future cases 257	

occur). In Figure 4, we present plots showing the dates on which the 2017 Likati EVD 258	

outbreak would have been considered over for a range of end-of-outbreak probability 259	

threshold values. Results are shown for both the traced transmission method and the Nishiura 260	

method. Equivalent results for the 2004 outbreak of Nipah virus infection in Bangladesh are 261	

shown in Figure S1. 262	

For each threshold considered, the two outbreaks would have been declared over earlier 263	

following the final case date using the traced transmission method than using the Nishiura 264	

method. Both methods suggested the EVD outbreak could potentially have been declared 265	

over earlier than the actual end-of-outbreak declaration date of 2 July 2017 [24] (42 days 266	

after the final case recovered, indicated as a green horizontal dash-dotted line in Figure 4) – 267	

the end-of-outbreak probability on 2 July 2017 was 0.998 for the traced transmission method 268	

and 0.989 for the Nishiura method. 269	
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 270	

Figure 4. End-of-outbreak probability thresholds for the 2017 Likati EVD outbreak. The x-axis represents 271	

a range of end-of-outbreak probability thresholds, and the y-axis shows the outbreak dates on which these 272	

thresholds were exceeded by the estimated end-of-outbreak probability, for both the Nishiura method (blue) and 273	

the traced transmission method (orange). The date of the final recorded case (11 May 2017) is indicated as a 274	

black dashed line, and the actual end-of-outbreak declaration date (2 July 2017) [24] as a green dash-dotted line. 275	

We note that, if the traced transmission method was used with an end-of-outbreak probability 276	

threshold of 0.96 or below, then the outbreak would have been considered over early in the 277	

outbreak, in April 2017, after only one case had occurred. A similar phenomenon can be seen 278	

when both the Nishiura method and the traced transmission method are applied to data from 279	

the Nipah virus infection outbreak (Figure S1). The occurrence of further cases when the 280	

transmission models suggested this to be unlikely is discussed below (see Discussion). 281	
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Sensitivity of findings to the offspring distribution 284	

Estimates of the reproduction number, 𝑅 (representing overall transmissibility), and 285	

dispersion parameter, 𝑘 (where lower values of 𝑘 correspond to more overdispersed 286	

transmission; in other words, a greater degree of superspreading [18]), vary between 287	

outbreaks, even of the same infectious disease [18,22]. For example, the offspring 288	

distribution may differ due to different strains of a virus or behavioural characteristics of the 289	

affected population. We therefore investigated the effect of the assumed values of 𝑅 and 𝑘 on 290	

estimates of the end-of-outbreak probability using the Nishiura method and the traced 291	

transmission method, for the EVD and Nipah case studies (Figures S2 and S3). For each 292	

outbreak, we considered values of 𝑅 and 𝑘 both lower and higher than our assumed baseline 293	

values. 294	

For both outbreaks, the assumed value of 𝑘 (i.e., the extent of superspreading) had a 295	

particularly pronounced effect on the difference between the end-of-outbreak probability 296	

estimates under the Nishiura and traced transmission methods. In general, this difference was 297	

greater for lower values of the dispersion parameter, 𝑘 (Figures S2 and S3).  Higher values of 298	

𝑅 appeared to lead to larger differences between the methods than lower values of 𝑅. 299	

Discussion 300	

Quantitative approaches for estimating the probability that an infectious disease outbreak has 301	

ended help policy advisors determine when the outbreak should be declared over [1,2]. 302	

Accurate estimation of the end-of-outbreak probability enables resource-intensive 303	

surveillance and control measures to be relaxed or removed as quickly as possible while 304	

limiting the risk of additional cases occurring. Here, we have developed a new approach (the 305	

traced transmission method) for estimating the end-of-outbreak probability in scenarios in 306	
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which contact tracing enables reconstruction of the outbreak transmission tree (up to the 307	

current date). Our method uses the same branching process transmission model as an existing 308	

approximate approach for estimating the end-of-outbreak probability [6] (the Nishiura 309	

method), but unlike the Nishiura method, the traced transmission method gives the exact end-310	

of-outbreak probability under this transmission model.  311	

While we used the Nishiura method as the basis for our research given its previous use to 312	

calculate end-of-outbreak probabilities during outbreaks of a range of diseases (including 313	

MERS, EVD and COVID-19 [6–9]), we note that other methods for estimating the end-of-314	

outbreak probability exist [4,5,10–14,25]. These methods have accounted for factors such as 315	

unreported cases [4,5,11] and temporal variations in the reproduction number [4,11]. While 316	

these other methods can be complex, sometimes requiring large numbers of simulations of 317	

stochastic epidemiological models to be run [4,5,25], a benefit of the Nishiura method is its 318	

straightforward application. The traced transmission method is similarly easy-to-use, 319	

allowing the end-of-outbreak probability to be estimated using a simple formula. We have 320	

developed an interactive, web-based app to facilitate future use of our approach (available via 321	

https://github.com/nabury/End_of_outbreak_app). 322	

To demonstrate our method, we considered outbreaks of the Ebola and Nipah viruses as case 323	

studies. Both these viruses are zoonotic pathogens that cause sporadic outbreaks in humans, 324	

with high case fatality rates of 25-90% [26] and 40-75%, respectively [27]. Outbreaks are 325	

typically met with stringent control measures aiming to break chains of human-to-human 326	

transmission as rapidly as possible [26–28]. The question of when an outbreak can be 327	

declared over so that costly interventions can be safely relaxed or removed is therefore 328	

particularly pertinent to these viruses. Furthermore, as was the case for the two specific 329	
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outbreaks we considered, intense contact tracing provides an opportunity to reconstruct 330	

outbreak transmission trees. 331	

We found that estimates of the end-of-outbreak probability can vary substantially between 332	

our novel traced transmission method and the existing Nishiura method (Figures 2D and 3D). 333	

Specifically, the traced transmission method exhibited larger temporal variations in estimates 334	

of the end-of-outbreak probability during each outbreak, with the probability typically 335	

reaching lower values following clusters of new cases but then increasing more rapidly over 336	

successive days without any cases. The traced transmission approach therefore indicated that 337	

the two case study outbreaks could have been declared over earlier than suggested by the 338	

Nishiura method. The difference between the methods increased when assuming a smaller 339	

dispersion parameter, 𝑘, corresponding to a greater degree of superspreading (Figures S2 and 340	

S3).  341	

While the difference in end-of-outbreak probability estimates between the two methods may 342	

be partially attributable to the fact that the traced transmission method leverages more data 343	

than the Nishiura method, this is unlikely to explain the consistent trends described in the 344	

previous paragraph fully. We note that, for the traced transmission method with a negative 345	

binomial offspring distribution, the probability of a recorded case generating no future cases 346	

is smaller if that individual has generated more secondary cases to date. This reflects the fact 347	

that an individual who has already generated more secondary cases may be more infectious 348	

and/or may have more contacts with susceptible individuals, and therefore may be more 349	

likely to generate future cases (either through future transmissions or past transmissions to 350	

individuals yet to develop symptoms), compared an individual who has generated fewer 351	

secondary cases to date. This effect is enhanced for a more overdispersed offspring 352	

distribution, when there is more variation between infected individuals in the number of 353	
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secondary cases generated. On the other hand, the Nishiura method neglects information 354	

provided by the case data about how many secondary infections each case to date may have 355	

already generated. Even when the transmission tree is not known, some information is 356	

available about possible numbers of secondary cases generated by each case to date through 357	

the disease incidence time series, and this information is not used in the Nishiura method.  358	

Both methods for estimating the end-of-outbreak probability considered here suggest a high 359	

probability that the Likati EVD outbreak had ended by the actual date on which the outbreak 360	

was declared over (based on current WHO guidance that recommends waiting for 42 days 361	

following the recovery or safe burial of the last recorded case). In comparison, one previous 362	

study recommended that the current 42 day waiting time guideline needed to be extended to 363	

ensure a high probability of an EVD outbreak being over at the time of an end-of-outbreak 364	

declaration [4], while another study found the appropriate waiting time to depend on the level 365	

of surveillance [5]. This second finding is consistent with our result here that a shorter 366	

waiting time before declaring the Likati EVD outbreak over may have been sufficient, since 367	

intensive contact tracing was undertaken.  368	

For both case studies considered, our traced transmission method gives a high end-of-369	

outbreak probability estimate immediately before the second case occurred (0.96 for the 370	

Likati EVD outbreak and 0.98 for the Bangladesh Nipah outbreak), and a similar 371	

phenomenon can be seen using the Nishiura method for the Nipah outbreak. While the 372	

subsequent occurrences of further cases may have indeed been realisations of unlikely events, 373	

other explanations for this finding are possible. First, the assumed offspring and serial 374	

interval distributions may not have been correct for the specific outbreaks considered – for 375	

example, a higher value of the dispersion parameter would lead to lower end-of-outbreak 376	

probability estimates on the corresponding days (see Figures S2 and S3). Alternatively, long 377	
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gaps between the first and second recorded cases may have resulted from unrecorded 378	

intermediate cases. This is particularly likely early in an outbreak when intensive surveillance 379	

may not yet be in place. Extension of the traced transmission method to account for 380	

unreported cases and reporting delays, considering the sensitivity of the surveillance system 381	

and the time to put enhanced surveillance in place, is a target for future exploration, 382	

particularly as pathogens such as the Ebola virus tend to emerge in locations with weak 383	

surveillance. In addition, other possible areas for future work include accounting for 384	

uncertainty and/or temporal changes in the offspring and serial interval distributions. 385	

In general, careful consideration should be given to the choice of probability threshold for an 386	

end-of-outbreak declaration, to appropriately balance the risk of an incorrect declaration with 387	

the economic and social costs of maintaining stringent outbreak controls for longer than 388	

necessary. One possibility is to take a stepped approach in which an initial end-of-outbreak 389	

declaration is made but surveillance measures are not removed completely until the estimated 390	

end-of-outbreak probability reaches a second, higher, threshold. Current policy for EVD 391	

requires heightened surveillance to be maintained for at least six months following an initial 392	

end-of-outbreak declaration [3]. 393	

In summary, we have developed a new approach for calculating the end-of-outbreak 394	

probability that robustly accounts for recorded transmission data. Application of our method 395	

indicates that two past outbreaks could have been declared over earlier than suggested by an 396	

existing approximate method. We hope that our approach is useful for informing end-of-397	

outbreak declarations in future infectious disease outbreaks. The results from this modelling 398	

framework should be used as one of a range of sources of evidence to support public health 399	

decision making. 400	

 401	
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