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Abstract 24 

Background: Environmentally-mediated protozoan diseases like cryptosporidiosis and giardiasis are 

likely to be highly impacted by extreme weather, as climate-related conditions like temperature and 

precipitation have been linked to their survival, distribution, and overall transmission success. 

Objectives: Our aim was to investigate the relationship between extreme temperature and precipitation 

and cryptosporidiosis and giardiasis infection using monthly weather data and case reports from Colorado 

counties over a twenty-one year period.  

Methods:  Data on reportable diseases and weather among Colorado counties were collected using the 

Colorado Electronic Disease Reporting System (CEDRS) and the Daily Surface Weather and 

Climatological Summaries (Daymet) Version 3 dataset, respectively. We used a conditional Poisson 

distributed-lag nonlinear modeling approach to estimate the lagged association (between 0 and 12-

months) between relative temperature and precipitation extremes and the risk of cryptosporidiosis and 

giardiasis infection in Colorado counties between 1997 – 2017, relative to the risk found at average 

values of temperature and precipitation for a given county and month.  

Results: We found a consistent, significant increase in the relative risk of cryptosporidiosis and giardiasis 

infection when the maximum or minimum monthly temperature in the 4-6 months prior were low (1st 

percentile) for a given county and calendar month. High precipitation (90th percentile for a given county 

and calendar month) 2-12 months prior was associated with a significant decrease in the relative risk of 

cryptosporidiosis, while high precipitation (90th percentile) 12-months prior was associated with a 

significant increase in giardiasis infection risk.  

Discussion: Our study presents novel insights on the influence that extreme low temperatures can have 

on parasitic disease transmission in real-world settings. Additionally, we present preliminary evidence that 

the standard lag periods that are typically used in epidemiological studies to assess  the impacts of 

extreme weather on cryptosporidiosis and giardiasis may not be capturing the entire relevant period. 
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Introduction 30 

In recent years, a diverse array of extreme weather events across the globe have been 31 

inextricably linked to human-induced climate change – including heatwaves, heavy precipitation, flooding 32 

and droughts – all of which are likely to impact the transmission of environmentally-mediated illnesses 33 

such as those transmitted by parasitic protozoa. 1-4 Protozoan diarrheal diseases such as 34 

cryptosporidiosis and giardiasis are a leading cause of the estimated 1.7 billion cases of diarrheal disease 35 

that occur every year, 8-12 with an estimated 33,900 deaths and 2.94 million disability-adjusted life-years 36 

(DALYs) lost to illness caused by enteric protozoa each year. 13 Cryptosporidium and Giardia are both 37 

zoonotic protozoan parasites that are transmitted by animals and humans via the fecal-oral route, and are 38 

most frequently acquired by consuming contaminated water or food. 14-17 As such, regions of the world 39 

that have limited access to clean water, are prone to water scarcity, or lack infrastructure to support 40 

widespread access to improved sanitation tend to be the most at risk of protozoan disease transmission. 41 

18 Nevertheless, climate change is also expected to increase waterborne enteric disease risk in high 42 

income settings as a result of projected increases in the frequency and severity of extreme weather 43 

events. 1,4-7    44 

Across the globe, both periods of drought and heavy rainfall can cause inefficiencies and reduced 45 

effectiveness of water treatment systems. 2,19-23 For example, studies conducted in Australia and the 46 

Netherlands have found that periods of drought were associated with decreased water quality, 25,26 and an 47 

increased risk of cryptosporidiosis. 24 Meanwhile, periods of heavy rainfall can also cause sewage system 48 

overflow, contamination of irrigation systems, wells and private water supplies, and associated food and 49 

waterborne illnesses. 2,27 Protozoa are particularly susceptible to mobilization and transmission following 50 

heavy rainfall events due to their ability to persist in soil and water for months, their capacity to infect 51 

individuals at very small doses, and their ability to be transmitted by humans, domestic animals and 52 

livestock. 12,28-30 For instance, researchers in Vancouver, Canada found that water turbidity and the risk of 53 

runoff-related cryptosporidiosis and giardiasis incidence was highest when a period of excessive dryness 54 

was followed by heavy rainfall events. 23  Exposure via runoff and waste water system failures may be 55 

particularly important for parasitic protozoan diseases, which are more resilient than most bacteria and 56 
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viruses in the face of conventional water treatment methods, 32 and are less commonly the target of 57 

operational surveillance systems. 4   58 

When it comes to the impacts of temperature extremes on diarrheal diseases, protozoan 59 

infections have been less studied than bacterial or viral infections, 33,34 though associations between 60 

maximum and minimum temperature and cryptosporidiosis and giardiasis have been suggested in a few 61 

instances. A review by Ikiroma & Pollock (2021) on the impacts of weather on cryptosporidiosis identified 62 

studies highlighting a positive association between maximum temperature and cryptosporidiosis, 35-39 and 63 

to a lesser extent, giardiasis. 38 While further mechanistic studies are needed to determine why rising 64 

temperatures are associated with an increase in protozoan disease risk in some contexts, possible 65 

explanations include increased potential for transmission via alternative vectors at higher temperatures, 66 

or the lengthening of the transmission season when temperatures are unseasonably warm during the 67 

offseason. 40-43 By contrast, very few studies have investigated the impacts of minimum temperature, and 68 

the results have been inconsistent. 39 For example, one study from Victoria, Australia found that an 69 

increase in monthly minimum temperature in the current month (no lag) was associated with an increase 70 

in cryptosporidiosis incidence in metropolitan areas, whereas the 3-month lagged monthly minimum 71 

temperature in rural areas was associated with a decrease in cryptosporidiosis incidence. 44 Further 72 

complicating our understanding of the influence of temperature on enteric protozoan disease transmission 73 

is the fact that these relationships are pathogen-specific and highly dependent on the local climate 74 

system and season. 27,38,45 For instance, a meta-analysis conducted by Jagai and colleagues (2009) 75 

demonstrated that while temperature was more strongly associated with cryptosporidiosis in temperate 76 

climates, precipitation was a stronger predictor in tropical climates, though notably, neither temperature 77 

nor precipitation was significantly associated with cryptosporidiosis in arid or semi-arid climates. 46  78 

Although the majority of studies assessing the effects of weather and climate on cryptosporidiosis 79 

and giardiasis have assessed lag periods of between one and three months, 35-38,44 pathogen survival in 80 

the ambient environment is likely longer under optimal conditions. Survival time of Cryptosporidium 81 

oocysts and Giardia cysts will vary substantially with local environmental conditions such as ultraviolet 82 

light (UV), temperature, humidity, precipitation, soil composition, season, daylight hours, excrement 83 

moisture, water velocity, water turbidity, etc. 12,28,29,40,41,47-51 As such, determining the maximum survival 84 
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time in the ambient environment can be challenging, though controlled studies have demonstrated that 85 

Giardia cysts submerged in river and lake water at winter temperatures maintained viability at 12-weeks 86 

post-baseline, 47 while Cryptosporidium oocyst infectivity can remain after being stored in water for over 87 

five months at 5-15°C, 51 and up to a year when stored in low turbidity water. 52 Given remaining 88 

uncertainty regarding the maximum survival of Cryptosporidium and Giardia and their demonstrated 89 

capacity for prolonged survival under optimal conditions, epidemiological studies that assess the potential 90 

for longer lagged effects are needed.  91 

In light of the many influences that weather and environment have on the transmission of 92 

protozoan pathogens, as well as the remaining uncertainty surrounding the time- and location-specific 93 

conditions that may amplify or reduce risk, localized investigations of weather extremes and their lagged 94 

effects on transmission are needed. Supplemental Table S1 provides examples from the literature and a 95 

summary of some of the hypothesized mechanisms by which extreme precipitation and temperature can 96 

influence cryptosporidiosis and giardiasis transmission. Overall, despite mixed evidence on the direction 97 

of association between precipitation extremes and protozoan disease transmission, and the limited body 98 

of epidemiological evidence on the relationship between temperature extremes and cryptosporidiosis and 99 

giardiasis risk, there remain several plausible mechanisms by which weather extremes could affect the 100 

viability, distribution and overall transmission potential of Cryptosporidium and Giardia. 101 

In this study, we investigated the lagged effects (between 0 and 12 months) that low and high 102 

temperature and precipitation values – defined in this study as the 1st, 5th, 10th, 90th, 95th and 99th 103 

percentile values of our weather variables – each have on the risk of cryptosporidiosis and giardiasis 104 

infection in Colorado counties between 1997 – 2017, relative to the risk found at average values of 105 

temperature and precipitation. In so doing, we provide valuable insight on the Colorado-specific lagged 106 

effects that precipitation and temperature extremes have on two important, but often overlooked sources 107 

of waterborne illness. As extreme weather events are likely to increase in frequency and strength in the 108 

decades to come, our findings contribute to the larger body of science on climate and health, helping to 109 

characterize the diverse and complex effects that climate change can have on human health.  110 

Methods 111 

Study design  112 
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In this study, we assessed the impacts of monthly precipitation and temperatures on reported 113 

cases of cryptosporidiosis and giardiasis in Colorado counties between 1997 and 2017. Specifically, our 114 

primary objective was examining the effects of relative temperature and precipitation extremes – mean 115 

maximum monthly temperature (MAXT), mean minimum monthly temperature (MINT), and total monthly 116 

precipitation (PREC), each mean-centered by county and calendar month – on the monthly case counts 117 

of human cryptosporidiosis and giardiasis. As secondary goals, we also identified relevant lag periods 118 

over which extreme weather may impact cryptosporidiosis and giardiasis in Colorado, and evaluated 119 

whether the effects of precipitation and temperature on monthly case counts varied by season. We used 120 

a distributed lag nonlinear modeling (DLNM) approach, conditioned on total case counts within each of 121 

the twelve calendar-months for a given county. 53,54 The Colorado Multiple Institution Review Board 122 

(COMIRB) reviewed and approved of this study. 123 

Cryptosporidiosis and giardiasis incidence 124 

Data on reportable diseases in Colorado were collected using the Colorado Electronic Disease 125 

Reporting System (CEDRS), which is made available upon request from the Colorado Department of 126 

Public Health and Environment (CDPHE).  Our study spanned the 21-year period between January 1997 127 

through December 2017, using monthly case reports of cryptosporidiosis and giardiasis by county as our 128 

two outcomes of interest. As both cryptosporidiosis and giardiasis are mandatory reportable diseases and 129 

CDPHE conducted lab audits to ensure proper monthly reporting, for the purposes of this study we 130 

assumed that cases of sufficient severity to warrant medical attention in Colorado counties for each 131 

month between 1997 and 2017 were captured in the CEDRS dataset.   132 

In order to estimate incidence, we used annual county population estimates from the Colorado 133 

Department of Local Affairs. 55 Although Broomfield County was approved by voters as Colorado’s 64th 134 

county in 1998, it was not included as its own county in this analysis until 2000, as prior to this point, the 135 

Colorado Department of Local Affairs census data recorded Broomfield’s population as a part of Boulder 136 

County’s population. The natural log of each county’s annual population estimate was included as an 137 

offset term in the statistical models. 138 

Climatological variables 139 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.23294911doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294911
http://creativecommons.org/licenses/by/4.0/


To obtain monthly estimates of temperature and precipitation for each Colorado county, we used 140 

the Daily Surface Weather and Climatological Summaries (Daymet) Version 3 dataset derived by the 141 

National Center for Atmospheric Research (NCAR), which provides daily estimates of weather 142 

parameters across a 1-kilometer grid spacing for North America. 56 For each month between January 143 

1996 and December 2017, MAXT (°C) and the MINT (°C) were each averaged across all 1-km grid points 144 

within a given county, such that each county-month had a single estimated average value. PREC for each 145 

county-month was estimated using total daily precipitation (mm) measured at each 1-km grid point within 146 

a county’s borders, summed across all days in each month and averaged across all grid points in the 147 

county. All forms of precipitation were included (e.g., snow, sleet, rain) and converted to a water-148 

equivalent depth in millimeters. Notably, while our outcome data begins in 1997, the data for the 149 

explanatory variables begins in January 1996 to allow for up to 12-month lagged effects for each of our 150 

weather parameters.   151 

To make the definition of low and high most relevant to the local weather conditions found in 152 

Colorado counties, we mean-centered our weather variables by county and calendar-month, such that 153 

values could be interpreted as hot/cold or wet/dry for the specific location and time of year. All three 154 

weather variables were subsequently mean-centered by county and calendar-month, allowing MAXT, 155 

MINT and PREC to be defined relative to their location and time. For example, the average MAXT was 156 

6.3°C for Adams County in December 2017, while the mean-centered (MC)-MAXT was +2.6°C (as 157 

compared to other Decembers between 1996 – 2017 in Adams County), indicating a warmer than 158 

average December in Adams County in 2017. 159 

In this analysis, we were ultimately interested in the association between higher and lower than 160 

average temperature and precipitation values on cryptosporidiosis and giardiasis incidence. Thus, to 161 

define the set of relevant predictor values to be evaluated as the numerator in our relative risk 162 

calculations, we used the 1st, 5th, 10th, 90th, 95th and 99th percentile values of our mean-centered weather 163 

variables, referred to respectively as extreme low, very low, low, high, very high and extreme high values 164 

throughout this analysis, as detailed in Supplemental Table S2. 165 

Analysis 166 
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To assess the lagged effects of MC-MAXT, MC-MINT and MC-PREC on human cryptosporidiosis 167 

and giardiasis cases in Colorado counties between 1997-2017, we used a conditional Poisson DLNM 168 

approach. 53,54 DLNMs were used because they provide a flexible platform for exploring nonlinear 169 

outcome-predictor relationships and they permit lagged effects to be spread over time, two characteristics 170 

that are desirable when exploring the impacts of highly variable environmental conditions on health 171 

outcomes. As such, we investigated a wide range of potential lags between 0- and 12-months by varying 172 

the number of internal knots (0-6) for the spline functions used to define the lag space and comparing 173 

model performance across these formulations of the lag space. Whereas 2-month and 4-month lags were 174 

selected because they aligned with the typical lag range indicated in the literature, 35-39,44 6-month and 12-175 

month lags was also examined in detail in order to determine whether extreme weather could have more 176 

prolonged impacts of on giardiasis or cryptosporidiosis case counts in Colorado counties between 1997 – 177 

2017. Ultimately, this design allowed us to identify potential longer-term trends that might have otherwise 178 

been missed if only short-term lags were assessed.The impacts of MC-MAXT, MC-MINT and MC-PREC 179 

on monthly cryptosporidiosis and giardiasis county case counts were each assessed independently, 180 

making a total of six outcome-predictor combinations. The steps that were taken to conduct this analysis 181 

for each of the six outcome-predictor pairs of interest to this study are outlined in Figure 1.  182 

In Step 1, initial exploratory analyses were conducted to summarize between-season differences 183 

in our outcome- predictor pairs across our study period. A three-month definition of season was also used 184 

in our exploratory assessment to investigate the distribution of the data across the calendar year. Winter 185 

was defined as December – February; spring as March – May; summer as June – August; and fall as 186 

September – November.   187 

Next, we developed several different cross-basis structures to investigate potential non-linearities 188 

in the lagged predictor-outcome relationship over time and space, using the “dlnm” package in R. 58,59 A 189 

cross-basis is a bi-dimensional space of functions that encapsulates both the shape of the relationship 190 

between the outcome and predictors (termed the “predictor space”), as well as the distributed lagged 191 

effects (i.e. the “lag space”). 53 To develop a cross-basis with suitable functions defining both the predictor 192 

space and the lag space, we investigated the fit of different third-degree spline functions (natural spine, B-193 

spline and penalized spline) with incrementally increasing degrees of freedom (maximum of seven) and a 194 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.31.23294911doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294911
http://creativecommons.org/licenses/by/4.0/


maximum lag of 12-months for the lag space, while the predictor space was held constant using a simple 195 

linear basis function. The default settings for knot placements were used for each spline function such 196 

that internal knots were placed at equally spaced points along the lag-space while the boundary knots 197 

were set to 0- and 12-months for the natural and B-spline functions. A conditional Poisson generalized 198 

non-linear modeling (GNM) approach was used to compare model fit across the different lag space 199 

functions used in the cross-basis.  All models also included an intercept, a continuous year term, an offset 200 

for county population and county-month as the stratum (i.e., conditional) variable. Each model’s Bayesian 201 

information criterion (BIC) was used to identify the three best lag space definitions for the cross-basis.  202 

Once suitable functions were identified for the lag space, Step 3 was to develop the predictor 203 

space using a similar process for the lag space. That is, the fit of different third-degree spline functions 204 

with incrementally increasing degrees of freedom (up to a maximum of five) were compared for the 205 

predictor space, while we defined the lag space using the top three previously identified lag space 206 

formulations. In addition to assessing different variations of third-degree spline functions, threshold 207 

functions were also assessed for the predictor space. The BIC value was used again to select the three 208 

best fit models across all the different cross-basis formulations.  209 

We looked for evidence of potential effect modification by season in Step 4. Four separate cross-210 

basis terms (one for each three-month season) were generated, using the top performing predictor space 211 

and lag space definitions previously identified through Steps 2 and 3. In total, the procedure outlined in 212 

steps 2-4 yielded a set of 50 models for each outcome-predictor pair, which was then compared a final 213 

time using both the Akaike information criterion (AIC) and BIC values to select a final subset of six models 214 

that were reserved for further exploration. To demonstrate the analytical process that was used to build 215 

suitable cross-basis structures in Steps 2-4, Supplemental Table S3 provides an example from one 216 

outcome-predictor pair, detailing all model variants that were developed for MC-MINT and 217 

cryptosporidiosis. 218 

The predictive capacity of each of the six AIC/BIC-selected models for a given outcome-predictor 219 

was then assessed using cross-validation in Step 5. For each of the six models, repeated training and 220 

testing was conducted using a 21-fold cross-validation. 60 Each fold contained a year of observations, 221 

such that, within each fold, 20 years of data were used to train the model while the remaining year of 222 
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county-month observations was used for validation. This training-validation process was repeated a total 223 

of twenty-one times, once for each year between 1997 and 2017. The mean RMSE value summarizing 224 

the performance across all tuning and validation iterations was then used as an indicator of the overall 225 

predictive skill of the model. The model with the lowest mean RMSE was selected as the final model 226 

(Supplemental Table S4).  227 

The final model was re-run using a conditional quasi-Poisson GNM variant to obtain adjusted 228 

confidence intervals to account for overdispersion (Step 6). As was done with for the conditional Poisson 229 

models, the quasi-conditional Poisson models included an intercept outside of the cross-basis, a 230 

continuous year term to account for long-term trends, county-month as the stratum variable, and an offset 231 

for county population. In Step 7, we used these models to generate estimates of the relative risk (RR) 232 

with 95% confidence intervals (95%CI) of cryptosporidiosis or giardiasis across a matrix of relevant lag 233 

and predictor values, relative to the risk of disease found at zero (i.e., the mean for a given county and 234 

calendar-month). The lag periods that were used in these relative risk calculations were 2-months, 4-235 

months, 6-months, and 12-months.  236 

Finally, to visualize our relative risk estimates and the entire predicted outcome surface across all 237 

predictor and lag values, we created a set of plots depicting the predictor-lag-outcome surface, using a 238 

reference value of zero (i.e., the mean) in all cases. We used a p-value of <0.05 to indicate statistical 239 

significance in this study. Stata 15 (Stata Statistical Software: Release 15 (2017). StataCorp LP, College 240 

Station, TX) and R Studio 4.0 (RStudio Team (2020). RStudio: Integrated Development Environment for 241 

R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/) were used for all analyses. 59,61 242 

Results 243 

Between 1997 and 2017, the total population in Colorado nearly doubled, increasing from 244 

approximately 2.9 million to 5.6 million (Table 1). For all counties, PREC was highest in the spring and 245 

summer, and lowest in the fall and winter. Cryptosporidiosis and giardiasis cases tended to be highest in 246 

the summer (38.2% of all cryptosporidiosis cases; 30.6% of all giardiasis cases) and the fall (32.1% of all 247 

cryptosporidiosis cases; 30.3% of all giardiasis cases) across all Colorado counties (Table 1). Reported 248 

cryptosporidiosis cases increased over the study period while giardiasis cases decreased (Figure 2).  249 
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Each of the final models selected via cross-validation for modeling the impacts of weather 250 

extremes on cryptosporidiosis cases used natural or B-splines in both the lag and predictor spaces, while 251 

the models for giardiasis cases ultimately employed a natural or B-spline in the lag space and a linear 252 

function to model the predictor space. Although some of the top six AIC/BIC-selected models included 253 

interaction terms for season, none of these models were selected as the final model via cross-validation 254 

for any outcome-predictor pair. Supplemental Table S4 details the cross-basis structure and the cross-255 

validation results for the top six models of each outcome-predictor pair.   256 

Cryptosporidiosis 257 

Temperature 258 

Our final models indicated that there was an increase in cryptosporidiosis case counts when 259 

relative MC-MAXT or MC-MINT in the 4-6 months prior was at an extreme low (Figure 3, Table 2). When 260 

MC-MAXT was 4.5°C lower (1st percentile) than the county and calendar-month mean 4-months prior, 261 

there was a 5.6% increase in the risk of cryptosporidiosis (RR 1.056; 95% CI 1.007 – 1.107), while at 6-262 

months prior, there was an 8.4% increase in the risk of cryptosporidiosis relative to the mean (RR 1.084; 263 

95% CI 1.030 – 1.141). Similarly, when MC-MINT was 3.8°C below average 6-months prior (1st percentile 264 

value), there was a 45.3% increase in reported cryptosporidiosis relative to the risk at the county and 265 

calendar-month mean (RR=1.453; 95% CI 1.347 – 1.568). At even lower temperatures (< 1st percentile), 266 

the increase in the risk of cryptosporidiosis was even more pronounced, as demonstrated in Figure 3.   267 

By contrast, when MC-MAXT was very low or low (5th and 10th percentiles, respectively), or when 268 

MC-MINT was low (10th percentile) 2-6 months prior, there was a decrease in cryptosporidiosis risk 269 

relative to the risk at the mean (Table 2). However, when a 12-month lag was used, the relationship 270 

between cryptosporidiosis and low temperatures (10th percentile) mimicked that of extreme low 271 

temperatures, wherein the risk of cryptosporidiosis increased relative to the risk at the mean 12-months 272 

prior (MC-MAXT 10th percentile: RR 1.132; 95% CI 1.085 – 1.132; MC-MINT 10th percentile: RR 1.054; 273 

95% CI 1.010 – 1.100).  274 

Although the risk of cryptosporidiosis was not significantly different (p<0.05) when comparing 275 

extreme high MC-MAXT or MC-MINT (99th percentile) to the mean, when either MC-MAXT or MC-MINT 276 
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was high or very high (90th and 95th percentiles) 2-6 months prior, there was a significant increase in 277 

cryptosporidiosis risk relative to the risk at the mean (Table 2).  278 

Precipitation  279 

Very high and extreme high (95th and 99th percentile values) MC-PREC in the 2-6 months prior 280 

were associated with a significant decrease in the relative risk of cryptosporidiosis (Figure 3, Table 2). For 281 

example, when MC-PREC 4-months prior was at the 99th percentile value (84 mm higher than the county 282 

and calendar-month average), the relative risk of cryptosporidiosis was 19.2% lower than the risk at the 283 

average (RR 0.808; 95% CI 0.749 – 0.872).  284 

When MC-PREC was lower than average during the 2-6 months prior, cryptosporidiosis risk was 285 

not significantly different than the risk at the mean (Table 2). However, when a 12-month lag was used, 286 

lower than average MC-PREC (1st – 10th percentiles) was associated with a decrease in cryptosporidiosis 287 

risk as compared to the risk at the mean (e.g., MC-PREC 1st percentile: RR 0.727; 95% CI 0.659 – 288 

0.802).  289 

Giardiasis 290 

Temperature 291 

Our models highlighted a negative linear relationship between giardiasis and temperature, 292 

wherein the risk of giardiasis was highest when 2-6 month lagged temperatures were lower than average, 293 

and lowest when 2-6 month lagged temperatures were higher than average (Figure 4). When MC-MAXT 294 

was low, very low or extremely low relative to the average, there was a 1-2% increase in the 2-6 month 295 

lagged risk of giardiasis (Table 3). For MC-MINT, the change in risk was more pronounced: there was a 296 

2-5% increase in the risk of giardiasis at low to extreme low values of MC-MINT, relative to the risk at the 297 

county and calendar-month mean MC-MINT (Table 3). Similarly, when MC-MAXT and MC-MINT were 298 

high to extremely high (90th – 99th percentiles), there was a 1-2% increase in the 2-6 month lagged risk of 299 

giardiasis relative to mean MC-MAXT, and a 2-4% increase in the 2-6 month lagged risk of giardiasis 300 

relative to mean MC-MINT.  The risk of giardiasis at high and low temperature extremes was not 301 

statistically significant (p < 0.05) when a 12-month lag was used.  302 

Precipitation 303 
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Neither the extreme high nor extreme low values of 2-6 month lagged MC-PREC was significantly 304 

associated with a change in giardiasis risk, relative to the county and calendar-month mean values (Table 305 

3). However, there was consistent evidence of 12-month lagged effects for giardiasis. We found that 306 

higher than average MC-PREC 12-months prior (at the 90th, 95th and 99th percentile values) was 307 

associated with a decrease in giardiasis risk, relative to the risk at the mean (90th percentile: RR= 1.020, 308 

95% CI 1.007 – 1.034; 95th percentile: RR= 1.030, 95% CI 1.010 – 1.051; 99th percentile: RR= 1.056, 309 

95% CI 1.019 – 1.094). Similarly, lower than average MC-PREC 12-months prior (at the 1st, 5th and 10th 310 

percentile values) was associated with a decrease in giardiasis risk, relative to the risk at the mean (1st 311 

percentile: RR= 0.968, 95% CI 0.947 – 0.989; 5th percentile: RR= 0.977, 95% CI 0.962 – 0.992; 10th 312 

percentile: RR= 0.982, 95% CI 0.970 – 0.994).  313 

Discussion 314 

In this analysis, we found that cryptosporidiosis and giardiasis responded similarly to 315 

unseasonably low temperatures in Colorado counties between 1997 and 2017. There was a significant 316 

increase in the relative risk of both cryptosporidiosis and giardiasis infection when temperatures 4-6 317 

months prior were extremely low for a given county and calendar-month (i.e. at the 1st percentile value, 318 

corresponding with -4.5°C below average for MC-MAXT, and -3.8°C below average for MC-MINT). As far 319 

as we are aware, this is a novel finding that has not been replicated in other epidemiological studies, 320 

perhaps because both giardiasis and cryptosporidiosis incidence tend to peak in summer or late summer 321 

in the United States, 45 leading most investigations to focus primarily on warmer temperatures and 322 

transmission potential. Nevertheless, experimental studies have highlighted that both Cryptosporidium 323 

and Giardia can withstand cool temperatures, with the viability of (oo)cysts improving when stored at 4°C 324 

as compared to room temperature. 62 One study identified developmental stage parasites in mice exposed 325 

to Cryptosporidium oocysts and stored at -20°C, -15°C, -10°C and 5°C for between 1-168 hours before 326 

thawing, 50 highlighting oocyst persistence even when temperatures are lower that average. 327 

By contrast, when temperatures were moderately high (90th – 95th percentiles) 2-6 months prior, 328 

we found a statistically significant decrease in giardiasis cases in Colorado counties, while there was a 329 

significant increase in cryptosporidiosis cases. For giardiasis that relationship held at the 99th percentile 330 

values of MC-MAXT and MC-MINT, while there was no evidence of an association between extreme high 331 
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temperatures (99th percentile) and cryptosporidiosis cases. The fact that higher than average 332 

temperatures was associated with a decrease in giardiasis cases at all levels (90, 95th and 99th 333 

percentiles) but an increase in cryptosporidiosis at moderate levels (90th and 95th percentiles), may be 334 

related to the two organisms having different thresholds for tolerating above average temperatures. Both 335 

in vitro and in vivo experiments have suggested that Giardia cysts demonstrate greater temperature-336 

dependence and higher die-off rates than Cryptosporidium oocysts at both high and low temperatures. 337 

29,41 For example, one recent study focused on the potential for foodborne transmission of giardiasis and 338 

cryptosporidiosis found that Cryptosporidium oocysts were stable at both room temperature and 339 

refrigeration conditions (4°C), whereas Giardia cysts saw a 50% die-off rate at room temperature over a 340 

period of 24-hours. 62 Thus, the fact that both moderate and extreme increases in temperature relative to 341 

the county and calendar-month mean were associated with a decrease in giardiasis risk may potentially 342 

reflect the greater temperature sensitivity of Giardia. Meanwhile, the increase in cryptosporidiosis cases 343 

with moderately high (90th – 95th percentiles), but not extremely high temperatures (99th percentiles) could 344 

be indicative of a threshold effect, wherein moderately high temperatures lengthen the transmission 345 

season and/or allow for transmission via alternative vectors, while extremely high temperatures lead to 346 

exponential oocysts die-off and reduced transmission. 40  347 

Another possible explanation for why Cryptosporidium and Giardia respond differently to higher-348 

than-average temperatures is that the primary hosts associated with each pathogen are different. For 349 

example, a study conducted in Georgia, USA found that synanthropic flies living alongside wildlife and 350 

livestock could serve as mechanical vectors of Cryptosporidium and Giardia, with viable Cryptosporidium 351 

being isolated from 56% of sampled flies, while Giardia was isolated from just 8% of those sampled. 42 As 352 

warm-weather, ectothermic species, the development time of the studied fly species tends to decrease as 353 

temperatures increase, up until a threshold temperature when development will cease – for example, 354 

above 34°C for similar species of blowflies found in Asia. 63 Thus, if cattle and synanthropic flies were in 355 

fact a major part of the transmission pathway for cryptosporidiosis, but not giardiasis (as has been found 356 

in other contexts 42,64), then the association between cryptosporidiosis and moderate, but not extreme 357 

increases in maximum and minimum temperature is consistent with what would be expected. However, 358 
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further study is still needed to determine whether flies are in fact an important vector in either the 359 

cryptosporidiosis or giardiasis transmission cycles in Colorado.  360 

In our study, there was a significant decrease in the relative risk of cryptosporidiosis when total 361 

monthly precipitation in the 2-6 months prior was relatively high. However, neither relatively high nor low 362 

monthly precipitation were found to significantly impact giardiasis using a 2-, 4- or 6-month lag. One 363 

possible explanation for this difference could be that the primary underlying exposure pathways of 364 

Cryptosporidium and Giardia transmission differ between the two pathogens. For example, if surface 365 

water contamination via zoonotic livestock or wildlife species were the primary source of cryptosporidiosis 366 

transmission, but not giardiasis, then the overall concentration of cryptosporidium in surface water 367 

sources might be diluted following higher than average precipitation. As an example, this was believed to 368 

be the case in one study conducted in Canada which observed lower odds of human cryptosporidiosis 369 

when water levels were higher than average 19-20 days prior. 64 While the lag periods assessed in our 370 

study were of a considerably longer duration than those studied by Brankston and colleagues, we did find 371 

a similarly negative association between cryptosporidiosis and the 90th, 95th and 99th percentiles of total 372 

monthly precipitation at both 2-month and 4-month lags, a finding that held for the 95th and 99th percentile 373 

at the 6-month lag. Meanwhile only the 99th percentile value of precipitation was still negatively associated 374 

with cryptosporidiosis when lagged 12-months. Notably, a recent review that assessed the body of 375 

evidence in support of the concentration-dilution hypothesis – that is, that conflicting findings on the 376 

impacts of rainfall on diarrhea result from underlying differences in background rain levels – found four 377 

studies that identified dilution (specifically, rainfall following wet periods) as a potential mechanism 378 

explaining an inverse association between rainfall and diarrhea. 66 While an investigation of the impacts of 379 

rainfall following wetter than average weather was outside of the scope of this study, future investigations 380 

of the impacts of this phenomenon on giardiasis and cryptosporidiosis, as well as the underlying sources 381 

of contamination for each pathogen within Colorado counties is warranted.  382 

Whereas other studies assessing the effects of weather and climate on cryptosporidiosis and 383 

giardiasis have most frequently assessed lag periods of between one and three months, 35-38,44 in our 384 

study, we allowed for a lag of up to 12-months. This decision was based on the body of evidence from a 385 

small set of experimental studies which have suggested that under the right conditions, Cryptosporidium 386 
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oocysts and Giardia cysts may be able to survive and maintain viability for much longer than the period 387 

typically assessed in the epidemiological literature – potentially as long as six months to a year. 51,52 388 

Whereas the relative risk of maximum monthly temperature and minimum monthly temperature extremes 389 

relative to the averages tended to only be statistically significant for giardiasis and (to a slightly lesser 390 

extent) cryptosporidiosis in the 2-6 month lag range, the 12-month lagged estimates of the relative risk of 391 

precipitation extremes (compared to the mean) were statistically significant in all but one instance (See 392 

Tables 2 & 3).  Moreover, lower than average precipitation relative to the mean was only significantly 393 

associated with giardiasis or cryptosporidiosis when lagged 12-months, suggesting that the transmission 394 

of these pathogens in Colorado counties may be sensitive to longer-term periods of excess dryness or 395 

drought, as has been found with diarrheal pathogens in other regions of the world. 23,24,67 While our study 396 

was not designed to assess the impacts of rainfall after prolonged periods of drought on transmission, 397 

future studies aimed at investigating this potential in Colorado and the American West at large are greatly 398 

needed.  399 

Although giardiasis and cryptosporidiosis cases reported in Colorado counties between 1997 – 400 

2017 tended to follow the standard seasonal pattern that have been previously identified for temperate 401 

climates, wherein case counts tend to peak in the summer or early fall 45 (See Table 1), the final models 402 

selected via cross-validation for each of our outcome-predictor pairs did not ultimately include an 403 

interaction for season. This is notable, as season-specific effects have been demonstrated in other 404 

contexts, 31,68 which are believed to arise as a result of season-specific exposure opportunities such as 405 

local agricultural practices or recreational water uses. 68,69 While it is possible that the relationship 406 

between precipitation and temperature and cryptosporidiosis and giardiasis truly does not vary 407 

substantially by season in Colorado counties, it is also possible that our models were underpowered for 408 

detecting seasonal effects.  409 

Thus, a limitation of this study was the potential for being underpowered when it came to the 410 

seasonal effect modification assessment, due to the panel structure of the data, our conditioning on 411 

county-month, the complex lag-predictor cross-basis structures already included in each model, and the 412 

fact that we had a relatively small number of observations for each county (252 month-years for 63 413 

counties, and 216 for Broomfield County). Another limitation to this study was that the smallest time-unit 414 
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possible given the data available was month, making it impossible for us to determine the effects of short-415 

term weather events. Additionally, because county was the smallest geographic-unit available in this 416 

study, we were unable to investigate location-specific nuances such as variations in elevation, access to 417 

healthcare and local population factors such as popular recreational activities. While including a grouping 418 

term in our cross-basis and conditioning on county-calendar-month helps to account for unmeasured 419 

intra-county variation, we remain unable to assess inner-county differences. Another limitation to this 420 

study is that the CEDRS database that was used for obtaining monthly case counts of cryptosporidiosis 421 

and giardiasis by county does not necessarily record the location where the pathogen was acquired, only 422 

the county of residence for an infected individual.  423 

This study relied on clinically reported cryptosporiosis and giardiasis, and, due to the variable 424 

severity of disease, many infections with these protozoa go unreported. Meanwhile, among cases of 425 

sufficient severity to warrant medical attention, changes in the use, accuracy and types of diagnostic tests 426 

that were available for the clinical detection of cryptosporidiosis and giardiasis across the study period 427 

also have the potential to bias our results. While cryptosporidiosis and giardiasis diagnostic tests 428 

remained relatively unchanged in the 90s and early 2000s, 70 the more widespread introduction of 429 

multiplex tests means that healthcare providers could more easily test for an array of diseases in patients 430 

exhibiting gastrointestinal symptoms. Being able to easily test for multiple diseases could increase 431 

detection of suspected disease, as well as increase incidental findings of cryptosporidiosis and giardiasis. 432 

In Figure 2, a plot of the total case counts by year across all Colorado counties shows that giardiasis 433 

cases appear to have a slight downward trend over time, whereas cryptosporidiosis cases have shown a 434 

steady increase across the study period. Thus, in the case of cryptosporidiosis, it is possible that 435 

increasing use of multiplex testing is influencing the upward trend in case reports. A linear term for year 436 

was included in each of our models to help account for these linear time trends.   437 

Our analysis has shown that the risk of cryptosporidiosis and giardiasis in Colorado counties is 438 

likely to change as weather patterns in Colorado shift in the coming years. Warmer temperatures and an 439 

increase in weather extremes (i.e., blizzards, droughts, etc.) can be expected. In the last 30 years, 440 

Colorado’s average temperature has increased by 2°F (3.6 °C), with current estimates projecting that the 441 

average temperature for the state could increase another 5°F (9°C) before 2050. 72 As such, it is possible 442 
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that the coming years will see a continued reduction in the transmission of giardiasis (Figure 2), as our 443 

study has highlighted that extreme high (i.e., 99th percentile) values of maximum and minimum 444 

temperatures tend to be associated with reduced giardiasis infection risk (relative to the risk at average 445 

values) in Colorado counties. However, it is possible that rising temperatures will increase 446 

cryptosporidium risk, as we found temperature extremes at the 90th and 95th percentile values were 447 

associated with a statistically significant increase in cryptosporidiosis infection risk. These discordant 448 

findings indicate that the impact of climate change may not be the same for all protozoan pathogens and 449 

highlight the need for further study of the locations-specific environmental conditions that could be 450 

simultaneously promoting the transmission potential of one protozoan pathogen while suppressing 451 

another. Further investigation into pathogen-specific environmental contamination sources in Colorado 452 

counties, as well as the potential impacts of extreme weather following prolonged periods of wet weather 453 

or prolonged periods of drought are also needed. Colorado-specific climate projections are also essential 454 

pre-requisites for quantifying the associated increased risk of infectious disease transmission over the 455 

coming decades. Ultimately, combining the findings of future climate projections and environmental risk 456 

assessments with our findings on the Colorado-specific impacts of extreme temperatures and 457 

precipitation on two important, but often overlooked parasitic diseases will help to inform the development 458 

of education and prevention messaging for high-risk populations, as well as aid in the development of 459 

tailored climate change adaptation and mitigation protocols.  460 
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Table 1. Colorado county cases, population and seasonal weather for Colorado counties. 675 
 676 
Population by year All counties 

 N 

Total counties a  64 

1997 population 2,995,923 

2002 population 4,504,709 

2007 population 4,821,784 

2012 population 5,189,861 

2017 population 5,609,445 
  

Seasonal cases b  

Cryptosporidiosis N (%) 

Winter 262 (13.0%) 

Spring 338 (16.7%) 

Summer 770 (38.2%) 

Fall 648 (32.1%) 
Total 2,018 (100%) 

  

Giardiasis N (%) 

Winter 2,340 (19.4%) 

Spring 2,386 (19.7%) 

Summer 3,693 (30.6%) 

Fall 3,664 (30.3%) 
Total 12,083 (100%) 

  

Average maximum monthly temperature (MAXT) b °C 

Winter 4.20 

Spring 14.38 

Summer 26.70 

Fall 15.98 

  

Average minimum monthly temperature (MINT) b °C 

Winter -10.12 

Spring -1.30 

Summer 10.25 

Fall 0.36 

  

Average total monthly precipitation (PREC) b, c mm 

Winter 30.39 

Spring 46.88 

Summer 52.49 

Fall 37.50 
 677 

a Note that from 1997- 1999, there were 63. Broomfield county became the 64th Colorado county in 2000. 678 

b The calculation of the average values of the maximum monthly temperature, minimum monthly temperature and the 679 

total monthly precipitation between 1996-2017 were conducted by summing across all observations within a given 3-680 
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month season and dividing by the total number of observations included in the season. While 1996 outcome data was 681 

not included in this analysis, the monthly 1996 weather measurements were still used in this analysis for the lagged 682 

weather values in 1997.  683 

c Precipitation was summed across all forms of precipitation (e.g. snow, sleet, rain, etc.), and converted to a water-684 

equivalent depth in millimeters. 685 
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Table 2. The relative risk of cryptosporidiosis in Colorado counties between 1997 – 2017, 709 

comparing temperature and precipitation extremes to county averages. 710 

 711 

 2-month lag 
 

4-month lag 
 

6-month lag 
 

12-month lag 
 

 Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Maximum Temperature     

1st percentile: -4.5°C below 
average 

1.027 
(0.999 – 1.057) 

1.056 
(1.007 – 1.107)* 

1.084 
(1.030 – 1.141)* 

1.175 
(1.066 – 1.295)* 

5th percentile: -3°C below 
average 

0.961 
(0.945 – 0.978)* 

0.938 
(0.910 – 0.965)* 

0.942 
(0.912 – 0.974)* 

1.163 
(1.103 – 1.227)* 

10th percentile: -2.3°C below 
average 

0.956 
(0.943 – 0.969)* 

0.928 
(0.907 – 0.950)* 

0.928 
(0.905 – 0.952)* 

1.132 
(1.085 – 1.180)* 

90th percentile: 2.4°C above 
average 

1.044 
(1.033 – 1.056)* 

1.077 
(1.057 – 1.098)* 

1.086 
(1.064 – 1.109)* 

0.958 
(0.922 – 0.996)* 

95th percentile: 3°C above 
average 

1.037 
(1.022 – 1.053)* 

1.066 
(1.040 – 1.093)* 

1.076 
(1.048 – 1.105)* 

0.982 
(0.932 – 1.035) 

99th percentile: 4.3°C above 
average 

0.981 
(0.951 – 1.012) 

0.971 
(0.921 – 1.023) 

0.977 
(0.923 – 1.034) 

1.114 
(0.996 – 1.247) 

Minimum Temperature     

1st percentile: -3.8°C below 
average 

1.193 
(1.146 – 1.243)* 

1.369 
(1.278 – 1.468)* 

1.453 
(1.347 – 1.568)* 

1.045 
(0.902 – 1.211) 

5th percentile: -2.5°C below 
average 

1.034 
(1.016 – 1.052)* 

1.063 
(1.032 – 1.094)* 

1.080 
(1.046 – 1.116)* 

1.058 
(0.993 – 1.127) 

10th percentile: -1.8°C below 
average 

0.987 
(0.976 – 0.999)* 

0.980 
(0.960 – 0.999)* 

0.982 
(0.960 – 1.004) 

1.054 
(1.010 – 1.100)* 

90th percentile: 1.8°C above 
average 

1.061 
(1.048 – 1.074)* 

1.110 
(1.088 – 1.133)* 

1.129 
(1.104 – 1.155)* 

0.990 
(0.947 – 1.034) 

95th percentile: 2.4°C above 
average 

1.056 
(1.038 – 1.073)* 

1.101 
(1.070 – 1.133)* 

1.122 
(1.087 – 1.157)* 

1.017 
(0.954 – 1.085) 

99th percentile: 3.5°C above 
average 

1.019 
(0.984 – 1.056) 

1.038 
(0.978 – 1.102) 

1.056 
(0.990 – 1.127) 

1.103 
(0.963 – 1.264) 

Precipitation     

1st percentile: -50.7 mm 
below average 

0.987 
(0.944 – 1.033) 

0.980 
(0.925 – 1.039) 

0.976 
(0.928 – 1.026) 

0.727 
(0.659 – 0.802)* 

5th percentile: -36 mm below 
average 

0.998 
(0.970 – 1.027) 

0.995 
(0.959 – 1.032) 

0.988 
(0.957 – 1.020) 

0.819 
(0.769 – 0.871)* 

10th percentile: -28.4 mm 
below average 

1.001 
(0.981 – 1.023) 

1.000 
(0.974 – 1.028) 

0.993 
(0.970 – 1.016) 

0.865 
(0.825 – 0.905)* 

90th percentile: 31.5 mm 
above average 

0.965 
(0.952 – 0.979)* 

0.956 
(0.939 – 0.973)* 

0.985 
(0.969 – 1.001) 

1.032 
(1.001 – 1.064)* 

95th percentile: 46.6 mm 
above average 

0.938 
(0.918 – 0.959)* 

0.921 
(0.895 – 0.948)* 

0.969 
(0.945 – 0.995)* 

1.001 
(0.955 – 1.050) 

99th percentile: 84 mm 
above average 

0.849 
(0.802 – 0.898)* 

0.808 
(0.749 – 0.872)* 

0.914 
(0.856 – 0.976)* 

0.831 
(0.739 – 0.935)* 

* p < 0.05 712 
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Table 3. The relative risk of giardiasis in Colorado counties between 1997 – 2017, comparing 713 

temperature and precipitation extremes to county averages. 714 

 2-month lag 
 

4-month lag 
 

6-month lag 
 

12-month lag 
 

 Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Relative Risk 
(95% CI) 

Maximum Temperature     

1st percentile: -4.5°C below 
average 

1.009 
(1.002 – 1.016)* 

1.015 
(1.003 – 1.028)* 

1.016 
(1.003 – 1.030)* 

0.986 
(0.962 – 1.010) 

5th percentile: -3°C below 
average 

1.006 
(1.001 – 1.011)* 

1.010 
(1.002 – 1.019)* 

1.011 
(1.002 – 1.020)* 

0.991 
(0.975 – 1.007) 

10th percentile: -2.3°C below 
average 

1.005 
(1.001 – 1.008)* 

1.008 
(1.001 – 1.014)* 

1.008 
(1.002 – 1.015)* 

0.993 
(0.981 – 1.005) 

90th percentile: 2.4°C above 
average 

0.995 
(0.991 – 0.999)* 

0.992 
(0.985 – 0.998)* 

0.991 
(0.984 – 0.998)* 

1.008 
(0.995 – 1.021) 

95th percentile: 3°C above 
average 

0.994 
(0.989 – 0.999)* 

0.990 
(0.982 – 0.998)* 

0.989 
(0.980 – 0.998)* 

1.009 
(0.993 – 1.026) 

99th percentile: 4.3°C above 
average 

0.992 
(0.985 – 0.998)* 

0.986 
(0.974 – 0.997)* 

0.985 
(0.972 – 0.997)* 

1.014 
(0.990 – 1.037) 

Minimum Temperature     

1st percentile: -3.8°C below 
average 

1.043 
(1.025 – 1.063)* 

1.051 
(1.033 – 1.069)* 

1.036 
(1.021 – 1.051)* 

1.002 
(0.964 – 1.041) 

5th percentile: -2.5°C below 
average 

1.028 
(1.016 – 1.041)* 

1.033 
(1.022 – 1.045)* 

1.023 
(1.014 – 1.033)* 

1.001 
(0.976 – 1.027) 

10th percentile: -1.8°C below 
average 

1.020 
(1.012 – 1.029)* 

1.024 
(1.015 – 1.032)* 

1.017 
(1.010 – 1.024)* 

1.001 
(0.983 – 1.019) 

90th percentile: 1.8°C above 
average 

0.980 
(0.972 – 0.989)* 

0.977 
(0.969 – 0.985)* 

0.983 
(0.977 – 0.990)* 

0.999 
(0.981 – 1.017) 

95th percentile: 2.4°C above 
average 

0.973 
(0.962 – 0.985)* 

0.969 
(0.959 – 0.980)* 

0.978 
(0.969 – 0.987)* 

0.999 
(0.975 – 1.023) 

99th percentile: 3.5°C above 
average 

0.962 
(0.946 – 0.978)* 

0.955 
(0.940 – 0.971)* 

0.968 
(0.956 – 0.981)* 

0.998 
(0.964 – 1.034) 

Precipitation     

1st percentile: -50.7 mm 
below average 

1.006 
(0.999 – 1.012) 

1.009 
(0.997 – 1.020) 

1.007 
(0.994 – 1.020) 

0.968 
(0.947 – 0.989)* 

5th percentile: -36 mm below 
average 

1.004 
(0.999 – 1.009) 

1.006 
(0.998 – 1.014) 

1.005 
(0.996 – 1.014) 

0.977 
(0.962 – 0.992)* 

10th percentile: -28.4 mm 
below average 

1.003 
(0.999 – 1.007) 

1.005 
(0.998 – 1.011) 

1.004 
(0.997 – 1.011) 

0.982 
(0.970 – 0.994)* 

90th percentile: 31.5 mm 
above average 

0.996 
(0.992 – 1.001) 

0.995 
(0.988 – 1.002) 

0.996 
(0.988 – 1.004) 

1.020 
(1.007 – 1.034)* 

95th percentile: 46.6 mm 
above average 

0.995 
(0.989 – 1.001) 

0.992 
(0.982 – 1.002) 

0.994 
(0.982 – 1.005) 

1.030 
(1.010 – 1.051)* 

99th percentile: 84 mm 
above average 

0.991 
(0.980 – 1.002) 

0.986 
(0.967 – 1.004) 

0.989 
(0.968 – 1.010) 

1.056 
(1.019 – 1.094)* 

* p < 0.05 715 
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Figure 1. Illustration of the analytical steps used in this study. 717 

Figure 1 caption: The 8-Step analytical process that was used for each outcome and predictor of interest in this study 718 

is outlined above. The two outcomes in this study were case counts of cryptosporidiosis, and case counts of 719 

giardiasis. The three predictors were the average maximum monthly temperature, the average minimum monthly 720 

temperature, and the total monthly precipitation. We therefore repeated Steps 1-8 a total of six times for this study, 721 

once for each outcome-predictor pair. 722 

 723 

Figure 2. Reported cryptosporidiosis and giardiasis cases across all Colorado counties between 724 

1997 – 2017.   725 

Figure 2 caption: Depiction of th annual count of cryptosporidiosis and giardiasis cases across all Colorado counties 726 

between 1997 – 2017. Whereas there was a modest decrease in the total number of cases of giardiasis, there was 727 

an increase in the total number of cryptosporidiosis cases in Colorado cases between 1997 and 2017. 728 

 729 

Figure 3. 3D depictions of the lagged effects of temperature and precipitation on cryptosporidiosis 730 

Figure 3 caption: 3D illustrations of the best performing model for the lagged relationship between cryptosporidiosis 731 

cases and MC-MAXT, MC-MINT and MC-PREC. For each predictor-outcome pair, the 3D graphic depicts the change 732 

in the relative risk of cryptosporidiosis across the range of observed temperature and precipitation values for lags of 0 733 

– 12 months, relative to the risk found at the county and calendar-month averages for temperature and precipitation.   734 

 735 

Figure 4. 3D depictions of the lagged effects of temperature and precipitation on giardiasis 736 

Figure 4 caption: 3D illustrations of the best performing model for the lagged relationship between giardiasis cases 737 

and MC-MAXT, MC-MINT and MC-PREC. For each predictor-outcome pair, the 3D graphic depicts the change in the 738 

relative risk of giardiasis across the range of observed temperature and precipitation values for lags of 0 – 12 months, 739 

relative to the risk found at the county and calendar-month averages for temperature and precipitation.   740 

 741 
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Figure 1. Illustration of the analytical steps used in this study. 

For a given outcome-predictor pair: 
 

 

Conduct initial exploratory analyses 

• Examine the distribution of our outcome and predictor over time 

• Explore between county differences by season 

 

Develop the lag space for the cross-basis 

• Generate a range of 3rd degree spline functions for defining the lag space 

• Use a linear function to define the predictor space  

• Compare the fit of the different cross-basis structures using the conditional Poisson model BIC 

 

Develop the predictor space for the cross-basis 

• Generate a range of threshold and 3rd degree spline functions for defining the predictor space 

• Use the top three lag space definitions identified in Step 2  

• Compare the fit of the different cross-basis structures using the conditional Poisson model BIC 

 

Assess the evidence for effect modification by season 

• Use the lag space and predictor space functions identified through Steps 2 and 3  

• Generate four cross-basis terms, one for each three-month season 

• Use model Akaike information criterion (AIC) and Bayesian Information Criteria (BIC) to compare the 
conditional Poisson model performance for all models developed in Steps 2-4 

 

Use 21-fold cross-validation to compare the predictive capacity of the top 6 models 

• Select the three models with the lowest AIC, and three with the lowest BIC for comparison  

• Define fold as year, such that 20-years of data are used for training, and 1-year for validation  

• Conduct a total of 21 training-validation repetitions using generalized additive models (GAM) 

• Select the GAM with the lowest mean Root-mean-square-error (RMSE) as the final model 

 

Obtain adjusted confidence intervals to account for overdispersion 

• Re-run the final model that was selected in Step 5 using a quasi-conditional Poisson variant 

 

Estimate the risk of infection at different lags and weather extremes  

• Calculate the 2-month, 4-month, 6-month and 12-month lagged risk of infection at the 1st, 5th, 10th, 90th, 
95th, and 99th percentile values of the weather predictor 

• Calculate relative risk by compare the risk of infection found for extreme weather (i.e. the 1st, 5th, 10th, 90th, 
95th, and 99th percentile values) to the risk found at the mean for each county and calendar-month 

 

Visualize the lagged relationship between the outcome and predictor 

• Develop 2-D and 3-D plots to help visually assess the predictor-lag-outcome surface 

• For all plots, use a centering value of 0, corresponding with the mean for each county and calendar-
month 

 
Repeat the entire process (Steps 1-8) for each outcome-predictor pair 
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Figure 2. Reported cryptosporidiosis and giardiasis cases across all Colorado counties between 

1997 – 2017.   
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Figure 3. 3D depictions of the lagged effects of temperature and precipitation on cryptosporidiosis 
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Figure 4. 3D depictions of the lagged effects of temperature and precipitation on giardiasis 
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