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2	
	

Abstract 18	

Aedes aegypti spread pathogens affecting humans, including the dengue, Zika and yellow 19	

fever viruses. Anthropogenic climate change is altering the spatial distribution of Ae. aegypti 20	

and therefore the locations at risk of vector-borne disease. In addition to climate change, 21	

natural climate variability, resulting from internal atmospheric processes and interactions 22	

between climate system components (e.g. atmosphere-land, atmosphere-ocean) determines 23	

climate outcomes. However, the combined effects of climate change and natural climate 24	

variability on future Ae. aegypti spread have not been assessed fully. We developed an 25	

ecological model in which Ae. aegypti population dynamics depend on climate variables 26	

(temperature and rainfall). We used 100 projections from the Community Earth System 27	

Model, a comprehensive climate model that simulates natural climate variability as well as 28	

anthropogenic climate change, in combination with our ecological model to generate a range 29	

of equally plausible scenarios describing the global distribution of suitable conditions for Ae. 30	

aegypti up to 2100. Like other studies, we project the poleward expansion of Ae. aegypti 31	

under climate change. However, the extent of spread varies considerably between projections, 32	

each under the same Shared Socioeconomic Pathway scenario (SSP3-7.0). For example, by 33	

2100, climatic conditions in London may be suitable for Ae. aegypti for between one and five 34	

months in the year, depending on natural climate variability. Our results demonstrate that 35	

natural climate variability yields different possible future Ae. aegypti spread scenarios. This 36	

affects vector-borne disease risks, including the potential for some regions to experience 37	

outbreaks earlier than expected under climate change alone.  38	
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Introduction 39	

Climate-sensitive infectious diseases pose a substantial threat to public health.1 Anticipating 40	

the locations in which outbreaks are most likely to occur in future allows limited surveillance 41	

resources to be deployed effectively.  42	

Vector-borne diseases, and their vectors such as Ae. aegypti, are particularly sensitive to 43	

climate variations.2 Climate variables such as temperature and rainfall affect vector ecology, 44	

including the vector lifespan,3 the probability of egg survival4,5 and the development time 45	

from eggs to adults.6 Laboratory-based research has been complemented by observational 46	

capture-release studies7,8 and modelling analyses,9–12 demonstrating that the impacts of 47	

climate on vector dynamics are substantial and complex. Projecting the effects of future 48	

climate on vector-borne disease outbreaks therefore requires an improved understanding of 49	

the relationship between climate and the ecology of vectors such as Ae. aegypti. 50	

Mathematical models have been developed and applied to study the impact of anthropogenic 51	

climate change on the spatial distribution of mosquitoes.  These studies have considered 52	

different future greenhouse gas concentration trajectories and variability in projections driven 53	

by different climate models.13,14 However, these represent only two of the potential sources of 54	

uncertainty in projections of future climate.15 In addition to anthropogenic climate change, 55	

Earth’s future climate trajectory will be strongly influenced by natural climate variability.  56	

Natural (or internal) climate variability15–17 refers to those fluctuations in climate that occur 57	

even if there are no changes in the radiative (“external”) forcing of the planet. Quantitative 58	

estimates of the role of natural climate variability relative to the forced anthropogenic climate 59	

change signal can be obtained from an ensemble of projections generated by the same climate 60	

model. Each simulation, subjected to the same external forcing but initiated from slightly 61	

different initial states, will diverge due to the chaotic dynamics of the climate system. Despite 62	
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4	
	

the importance of natural climate variability in projections of future climate, a thorough 63	

investigation into the combined effects of anthropogenic climate change and natural climate 64	

variability on vector ecological dynamics has not previously been undertaken. 65	

Here, we address this and develop a mathematical modelling framework for projecting the 66	

impacts of climate change and natural climate variability on the global distribution of suitable 67	

climate conditions for Ae. aegypti. To do this, it is necessary to use a climate projection 68	

model that can generate a large ensemble of forward climate projections. We consider 100 69	

projections of global temperature and rainfall from the Community Earth System Model18–20 70	

(CESM), a primary climate simulation model in the USA. Each projection is run under the 71	

same Shared Socioeconomic Pathway scenario (SSP3-7.0) but is initiated from a slightly 72	

different initial state. Thus, the climate conditions at any future time can be thought of as a 73	

random sample from the CESM projections at that time. 74	

We use the CESM projections as inputs to an ecological model in which Ae. aegypti 75	

population dynamics depend on temperature and rainfall. We investigate the regions that 76	

might be expected to experience an expansion in suitable conditions for Ae. aegypti over the 77	

remainder of the 21st century. We explore the impact of natural climate variability by 78	

assessing the variation in the number of months that are suitable for Ae. aegypti each year 79	

between different climate projections. This research represents the first detailed study of the 80	

combined effects of climate change and natural climate variability on the temporal and global 81	

spatial distribution of environmental suitability for Ae. aegypti, with implications for future 82	

vector-borne disease outbreak risks.  83	
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Methods 84	

Climate projections 85	

Climate data were obtained from the CESM version 2 Large Ensemble Community Project 86	

(LENS2).20 The dataset consists of 100 equally plausible climate simulations run from 1850 87	

to 2100, with a range of different oceanic and atmospheric initial states between simulations. 88	

The projected impact of the externally forced anthropogenic climate change signal can be 89	

obtained by averaging over all 100 of the climate simulations. Real-world climate dynamics 90	

are far less smooth than this ensemble mean (Fig S1), illustrating the need to consider natural 91	

climate variability in addition to anthropogenic climate change when inferring the effects of 92	

future climate on Ae. aegypti populations. 93	

CESM projections assume that socioeconomic changes up to the year 2100 occur under the 94	

Shared Socioeconomic Pathway 3 (SSP3-7.0) scenario. The CESM LENS2 dataset provides 95	

the values of projected climate variables across a global grid consisting of 192 latitude and 96	

288 longitude values. In our main analyses, we consider the average temperature and rainfall 97	

each month in each location and each CESM simulation individually in the period from 2020 98	

to 2100. Since the parameters of the ecological model (see below) depend on daily rainfall 99	

rather than monthly rainfall, we then convert the average monthly rainfall to its 100	

corresponding daily value. 101	

Ecological model 102	

Temporal Ae. aegypti dynamics in each location are modelled using a compartmental, 103	

ordinary differential equation model. Members of the Ae. aegypti population are divided 104	

according to their life cycle stage: eggs, aquatic (larvae or pupae) and adults (Fig 1A). Each 105	
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model parameter, including the rates at which vectors move between these stages, is assumed 106	

to depend on either temperature or rainfall. 107	

To infer the relationship between temperature and each temperature-dependent model 108	

parameter, we use the modelling framework of Mordecai et al.21 In brief, a general functional 109	

form of the relationship between temperature and each model parameter is assumed. We fit 110	

the precise temperature-dependent response to data from that study using Markov chain 111	

Monte Carlo (MCMC). As an example, the dependence of the egg hatching rate (the rate at 112	

which eggs hatch and enter the aquatic stage) on temperature is shown in Fig 1B. Since we 113	

adopt a Bayesian approach, we obtain a range of plausible temperature-dependent responses 114	

for each parameter (corresponding to different steps of the MCMC chain). In Fig 1B, the 115	

median egg hatching rate at each temperature value is shown in red, with the shaded area 116	

representing the 95% credible interval (CrI). Further details about the ecological model are 117	

given in the Supplementary Material. Results from the model fitting procedure are shown in 118	

Figs S2-S6 and Tables S1 and S2, with responses analogous to Fig 1B but for all temperature-119	

dependent model parameters shown in Fig S6A-D. 120	

Two model parameters are assumed to depend on rainfall. The aquatic stage carrying capacity 121	

is assumed to increase with higher rainfall. In contrast, survival of aquatic stage individuals 122	

decreases with higher rainfall, as larvae may be washed away. Relationships between rainfall 123	

and these model parameters are derived from first principles using a mechanistic approach 124	

(Supplementary Material and Fig S6E,F). 125	

Results 126	

Ecological niche 127	

To begin to understand the impact of temperature and rainfall on Ae. aegypti survivability, we 128	

first considered the combinations of temperature-rainfall values at which the ecological 129	
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model predicts Ae. aegypti can survive (the ecological niche). Specifically, we calculated the 130	

equilibrium population size of the ecological model at each possible temperature-rainfall 131	

combination, and indicated the values at which the equilibrium population size is greater than 132	

zero so that an Ae. aegypti population can be supported (Fig 1C). Uncertainty in the precise 133	

dependence of model parameter values on climate variables (shaded region in Fig 1B) leads 134	

to uncertainty in the boundary of the ecological niche (different shades of orange in Fig 1C).  135	

 136	

 137	

Figure 1. The climate-sensitive model of Ae. aegypti population dynamics. A. Schematic illustrating the life 138	

cycle of Ae. aegypti; each stage is represented by a different compartment in the ecological model. B. Ecological 139	

parameters are assumed to depend on either temperature or rainfall. Here, the dependence of the Ae. aegypti egg 140	

hatching rate on temperature is shown, estimated using data from a previous study21 (median estimate – red; 141	

95% credible interval (CrI) – shaded region). C. The ecological niche, describing temperature-rainfall values at 142	

which an Ae. aegypti population can be sustained (orange), as derived from the ecological model. Uncertainty in 143	

the ecological niche is represented by different shades of orange (representing the 2.5th, 50th and 97.5th percentile 144	

estimates) and arises due to uncertainty in the parameter estimates of the ecological model. The black dotted line 145	

indicates the outline of the median ecological niche. 146	

  

B C

A

Eggs Aquatic stage Adults

Hatching rate Development
 rate
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In our main analyses, we assume that the ecological niche is characterised by its median 147	

estimate (black dotted line in Fig 1C). We also validated the derived ecological niche using 148	

data from countries with endemic Ae. aegypti populations and locations of dengue outbreaks 149	

(Fig S7). 150	

Future climate suitability for Ae. aegypti 151	

For each CESM projection and location, we calculated the number of months per year in 152	

which climate conditions are projected to be suitable for Ae. aegypti survival according to the 153	

ecological niche. To check that our model generates results that are consistent with current 154	

real-world Ae. aegypti observations, we compared the predicted number of months that are 155	

suitable for Ae. aegypti in different geographical locations globally in 2020 (on average 156	

across the CESM simulations) against the locations that are known to have Ae. aegypti 157	

populations (Fig S8). We then computed the mean change (across the CESM simulations) in 158	

the number of months that are projected to be suitable for Ae. aegypti survival between 2020 159	

and 2100. We identified the locations that are expected to experience suitable conditions for 160	

Ae. aegypti for more months of the year in 2100 compared with 2020 (Fig 2 – red). Similarly, 161	

we identified the locations that are expected to experience suitable conditions for Ae. aegypti 162	

for fewer months of the year in 2100 compared with 2020 (Fig 2 – blue). In general, under 163	

the assumed ecological model, a poleward expansion of Ae. aegypti is expected to occur 164	

during the 21st century. 165	
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 166	

Figure 2. Locations that are expected to see an increase or decrease in the suitability of climatic conditions 167	

for Ae. aegypti. Locations in which the number of months that are suitable for Ae. aegypti increases by more 168	

than one in 2100 compared with 2020 are shown in red. Locations with a corresponding decrease are shown in 169	

blue. These results were obtained by first calculating the change in the number of suitable months for each 170	

CESM projection individually, and then averaging across all projections.   171	

 172	

However, future Ae. aegypti dynamics depend on natural climate variability, as characterised 173	

by the wide range of climate outcomes in the CESM simulations. In each location, we 174	

therefore considered the variability in the number of months each year in which climate 175	

conditions are projected to be suitable for Ae. aegypti survival between CESM projections. In 176	

Fig 3A, the maximum number of months (across the CESM projections) that are projected to 177	

be suitable for Ae. aegypti survival in each location in the year 2100 is shown, with the 178	

equivalent minimum number of months depicted in Fig 3B (analogous results for the year 179	

2060 are shown in Fig S9). While Figs 3A and 3B are not representative of any individual 180	
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10	
	

CESM projection, they demonstrate the wide variation in projected Ae. aegypti suitability in 181	

each location between different CESM projections (see also Fig S10).  182	

This highlights the importance of natural climate variability, particularly in geographical 183	

locations in which there is a substantial difference between the values shown in Fig 3A and 184	

Fig 3B. As an example, in London (in the United Kingdom), where Ae. aegypti do not 185	

currently inhabit, the number of months suitable for Ae. aegypti survival in 2100 could be 186	

between one (Fig 3B) and five (Fig 3A) months, depending on natural climate variability. In 187	

contrast, if anthropogenic climate change alone is considered (i.e., the mean of the CESM 188	

simulations is used to infer future climate suitability for Ae. aegypti), then our model projects 189	

that four months will be suitable for Ae. aegypti in the year 2100. Similarly, in Cape Town 190	

(South Africa), the number of months suitable for Ae. aegypti survival in 2100 could be 191	

between six (Fig 3B) and 11 (Fig 3A) months, compared with eight months based on a 192	

projection that does not account for natural climate variability. 193	
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 194	

Figure 3. The impact of natural climate variability on future suitability for Ae. aegypti in different 195	

locations. A. The maximum number of months that are projected to be suitable for Ae. aegypti in the year 2100. 196	

B. The minimum number of months that are projected to be suitable for Ae. aegypti in the year 2100. In both 197	

panels, for each latitude-longitude value, the CESM projection corresponding to the most (panel A) or fewest 198	

(panel B) number of months that are suitable for Ae. aegypti in the year 2100 is chosen. 199	

 200	

Discussion 201	

Vector-borne pathogens, such as the dengue, Zika and yellow fever viruses, are responsible 202	

for over 700,000 deaths each year22 and have particularly devastating effects on populations 203	

  

max/min/sd in 2100

A

B A

B
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in low- and middle-income countries. Understanding the future threat to planetary public 204	

health posed by these pathogens requires changes in the spatial distribution of their vectors to 205	

be projected. 206	

In this study, we have constructed a climate-sensitive ecological modelling framework that 207	

describes how Ae. aegypti populations change as climate variables (temperature and rainfall) 208	

vary. We used this model to derive an ecological niche determining the conditions under 209	

which self-sustaining Ae. aegypti populations are possible (Fig 1C). Using climate 210	

projections from the CESM covering the period from 2020-2100, we then projected the 211	

locations that will be suitable for Ae. aegypti throughout the 21st century and inferred the 212	

locations in which suitability for Ae. aegypti is expected to change (Fig 2). We also 213	

considered the sensitivity of this result to the precise shape of the ecological niche by 214	

considering different assumptions about the relationship between rainfall and the rate at 215	

which aquatic stage individuals are washed away (Figs S11-S12). In each case that we 216	

considered, and similarly to previous modelling studies,10 we found that a poleward migration 217	

of Ae. aegypti is expected. 218	

However, a key difference between our study and previous analyses is that, owing to using a 219	

large ensemble of 100 climate projections from the CESM, we were able to conduct a 220	

thorough investigation into the impact of natural climate variability on projections of the 221	

global spatial distribution of Ae. aegypti. Natural climate variability arises due to internal 222	

atmospheric processes and interactions between different components of the climate system 223	

(i.e., atmospheric, oceanic, land and cryospheric processes and their coupled interactions). It 224	

is well-studied by climate scientists and is known to be as important as anthropogenic climate 225	

change in shaping Earth’s future climate trajectory, especially regionally and even over many 226	

decades.15,23 Only one previous study has considered natural climate variability in the context 227	
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of future Ae. aegypti dynamics,24 but only a small number of climate model projections were 228	

available for use in that research, meaning that the full effect of natural climate variability on 229	

future environmental suitability for Ae. aegypti had not been properly assessed. 230	

We found that natural climate variability has a substantial effect on the suitability of different 231	

locations to harbour Ae. aegypti in the future (Fig 3). When estimates are constructed 232	

accounting for anthropogenic climate change but neglecting natural climate variability, the 233	

wide variation in possible climatic conditions in different locations in future years is ignored. 234	

This is important, particularly as some locations may be more suitable for Ae. aegypti in 235	

future due to the combination of anthropogenic climate change and natural climate variability. 236	

As a result, outbreaks of vector-borne disease may occur in some places earlier than expected 237	

under anthropogenic climate change alone. 238	

Previous research has involved projecting the locations of pathogen vectors under a changing 239	

climate (without natural climate variability) and considering the impacts of climate change on 240	

epidemiological parameters. For example, Kraemer et al.25 developed a machine learning 241	

model to predict the current spatial distributions of both Ae. aegypti and Ae. albopictus and 242	

then used it to project future changes in those distributions accounting for climate change, 243	

urbanisation and increased connectivity between locations.13 Mordecai et al.21 and Ryan et 244	

al.10 considered models in which the basic reproduction number (𝑅!) of Aedes-borne viruses 245	

is assumed to depend on temperature, and projected the future temperature suitability of 246	

locations in the Americas and globally for pathogen transmission. Parham and Michael26 247	

developed a similar model for malaria in which 𝑅! depends on temperature and rainfall, but 248	

did not use it to make global predictions. Other research includes the development of the 249	

metric Index P, which has been used to estimate the suitability of climate conditions for 250	

transmission of pathogens including the dengue27,28 and West Nile29,30 viruses. While these 251	
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and other similar studies have provided valuable insights into the effects of climate change on 252	

vector ecology and the potential for disease outbreaks, they did not consider natural climate 253	

variability. 254	

Like any quantitative analysis, our modelling study involved some assumptions and 255	

simplifications. Our main goal was to investigate whether natural climate variability affects 256	

projections of future vector dynamics rather than to make precise quantitative predictions. 257	

Consequently, additional details should be included in the model if it is used to guide vector 258	

or pathogen surveillance programmes. For example, the presence of Ae. aegypti does not only 259	

depend on climate suitability, but also on a range of factors including human behaviour. 260	

Future iterations of our modelling framework could account for changing human population 261	

sizes, geographical heterogeneity in socioeconomic development14,31 and/or methods of water 262	

storage in different locations (water storage containers act as breeding sites for Ae. aegypti).32 263	

We chose to study Ae. aegypti here as it is the primary vector of a range of pathogens.33 264	

However, pathogens can be spread by multiple vectors, and so our framework could be 265	

extended to other Aedes species (such as Ae. albopictus, which transmits pathogens and are 266	

known to be particularly invasive) or non-Aedes vectors. 267	

While our model projections indicate that Ae. aegypti are likely to spread to new locations, 268	

we also note that climate conditions in some places are projected to become less suitable for 269	

Ae. aegypti during the 21st century (Fig 2). We urge against interpretating this result to mean 270	

that the situation will become “better” in those locations. First, our model did not include the 271	

possibility that the vectors might adapt to allow survival in these adverse climate 272	

conditions,34 which may be particularly relevant over the long timescale that we are 273	

considering. Second, we note that if climate conditions become unsuitable for Ae. aegypti, for 274	
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example due to temperatures becoming too hot, then a range of other problems will arise, 275	

including increased drought, storm severity, food insecurity and population displacement. 276	

Despite these simplifications, we have demonstrated that the future spatial distribution of 277	

vectors of globally important pathogens depends not only on anthropogenic climate change 278	

but on the combined effects of climate change and natural climate variability. It is important 279	

that future projections of climate-sensitive ecological and epidemiological systems consider 280	

natural climate variability. During the 21st century, vectors and the pathogens that they 281	

transmit will undoubtedly spread to new locations due to climate shifts. Careful climate 282	

monitoring and rigorous surveillance for vectors and vector-borne pathogens is essential. 283	

Surveillance strategies should be informed by the wide range of possible future climate 284	

scenarios, accounting for all potential sources of variability. This will allow more resilient 285	

public health infrastructure to be built than considering a single possible climate future alone. 286	

This is of clear importance for planetary public health. 287	
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