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Abstract 14 

Epigenome-wide DNA methylation analysis (EWAS) is an important approach to identify 15 

biomarkers for early disease detection and prognosis prediction, yet its results could be 16 

confounded by other factors such as cell-type heterogeneity and patient characteristics. In this 17 

study, we address the importance of confounding adjustment by examining DNA methylation 18 

patterns in cord blood exposed to severe preeclampsia (PE), a prevalent and potentially fatal 19 

pregnancy complication. Without such adjustment, a misleading global hypomethylation pattern 20 

is obtained. However, after adjusting cell type proportions and patient clinical characteristics, 21 
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most of the so-called significant CpG methylation changes associated with severe PE disappear. 22 

Rather, the major effect of PE on cord blood is through the proportion changes in different cell 23 

types. These results are validated using a previously published cord blood DNA methylation 24 

dataset, where global hypomethylation pattern was also wrongfully obtained without confounding 25 

adjustment. Additionally, several cell types significantly change as gestation progress (eg. 26 

granulocyte, nRBC, CD4T, and B cells), further confirming the importance of cell type 27 

adjustment in EWAS study of cord blood tissues. Our study urges the community to perform 28 

confounding adjustments in EWAS studies, based on cell type heterogeneity and other patient 29 

characteristics. 30 

 31 

Introduction 32 

DNA methylation is a type of epigenetic modification that plays a crucial role in regulating gene 33 

expression and maintaining genome stability. It involves the addition of a methyl group to the 34 

cytosine base of DNA, typically at the CpG dinucleotide sites1. Methylation at these sites can 35 

affect gene expression by altering the accessibility of DNA to transcription factors and other 36 

proteins. DNA methylation profile can be modified by various factors, including aging, diseases, 37 

and environmental changes2,3. Previous studies on DNA methylation have contributed to 38 

biomarker identifications for risk prediction, early detection, and prognosis tracking of various 39 

diseases4–6. Differential methylation analysis, or epigenome-wide association (EWAS) study, is a 40 

key computational process to identify disease-associated DNA methylation markers7. However, 41 

rigorous statistical and bioinformatics approaches remain a central issue to draw unbiased 42 

conclusions in these studies. Recently, some researchers have started to raise the awareness of 43 

confounding adjustment for DNA methylation results, including clinical characteristics and 44 

heterogeneity of cell types within sample tissues8. Failure to properly adjust for these confounders 45 

may lead to biased and inaccurate results. 46 
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 47 

In this study, we alert the community to the importance of confounder adjustment, using the case 48 

study of the DNA methylation change in cord blood samples from babies born of severe 49 

preeclampsia (PE). PE is one of the leading causes of maternal and prenatal morbidities and 50 

mortalities, affecting 2-8% of pregnancies globally and around 3.1% in the US9,10.  PE is 51 

characterized by new-onset hypertension with proteinuria or one/more adverse conditions after 20 52 

weeks of gestation11. It can lead to severe outcomes including renal failure, seizure, multiorgan 53 

dysfunction, and stroke in mothers; as well as intrauterine growth restriction (IUGR) and 54 

premature delivery of the fetuses. Based on blood pressure, clinical findings, and degree of 55 

proteinuria, PE can also be classified into severe PE or mild PE. Severe PE poses a greater risk to 56 

maternal and fetal health and may involve different pathways than mild PE of similar onset 57 

time12. It is imperative to investigate the molecular mechanisms of severe preeclampsia. 58 

 59 

Many previous epigenetic-wide studies aim to find biomarkers of PE using complex tissues, such 60 

as placenta tissues13,14, maternal gestational blood15, and fetal chorioamniotic membrane16. 61 

Multiple previous studies looked into the effect of PE on cord blood17–20. Yet most of these earlier 62 

studies didn’t adjust for potential confounding factors using either cell-type heterogeneity17–19 or 63 

clinical variables, such as gestational age another significant confounder for pregnancy diseases 64 

including PE20. Tissues like placentas and cord blood consist of many diverse cell types, each 65 

with a distinct epigenetic profile as defined21,22. Thus the varying cell types in each sample can 66 

affect the overall DNA methylation profile at the bulk level. It is therefore essential to account for 67 

such heterogeneity, to improve the accuracy and sensitivity and avoid wrongful conclusions of 68 

EWAS biomarker detection. Particularly, to ensure that any differences in DNA methylation are 69 

due to confounding factors, the analysis needs to be adjusted for cell proportions. Moreover, if the 70 

essential clinical data such as gestational ages are available (as they should be), then the analysis 71 

needs to be adjusted for the important clinical variables as well. We show the practice of doing 72 
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such cell type and clinical confounding adjustment using the case study of cord blood DNA 73 

methylation analysis.  We warn the community of potential significant harm otherwise.  74 

 75 

Materials and Methods 76 

Study cohort 77 

The umbilical cord whole blood DNA samples were obtained from Hawaii Biorepository (HiBR).  78 

The HiBR collected placenta, maternal, and cord blood samples from deliveries at Kapiolani 79 

Women and Children’s Hospital from 2006 to 2013. It is one of the largest research tissue 80 

repositories in the Pacific region, containing specimens from more than 9250 mother-child pairs 81 

at the time of sample collection. Umbilical cord samples were collected immediately after 82 

delivery. Severe PE was characterized by OBGYNs at Kapiolani Medical Center as sustained 83 

pregnancy-induced hypertension(systolic/diastolic blood pressure >= 140/90) with urine protein 84 

and/or organ dysfunction. We originally collected 63 samples. The demographic and clinical 85 

information of the patients was collected and analyzed to identify any potential confounding 86 

effects.  Data usage was approved by IRB #CHS23976. 87 

 88 

Sample preparation 89 

Umbilical cord blood samples were collected in the operating room immediately after delivery. 90 

To prepare for DNA extraction, we first added three volumes of RBC Lysis Solution to one 91 

volume of clotted blood, which is then vortexed and incubated on a shaker for 15 minutes at room 92 

temperature. The sample was then centrifuged to pellet white blood cells and clot particulates, 93 

and the supernatant is carefully poured into a waste bucket. The pellet was resuspended in an 94 

additional volume of RBC Lysis Solution and incubated again for 15 minutes. After another 95 

centrifugation step, the supernatant was carefully removed, leaving behind 200 µL of residual 96 

liquid. The pellet was then vigorously resuspended in the residual liquid before being combined 97 
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with a master mix of Cell Lysis and Proteinase K Solution. The mixture was vortexed and 98 

incubated at 55°C until homogenous, with intermittent vortexing to facilitate digestion. Once 99 

homogenous, the samples were subjected to DNA purification on the Autopure Machine 100 

following the manufacturer's instructions. 101 

 102 

DNA extraction and methylation profiling 103 

DNA was extracted from prepared cord blood samples using AllPrep DNA/RNA/Protein Mini 104 

Kit (Qiagen, USA) according to the manufacturer’s instructions by HiBR. We obtained pre-105 

extracted genomic DNA of whole cord blood samples from the HiBR and conducted DNA 106 

Illumina EPIC Beadchip assays through the University of Hawaii Cancer Center Genomics Core.  107 

 108 

DNA methylation data pre-processing and quality control 109 

We used the R package “ChAMP” for data pre-processing (Supple Fig. 1). We first filtered 110 

probes using the following criteria sequentially: (1) removing probes with a detection p-value 111 

above 0.01 (7,941 probes); (2) removing probes with a bead count <3 in at least 5% of samples 112 

(27,731 probes); (3) removing probes with no matched CpG sites (2,673 probes); (4) removing 113 

probes that align to multiple locations (8,248 probes). During the quality control step, we 114 

removed 1 control sample with a distinct beta density distribution (Supple Fig. 2A, 2B). We 115 

normalized the remaining samples using BMIQ methods23, and corrected for batch effects using 116 

the ComBat algorithm embedded in “ChAMP”. We used the singular vector decomposition 117 

(SVD) heatmap to verify the effectiveness of batch removal (Supple Fig. 2C, 2D). The 118 

preprocessed data matrix contains 62 samples and 819,325 probes. We converted the original 119 

methylation intensity (beta) to M-values using “beta2m” function from “lumi” package to reduce 120 

heteroskedasticity24, where M-values are defined as the log2 ratio of the beta value of each probe. 121 

 122 

Cell-type deconvolution in umbilical cord whole blood (CB) 123 
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Bulk-level DNA in umbilical cord whole blood (CB) includes at least 7 most common blood cell 124 

types: neutrophils, B cells, CD4T, CD8T, monocytes, natural killer cells (NK), and nucleated red 125 

blood cells (nRBC). Each sample may have different compositions of the cell types above, thus 126 

needing deconvolution. For this, we combined two methylation reference matrices of the cord 127 

blood sample for better cell-proportion estimation from the whole blood samples. We extracted a 128 

reference panel of B cell, CD4T, CD8T, monocyte, natural killer cell, and granulocyte from Lin 129 

et al.25 given the reported high quality of the reference samples. We also added the DNA 130 

methylation profiles of nucleated red blood cells (nRBC) from Bakulski et al26 to be part of the 131 

whole blood DNA methylation reference. We used the “combineArrays” function in the “minfi” 132 

R package to combine two data sets and rescaled them using the “BMIQ” method in the 133 

“wateRmelon” R package. We used pairwise t-tests with Bonferroni adjustment (threshold of 1E-134 

8) to identify significant CpGs among the 7 cell types in each pair as cell-specific markers, 135 

similar to others25. This process yielded 151,794 cell-type specific CpG biomarkers for the DNA 136 

methylation reference matrix for deconvolution. We uploaded the new whole blood CpG 137 

reference dataset in the EpiDISH package. 138 

 139 

We used principal component analysis (PCA) to check the quality of these new sets of markers. 140 

We applied the selected markers above to estimate the cell type proportions in each sample, using 141 

the reference-based cell-type deconvolution algorithm Constrained Projection (CP) from the 142 

“EpiDISH” package27.  We used the resulting cell type proportions to adjust for confounding 143 

effects in the epigenome-wide association analysis. 144 

 145 

Clinical confounders and source of variance analysis 146 

We retrieved a total of 6 commonly reported clinical variables in cord blood EWAS studies from 147 

the biobank, including maternal age, ethnicity, parity, BMI, delivery gestational age, and smoking 148 
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status20. We imputed 3 samples (including 1 severe preeclampsia and 2 controls) with missing 149 

BMI using mean values of each sample group. We performed the source of variance (SOV) 150 

analysis on the 6 clinical variables and previously estimated sample cell proportion to identify 151 

important confounding variables that need to be adjusted, as done before28,29. SOV analysis 152 

calculates F-statistics that can be used to identify and quantify the contribution of different factors 153 

to the total variance in a dataset. We adjusted the variables with F-statistics larger than 1 (the 154 

error value) as confounding variables.  155 

 156 

CpG-level epigenetic-wide association analysis (EWAS) 157 

We calculated the differentially methylated probes (DMP) between severe PE cases and controls 158 

using moderated t-test with Benjamini-Hochberg (BH) adjustment (threshold of 0.05). We 159 

included study participants' gestational age (GA), BMI, parity status, ethnicity, and methylation-160 

derived cell compositions in the linear model to remove the confounding effects, and compared 161 

the result with that without confounding adjustment using “limma” package30. We defined 162 

hypermethylated CpGs as significant CpGs with positive log2-transformed fold change (logFC) 163 

and hypomethylated CpGs as significant CpGs with negative logFC, respectively. We used 164 

volcano plots to illustrate the global DNA methylation changes between the cases and controls. 165 

 166 

Gene-level EWAS 167 

We further examined the methylation signal difference between severe PE and controls at gene 168 

and pathway levels. We annotated the CpGs31, selected those located on the promoter region and 169 

aggregated the methylation signals of all CpGs within a gene promoter by taking the geometric 170 

mean. Then we compared the aggregated methylation signals between severe PE cases and 171 

control groups, using the moderated t-tests with BH adjustment. Additionally, we looked for 172 

pathways associated with promotor region methylation differences using the R package 173 

pathifier32. The pathifier algorithm calculates a pathway deregulation score (PDS) for each 174 
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sample and each pathway. We compared the pathway PDS scores in case and control samples by 175 

moderated t-tests with Benjamini-Hochberg FDR adjustment  (threshold p-values 0.05). 176 

 177 

Software Usage and Code Availability 178 

All analysis was done using R 4.1.233.  Specially, we used “ChAMP” (version 2.24.0) for data 179 

preparation34, “limma” for differential analysis30, “EpiDISH” (version 2.10.0) for cell-type 180 

deconvolution27, and “IlluminaHumanMethylationEPICanno.ilm10b4.hg19” for data 181 

annotation31. All codes are available at https://github.com/lanagarmire/CB_DNAm_PE. 182 

 183 

Results 184 

Overview of Study Design and Cohort Characteristics 185 

The overview of the study design is illustrated in Fig. 1. We obtained whole cord blood samples 186 

from 24 severe PE cases and 39 controls collected at Hawaii Biorepository (HiBR) from January 187 

2006 and June 2013. The maternal demographic and clinical characteristics are shown in Table 1. 188 

There is no significant difference (P > 0.05) in maternal age, parity, BMI, ethnicity, and smoking 189 

status. Noticeably, the severe PE cases have earlier delivery gestational age compared to healthy 190 

controls (P = 3.66E-06), as the clinical management of severe PE usually often demands early 191 

delivery to avoid severe maternal morbidities. We obtained pre-extracted genomic DNA of whole 192 

cord blood samples from the HiBR and conducted DNA Illumina EPIC Beadchip assays through 193 

the University of Hawaii Cancer Center Genomics Core. We conducted bioinformatics pre-194 

processing of the DNA methylation following standard steps in R package “ChAMP” (Supple 195 

Fig. 1). Briefly, we first filtered out probes of bad quality, then examined the methylation level 196 

distribution of each sample and removed 1 control sample with abnormal distribution (Supple 197 

Fig. 2A, 2B). Lastly, we normalized the data and removed the batch effect between arrays 198 

(Supple Fig. 2C, 2D). The remaining preprocessed data matrix contains 62 samples and 819,325 199 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.31.23294898doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294898
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 
probes (see Methods).   200 

 201 

Cell-type deconvolution in cord blood samples 202 

Cord blood is a complex tissue with various cell types, including granulocyte, B cell, CD4T, 203 

CD8T, monocyte, natural killer, and nucleated red blood cells (nRBC), each with a unique DNA 204 

methylation profile. Cell type heterogeneity in the cord blood could significantly confound the 205 

phenotypes of interest, affecting the differential methylation analysis results. Previous studies 206 

showed that cell type heterogeneity contributes to much more variation in DNA methylation in 207 

various tissues, compared to ethnicity, sex, age, and even phenotypes of interest8,35,36. If left 208 

unadjusted, such variation from cell type difference will result in biased and even misleading 209 

results in the differential methylation analysis associated with the phenotype. Therefore adjusting 210 

for cell type heterogeneity is an essential step in epigenetic-wide association studies (EWAS) of 211 

the bulk-level data.  212 

To adjust for cell-type heterogeneity, we first estimated the cell-type proportions in the cord 213 

blood samples by performing cell-type deconvolution. Unfortunately, not all cord blood cell-type 214 

specific references contain nucleated red blood cells (nRBC), whose amount decreases as 215 

gestation progresses and can be non-trivial in severe PE where most deliveries are preterm37–39. 216 

To address this limitation, we created a new whole cord blood DNA methylation reference by 217 

merging two existing references: the EPIC array reference panel by Lin et al.25 and the 450K 218 

array reference by Bakulski et al26. Lin's work demonstrated a superior quality of cell type-219 

specific markers, as evidenced by better cluster separation in PCA analysis, compared to 220 

Bakulski's data (Fig. 2A, 2B). However, Lin's reference lacked the crucial nRBC cell type. 221 

Therefore, we combined the methylation levels of B cell, CD4T, CD8T, monocyte, natural killer 222 

cell, and granulocyte in Lin’s reference and nRBC from Bakulski’s reference. We processed the 223 

CpG markers similar to the original studies (see Methods). As a result, we identified 151,794 224 

differentially methylated CpGs as high-quality markers for the whole cord blood. The PCA result 225 
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of the combined reference panel confirmed better separation of cell types than those from both 226 

original studies (Fig. 2C).   227 

 228 

Association between cord blood cell type and severe PE 229 

We next aimed to determine the significance of cell type heterogeneity as a potential confounder 230 

that should be adjusted for in the study. To learn the association between severe PE and cord 231 

blood cell composition, we first performed cell-type deconvolution on cord blood samples using 232 

the new combined reference and Houseman’s constrained projection(CP) deconvolution 233 

algorithm40. Estimated cell-type proportions show large variations across samples, especially for 234 

granulocyte, nRBC, and CD4T cells (Fig. 3A). Granulocyte proportions are significantly lower 235 

(�=-0.10, P=3.44e-7) in the severe PE group compared to the control group, while  B cell 236 

(�=0.0085, P=0.011), nRBC cell (�=0.062, P=1.67e-5) and CD8T cell (�=0.014, P=0.0084) 237 

proportions are significantly higher in cases (Fig. 3B). 238 

 239 

However, the apparent differences in cell proportions in cases vs controls could be very well due 240 

to other reasons (eg. gestational age) rather than severe PE. To confirm this speculation, we 241 

conducted the source of variance (SOV) analysis of cell type compositions on the clinical 242 

variables and ranked them by F-statistics. A variable with F-statistics bigger than 1 (the error 243 

term) is considered a significant contributor to cell proportion variations. As shown in Fig. 3C, in 244 

addition to severe PE, gestational age, maternal BMI, and ethnicity also contribute significantly to 245 

cell type heterogeneity. Gestational age and maternal BMI rank higher than severe PE. With such 246 

caution, we adjusted confounding by linearly regressing cell type proportions over severe PE and 247 

other covariate factors, including gestational age, maternal age, ethnicity, BMI, and smoking 248 

status. We plot the cell proportions in severe PE vs. controls, post-adjustment by other clinical 249 

variables (Fig. 3D). The previously observed differences in granulocytes, B cells, and nRBCs 250 

now all disappear. CD8T proportions, however, continue to be significantly higher in severe PE 251 
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cases (�=0.02, P=0.0068). Interestingly, monocyte proportions, which were not significantly 252 

different before adjustment between cases and controls (Fig. 3B), now become significantly 253 

associated with severe PE (�=0.016, p=0.028) after confounding adjustment. The detailed linear 254 

regression results of cell proportion on clinical data can be found in Supple Table 1. In all, these 255 

results show that cell type proportions vary among newborns and it is important to adjust for 256 

potential confounding before interrogating the association with severe PE. 257 

 258 

Confounding adjustment drastically affects EWAS results  259 

Considering the current state of most EWAS studies which often overlook the adjustment of cell 260 

types and other clinical covariates (such as gestational age) within their samples, we further 261 

investigated the impact of these factors on the differential methylation analysis. We conducted the 262 

source of variance (SOV) analysis of the DNA methylation matrix on cell type proportion and 263 

clinical variables. Strikingly, all cell-type composition variables show the strongest and most 264 

dominant explanation power of variation in the methylation data (Fig. 4A), ranking even higher 265 

than the severe PE condition. After the cell proportions, severe PE case/control, gestational age, 266 

maternal age, parity, and ethnicity also have larger F-statistics than the error term (F-statistics=1), 267 

in descending order. Therefore, in the downstream analysis of differentially methylated CpGs, we 268 

adjust these variables for confounding effects.  269 

 270 
As a comparison, we first conducted differential methylation analysis on severe PE without 271 

adjusting for any clinical confounders or cell-type proportions. The analysis reveals a global 272 

hypomethylation pattern (Fig. 4B). We identified 229,730 differentially methylated CpGs with 273 

adjusted p-values less than 0.05. Among these CpGs, 184,102 exhibited hypomethylation, while 274 

45,628 displayed hypermethylation. However, when we redid the differential methylation 275 

analysis after adjusting for cell type heterogeneity and patient characteristics, all the CpGs 276 

differentially methylated above are no longer significant, except for a single CpG site labeled as 277 
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cg20135196 on Chromosome 6, with FDR=0.014 (Fig. 4C). Interestingly, this locus is rarely 278 

reported before. A total of 11 genes (Supple Table 8) are identified as the nearest genes to this 279 

locus on both sides. ZNF 184 is the closest gene by distance. It is a zinc finger protein involved in 280 

transcription regulation. A series of genes of nucleosome components are located on the opposite 281 

side of ZNF 184.   282 

 283 

Additionally, we extended the differential methylation analysis to the gene level. We aggregated 284 

the CpGs located on gene promoters as the representation of promoter-level methylation (see 285 

Methods). Before adjusting for confounders, we detected 4,767 differentially methylated genes. 286 

However, upon adjusting for both clinical variables and cell types, none of the genes exhibited 287 

statistical significance. Similarly, we conducted a differential methylation analysis at the pathway 288 

level, employing the Pathifier algorithm (see Methods). Before the confounding adjustment, we 289 

detected 200 significant pathways. Nevertheless, after accounting for confounders, none of the 290 

pathways remained significant. In conclusion, the most concerning finding is that the observed 291 

DNA methylation variation among the whole cord blood samples is primarily associated with cell 292 

type heterogeneity rather than severe PE. 293 

 294 

To confirm the significant influence of confounders on EWAS associated with severe PE, we re-295 

analyzed the Illumina 450k DNA methylation data from Ching et al, which were obtained from 296 

different samples16. Using the original analysis pipeline that did not consider clinical 297 

confounding, we reproduced the differential methylation results earlier, which reported 68,458 298 

significant CpGs (Supple Fig. 3A). Subsequently, we estimated the cell type proportions using 299 

Houseman’s CP algorithm and the new combined cord blood reference reported in this study. We 300 

then conducted the SOV analysis by considering cell proportions and clinical variables. We 301 

identified cell type proportions, gestational age, maternal age and PE as significant confounders, 302 

as they have F-statistics > 1 (Supple Fig. 3B). Consistent with the observation on the EPIC array 303 
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cord blood dataset earlier, the dataset by Ching et al. yields no significant CpG (Supple Fig. 3C) 304 

once adjusted for these confounders. In summary, using two cord blood datasets, we 305 

demonstrated that confounding effects from clinical variables and cell type heterogeneity are 306 

common challenges that need to be addressed by EWAS analysis in cord blood. 307 

 308 

Association between cord blood cell type and gestational age 309 

Our earlier analysis shows that estimated cell proportions in cord blood are correlated with 310 

gestational age (Fig. 3C). We thus conducted a more in-depth analysis. The most noticeable 311 

correlation comes from granulocytes, whose proportions increase from around 25% in week 32 to 312 

over 50% in week 40, with P=0.00015 (Fig. 5A). The proportions of monocytes also significantly 313 

increase as the gestation progresses, after adjusting for other variables (p=0.0051, Fig. 5B). On 314 

the contrary, nRBC, natural killer, and B cell significantly decrease along the gestation (p = 315 

6.62e-6; p=0.0054; p=0.0087, Fig. 5C-E). These trends of changes are maintained when the 316 

samples are stratified into case and control groups (Supple Fig. 4), without significant interaction 317 

between each cell proportion and case/control labels when regressing them on gestational ages (y-318 

values).  319 

 320 

Furthermore, we validated the trends of cell type proportion through gestational age using another 321 

public cord blood peripheral blood mononuclear cell (PBMC) Illumina HumanMethylation450 322 

BeadChip methylation dataset (GEO accession ID: GSE110828), which comprises 20 PE cases 323 

and 90 non-PE controls41. Both the case and control groups include large percentages of preterm 324 

samples, with the delivery gestational ages ranging from 26.14 to 38.14 in cases and 23.00 to  325 

41.29 in controls. We deconvoluted the PBMC cell types with Houseman’s CP method using the 326 

new reference data we created here without the granulocytes due to their absence in PBMC. We 327 

performed linear regression of gestational age over the cell type, severe PE and their interaction 328 

terms similar to those in Fig. 5 We observe the same increasing trend for monocytes, and the 329 
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same decreasing trend for nRBC cell, natural killer cell and B cell (Supple Fig. 5).  Again, none 330 

of the interaction terms between severe PE and gestational age turned out to be significant, 331 

suggesting that their effects on cell proportion changes are independent. 332 

 333 

Discussion 334 

In this study we showed and validated the importance of confounding adjustment in bulk DNA 335 

methylation analysis on the EWAS result, using two datasets on cord blood samples exposed to 336 

severe PE. As the most significant confounder among clinical variables, gestational age affects 337 

various blood cell type proportions (eg. granulocyte, nRBC, CD4T and B cells).  We showed that 338 

many CpGs, genes and pathways will be artificially and wrongfully detected if we do not adjust 339 

for the profound confounding due to cell type composition and other clinical variables such as 340 

gestational age. Despite the lack of CpG changes to severe PE, many cell types’ proportion 341 

changes do differ between severe PE vs. controls. Thus, we conclude the major effect of PE on 342 

cord blood is not through CpG methylation changes, but the proportion changes in different cell 343 

types. 344 

 345 

Among all confounders in EWAS analysis, cell type heterogeneity is one of the most common 346 

and important confounders faced by researchers. Over the years, various cell type estimation 347 

methods for bulk-level epigenetic data have been developed 35,40, which made the assessment of 348 

cell type confounding effects possible. In 2013, Liu et al. first reported a large reduction in 349 

differentially methylated probes related to Rheumatoid Arthritis after adjusting for cell type 350 

composition in whole blood42. Some later studies confirmed the effect of cell type heterogeneity 351 

on EWAS research in other tissues such as breast tissue, saliva, and placenta tissue8,43,44.  Unlike 352 

many other diseases, pregnancy complications in the form of severe PE are unique in terms of 353 

confounding. Many fetuses have to be delivered preterm, leading to the case group with smaller 354 
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GA compared to the healthy full-term controls. Therefore, gestational age and PE are two 355 

conditions which go hand-in-hand, and gestational age is a major confounder for studying severe 356 

PE. More importantly, the cell proportions in severe PE case groups are also affected by the 357 

disease itself, making them critical confounders in EWAS studies. Although several previous 358 

studies aimed to identify PE-related epigenetic biomarkers using cord blood samples17–20, the 359 

importance of adjusting for cell type heterogeneity was mostly (3 out of 4) overlooked. This 360 

could have led to biased results or even false biomarkers. This could also be one of the reasons 361 

for the inconsistency in these previous studies. 362 

 363 

Furthermore, we noticed consistent associations between cell type compositions in cord blood 364 

and gestational age, both in severe PE cases and controls. Granulocyte proportion showed the 365 

strongest positive association with gestational age, agreeing with the previous findings that 366 

granulocyte in the fetus increases drastically in the last trimester of pregnancy41. The estimated 367 

proportion of nRBC in our study decreases as gestational age increases, also consistent with 368 

previous findings37–39. Additionally, elevated nRBC was also found in preterm infants and infants 369 

with lower birth weight45, providing additional supporting evidence to our finding. We also 370 

observed a significant increase in monocytes and significant decreases in B cells and NK cells as 371 

gestational age increases. Taken together, these findings probe into the dynamic nature of cell 372 

type composition in cord blood during gestation. Future EWAS studies utilizing cord blood 373 

samples collected at different gestational ages should carefully adjust for cell type heterogeneity. 374 

 375 

Conclusion 376 

In summary, we found the lack of evidence for significant CpG methylation changes in EWAS 377 

analysis in association with severe PE, after adjusting for cell type heterogeneity and clinical 378 

variables such as gestational age. Wrongful and artificial CpG methylation biomarkers would 379 
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have been obtained without such adjustment. Instead of altering CpG methylations, severe PE is 380 

associated with significant changes in several cell proportions in the cord blood. We also showed 381 

that many cell types’ proportions change drastically during pregnancy.  382 
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 553 

Table 1: Patient Characteristics 554 

Variables 
PE Cases 
(n = 24) 
mean (sd) 

Controls 
 (n = 38) 
mean (sd) 

P-value 

Maternal Age (Years) 28.75 (5.88) 27.24 (6.35) 0.34 

Parity 1.54 (1.41) 1.57 (1.78) 0.93 

BMI 32.24 (9.38) 27.75 (9.20) 0.07 

Smoker (n) 6 8 0.96 

Gestational Age (Weeks) 35.58 (2.90) 39.16 (0.92) 3.66E-06 

Ethnicity (n)   0.60 

Asian 12 21 - 

Caucasian 3 7 - 

Pacific Islander 9 10 - 

* Numeric variables are compared with t-test; 
* Categorical variables are compared with the Chi-square test. 

 555 

 556 
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Fig. 1: Study Overview and experiment design. The entire data analysis procedure is outlined 557 

in this workflow, which incorporates methods that account for clinical confounding and cell type 558 

confounding. 559 

 560 

Fig. 2: Construction of cell type reference matrix. Principal Component Analysis (PCA) plots 561 

of DNA methylation reference matrix from (A) Lin et al.25, (B)Bakulski et al.26, and (C) our 562 

merged reference, colored by cell type. Our reference combined nucleated red blood cells 563 

(nRBCs) from Bakulski et al and 6 cell types (B cell, CD4T, CD8T, monocyte, natural killer cell, 564 

and granulocyte) from Lin et al25. Our reference shows better separation between cell types, 565 

compared to the references of Lin et al25. and Bakulski et al.26 566 

 567 

Fig. 3: Cell types in samples. (A) Heatmap displaying estimated cell-type proportions among 62 568 

samples (including 24 PE cases and 38 controls), the colors indicate the relative proportions of 569 

cell types, with red indicating a higher proportion and blue indicating a lower proportion. (B) 570 

Side-by-side boxplots displaying cell-type proportions in PE cases vs. controls before adjusting 571 

for clinical variables. An asterisk (*) is used to indicate a significant difference by using Multiple 572 

Linear Regression (MLR) between the case and control groups (p-value < 0.05), while "ns" is 573 

used to indicate a non-significant difference. (C) The Source of Variance (SOV) analysis of cell 574 

type composition from patient characteristics. Confounding factors were identified by considering 575 

variables with an F-mean value greater than 1. (D) Side-by-side boxplots displaying cell-type 576 

proportions in PE cases vs. controls after adjusting for confounders identified in (C). An asterisk 577 

(*) is used to indicate a significant difference by using Multiple Linear Regression (MLR) 578 

between the case and control groups (p-value < 0.05), while "ns" indicates a non-significant 579 

difference.                                                                                                                                                                      580 

 581 

Fig. 4: PE is not associated with significant changes in cord blood DNA methylation, after 582 

confounding adjustment. (A) The Source of Variance (SOV) analysis was conducted on both 583 

clinical variables and cell types. Confounding factors were identified by considering variables 584 

with an F-mean value greater than 1. (B) The volcano plot of the differential methylation analysis 585 

results without confounding adjustment. The x-axis represents log fold change between severe PE 586 

and controls; the y-axis is negative log-transformed p-values after BH adjustment.  The red dots 587 

are differentially methylated probes (DMP) associated with severe PE after BH adjustment, 588 

whereas the black dots represent non-significant probes. (C) The volcano plot after adjusting for 589 

all confounding factors. 590 
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 591 

Fig. 5: Cell type proportion changes with gestational age. Scatter plots labeled (A) to (E) 592 

depict the changes in the proportions of each cell type in cord blood along with gestational age. 593 

The reported p-value measures the relationship between GA and each cell type, with a threshold 594 

of p-value < 0.05. 595 

 596 

 597 

Supplementary Figures 598 

Supplementary Figure 1: Data Processing Workflow. The complete data pre-processing 599 

procedures consisted of filtration, imputation of missing values, quality control checks, 600 

normalization, batch correction, singular value decomposition analysis, and conversion of beta 601 

values to M-values. 602 

Supplementary Figure 2: Data Quality Control. (A) and (B) Density plots for before and after 603 

the removal of one control sample with a distinct beta density distribution. (C) and (D) Plots of 604 

the singular value decomposition analysis are presented before and after the removal of batch 605 

effects. 606 

 607 

Supplementary Figure 3: Validation of the impact of confounding adjustment using Ching 608 

et al.’s 450k cord blood methylation data17. (A) The volcano plot of differential methylation 609 

results without confounder adjustment as done by Ching et al. using their data. The red dots are 610 

differentially methylated probes (DMP) associated with EOPE after BH adjustment, whereas the 611 

black dots represent non-significant probes. (B) The Source of Variance (SOV) analysis was 612 

conducted on both clinical variables and cell types. Confounding factors were identified by 613 

considering variables with an F-mean value greater than 1. (C) The volcano plot after adjusting 614 

for all confounding factors. 615 

 616 

Supplementary Figure 4: Cell type changes with gestational age by sample group. Scatter 617 

plots labeled (A) to (G) depict the changes in the proportions of each cell type along with 618 

gestational age. The green line in each plot represents the PE case group, while the red line 619 

represents the control group. The reported p-value measures the interaction between GA and the 620 

sample group of trends between the PE case group and the control group, with a threshold of p-621 
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value < 0.05. A non-significant p-value indicates the trends between cell proportion and GA are 622 

consistent in the case and control groups. 623 

 624 

Supplementary Figure 5: Cell proportion changes with gestational age are consistent in 625 

different datasets. The scatter plots compare the changes in cell-type proportions with 626 

gestational age in two datasets. Plots (A - F) display the comparisons within PE case samples for 627 

both studies, while plots (G) through (L) display the comparisons within control samples for both 628 

studies. The purple line in each plot represents the cell proportion in our whole cord blood 629 

samples, while the orange line represents the cell proportion in PBMC cord blood samples from 630 

another study. The p-values of the interaction term between GA and datasets are reported in each 631 

plot. A non-significant p-value suggests the trend between cell proportion and GA is consistent in 632 

the two datasets.  633 

 634 

Supplementary Tables 635 

Supplementary Table 1: Linear regression of each cell type on clinical variables 636 
 637 
Supplementary Table 2: The closest functional genes to the significant CpG site, cg20135196 638 
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