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26 Abstract

27 Background: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) could aid the 

28 diagnosis of acute respiratory infections (ARI) owing to its affordability and high-throughput capacity. 

29 MALDI-MS has been proposed for use on commonly available respiratory samples, without specialized 

30 sample preparation, making this technology especially attractive for implementation in low-resource regions. 

31 Here, we assessed the utility of MALDI-MS in differentiating SARS-CoV-2 versus non-COVID acute 

32 respiratory infections (NCARI) in a clinical lab setting of Kazakhstan.

33 Methods: Nasopharyngeal swabs were collected from in- and outpatients with respiratory symptoms and 

34 from asymptomatic controls (AC) in 2020-2022. PCR was used to differentiate SARS-CoV-2+ and NCARI 

35 cases. MALDI-MS spectra were obtained for a total of 252 samples (115 SARS-CoV-2+, 98 NCARI and 39 

36 AC) without specialized sample preparation. In our first sub-analysis, we followed a published protocol for 

37 peak preprocessing and Machine Learning (ML), trained on publicly available spectra from South American 

38 SARS-CoV-2+ and NCARI samples. In our second sub-analysis, we trained ML models on a peak intensity 

39 matrix representative of both South American (SA) and Kazakhstan (Kaz) samples.

40 Results: Applying the established MALDI-MS pipeline "as is" resulted in a high detection rate for SARS-

41 CoV-2+ samples (91.0%), but low accuracy for NCARI (48.0%) and AC (67.0%) by the top-performing 

42 random forest model. After re-training of the ML algorithms on the SA-Kaz peak intensity matrix, the 

43 accuracy of detection by the top-performing Support Vector Machine with radial basis function kernel model 

44 was at 88.0, 95.0 and 78% for the Kazakhstan SARS-CoV-2+, NCARI, and AC subjects, respectively with a 

45 SARS-CoV-2 vs. rest ROC AUC of 0.983 [0.958, 0.987]; a high differentiation accuracy was maintained for 

46 the South American SARS-CoV-2 and NCARI.

47 Conclusions: MALDI-MS/ML is a feasible approach for the differentiation of ARI without a specialized 

48 sample preparation. The implementation of MALDI-MS/ML in a real clinical lab setting will necessitate 

49 continuous optimization to keep up with the rapidly evolving landscape of ARI.    

50
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51 Introduction.

52 The global response to the COVID-19 pandemic has underscored gaps existing in the laboratory-based 

53 diagnosis of acute respiratory infection (ARI)(1). In the early stages of the pandemic, a shortage of rapid and 

54 inexpensive techniques amenable to modification to adapt to the newly characterized SARS-CoV-2 

55 motivated the search for alternative diagnostic tools. Matrix-assisted laser desorption/ionization mass 

56 spectrometry (MALDI-MS), a technique traditionally employed in proteomics and metabolomics, has 

57 emerged as a promising alternative to molecular and immunochromatography-based assays to detect SARS-

58 CoV-2 (2). Several different MALDI-MS-based approaches involving varied degrees of sample preparation 

59 have been described (2). 

60 Our clinical laboratory has particularly been interested in the "untargeted" MALDI-MS method, which 

61 applies Machine Learning (ML) algorithms to discern SARS-CoV-2 infection using MALDI-MS peak 

62 matrices acquired from respiratory samples such as nasopharyngeal swabs (NPS) without a specialized 

63 sample preparation (3–5). Therefore, in this study, we explored the feasibility and accuracy of such 

64 untargeted MALDI-MS/ML in differentiating SARS-CoV-2 from non-COVID acute respiratory infections 

65 (NCARI) in a clinical laboratory setting in Kazakhstan. 

66 Materials and Methods.

67 Study setting. 

68 We collected NPS from three participant subgroups: symptomatic SARS-CoV-2+, NCARI and 

69 asymptomatic controls (AC). Participants were recruited between May 25, 2020, and December 20, 2022. 

70 Written consent was obtained from all adult participants in the presence of a study coordinator; parental 

71 consent was obtained for participants under 18 years of age. The ARI diagnosis was made based on the 

72 presence of at least one of the following: fever, nasal congestion, cough, sore throat, and/or 

73 lymphadenopathy. SARS-CoV-2+ participants were recruited from among patients of the Karaganda 

74 regional clinical hospital, hospitalized with a PCR-confirmed SARS-CoV-2 infection. NCARI participants 

75 were recruited at the Karaganda regional clinical hospital and the Karaganda City Centre for Primary 
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76 Healthcare among patients admitted for moderate-severe ARI symptoms. Most (72.4%) NCARI participants 

77 were PCR-positive for common respiratory viruses (adenovirus, seasonal coronaviruses, bocavirus, 

78 parainfluenza viruses, respiratory syncytial virus, rhinovirus, influenza or metapneumovirus) or bacteria 

79 (Chlamydia pneumoniae or Mycoplasma pneumoniae). Samples were collected around day 3 (median, IQR 

80 [2-4]) and day 5 (median, IQR [3-7]) post-symptom onset for the SARS-CoV-2+ and NCARI participants, 

81 respectively. The AC sub-group was recruited from amidst the Karaganda University employees. The SARS-

82 CoV-2 infection status was confirmed in the research lab for all samples using SARS-CoV-2 PCR as 

83 described earlier [6, 7]. All samples were frozen at -80C until processing.

84 In addition to the MALDI-MS spectra obtained from clinical samples in Kazakhstan, we incorporated into 

85 our analysis the publicly available MALDI-MS data from South America (3).

86 MALDI-MS analysis. 

87 Within feasible limits, we closely followed the published methodology for sample preparation, spectra 

88 acquisition and preprocessing (3), with only minor modifications as specified. Spectral acquisition was 

89 performed on the MicroFlex LT v. 3.4 instrument (Bruker Daltonics, Bremen, Germany) equipped with a 

90 pulsed UV laser (N2 laser with 337 nm wavelength, 150 microJ pulse energy, 3 ns pulse width and 20 Hz 

91 repetition rate). After thawing at room temperature, samples were spotted onto the steel target plate at 0.5 μl, 

92 covered with 0.5 μl of the HCCA matrix (a solution containing α-cyano-4-hydroxycinnamic acid diluted in 

93 acetonitrile, 2.5% trifluoroacetic acid and nuclease-free water) and then air dried. The target plate was then 

94 loaded into the instrument. Spectra were generated by summing 500 single spectra (10 * 50 shots) in the 

95 range between 3 and 20 kDa, operating in positive-ion linear mode using a18-20 kV acceleration voltage, by 

96 shooting the laser at random positions on the target spot.

97 Spectral preprocessing. 

98 Raw MALDI-MS files (Bruker) were uploaded and subsequently preprocessed in R (v. 4.3.0) using 

99 MALDIquantForeign and MALDIquant (6). To ensure consistency in peak processing with the original 

100 untargeted protocol (3), we used the R scripts generously shared by the authors. Briefly, the spectra were 
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101 trimmed to a 3–15.5 kDa range, square-root transformed, and smoothened via the Savitzky–Golay method. 

102 Baseline correction was done using the TopHat algorithm and intensity normalization was done via total ion 

103 current calibration as implemented in MALDIquant. Peak detection was performed using a signal-to-noise 

104 ratio of 2 and a halfWindowSize of 10, and the peaks were binned with a tolerance of 0.003. Peak binning 

105 was performed in two stages to avoid any additional calibration differences. First, each group spectra were 

106 binned separately, and peak filtration was performed, keeping only those peaks that were present in 80% of 

107 the spectra of each group. Subsequently, all peaks were binned together. The resulting peak intensity matrix 

108 was used for the downstream analyses. 

109 In Analysis I, to assess the models trained on the South American samples from the source study (3), we 

110 made slight modifications to the sample preprocessing protocol as follows. To ensure that we are comparing 

111 the same 88 peaks, we employed the "reference" method for peak binning using the median values of the 

112 spectra and peaks obtained by Nachtigall et al. as a reference and eliminated the filtering procedure for each 

113 subgroup. In Analysis II, we constructed a de novo peak matrix representative of the combined South 

114 America and Kazakhstan dataset using the script provided by Nachtigall et al.

115 Principal component and hierarchical cluster analyses. 

116 PCA was performed using R FactoMineR and factoextra packages. The hierarchical cluster analysis was 

117 done by first calculating a distance matrix using the Euclidean method and clustering samples via the 

118 unweighted paired group with arithmetic mean (UPGMA) method. Dendrograms were generated using 

119 ggtree and ggtreeExtra R packages.

120 Machine learning and statistical analysis.

121  We implemented a total of seven ML algorithms, six of which were used in the earlier study [5] (DT 

122 (Decision Tree - Quinlan’s C5.0 algorithm), KNN (k-Nearest Neighbors), NB (Naive Bayes), RF (Random 

123 Forest), SVM-L (Support Vector Machine with linear kernel), SVM-R (Support Vector Machine with radial 

124 basis function kernel) plus an additional algorithm XGBoost (eXtreme Gradient Boosting). Analysis 1 was 

125 executed by closely following the earlier protocol, with training performed on South American SARS-CoV-
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126 2+ and NCARI spectra. Since the training step of analysis II incorporated three sub-groups, i.e. AC samples 

127 in addition to the SARS-CoV-2+ and NCARI, the analysis pipeline was modified as outlined below to 

128 accommodate this change.

129 Initially, we split the entire sample into two distinct groups: the training dataset, consisting of 80% of 

130 samples, and the test group, which accounted for the remaining 20%. In line with Nachtigall et al [5], we 

131 conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-

132 validation with a randomized stratified splitting approach. To optimize the performance of each algorithm, 

133 we tested 20 hyperparameters in the inner loop of the cross-validation approach, using a random search 

134 method. This process was repeated 20 times to ensure robustness and reliability of the model. We selected 

135 the best models based on their area under the curve (AUC) score, which is a common metric for evaluating 

136 binary-classification model performance, using the Caret R package. In addition, model performance was 

137 assessed using several other classification metrics, including F-measure, recall, accuracy, specificity, 

138 sensitivity, and positive and negative predictive values in the yardstick R package; differences across the 

139 sub-groups were assessed using the Mann-Whitney U non-parametric test in R.

140 Role of the funding source

141 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of 

142 the manuscript.

143

144 Results

145 The primary objective of the study was to assess the capacity of the MALDI-MS approach to detect SARS-

146 CoV-2 infection within a heterogeneous mix of SARS-CoV-2+, NCARI and AC samples (Table 1). 

147

148

149

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294891doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294891
http://creativecommons.org/licenses/by/4.0/


Yegorov et al. MALDI-MS/ML to detect ARI

7

150 Table 1. Demographic characteristics of participants. 

Characteristic Overall, 
N = 252

SARS-COV-
2+ 2021,
 N = 108

SARS-COV-2+ 
2022,
 N = 7

NCARI, 
N=98

AC, N=39 
p-value*

Age, years, 
median (IQR)

38.0 
(18.0,60.
0)

61.0 
(48.0,69.0) 3 (1.0, 37.0)

8.0 (2.0, 
35.0)

34.0 (25.0, 47.0)
<0.001

Male sex, n (%) 114 
(45.2%) 49 (45.4%) 6 (85,7 %) 38 (38,8%) 21 (53.8%) <0.

001

Kazakh ethnicity, 
n (%)

116 
(46%) 26 (24.1%) 5 (71,4%) 61 (62.2%) 24 (61.5%) <0.001

Any 
comorbidities

104 
(41.2%) 72 (66.6%) 1 (14,2%) 15 (15.3 %) 14 (35.9%) <0.001

151
152 * Differences across the groups were assessed using Kruskal-Wallis or Pearson's Chi-squared tests.
153

154 Therefore, we performed two independent analyses (Figure 1). In the first analysis, we assessed the 

155 performance of the Nachtigall et al. ML pipeline on the combined pool of samples, both from the original 

156 study (data collected from three South American countries in 2020) and Kazakhstan (data collected in 2021 

157 and 2022); the ML pipeline in this analysis was trained only on the original South American datasets. In the 

158 second analysis, we retrained the ML algorithm, accounting for the spectra contributed by the samples from 

159 Kazakhstan and applied this re-trained ML algorithm to the combined pool of samples. 

160 Fig 1. Overall study workflow and description of the analyses. NCARI: non-COVID acute respiratory 

161 infections; AC: asymptomatic controls; ML: machine learning

162

163 Analysis I.: Applying the "as is" MALDI-MS pipeline to differentiate 

164 ARI samples collected in Kazakhstan.   

165 To assess how well the original analysis pipeline (3) would differentiate SARS-CoV-2+ samples within the 

166 dataset from Kazakhstan, we replicated the steps for i) MALDI-MS peak selection, ii) ML training and iii) 

167 ML assessment. Specifically, we focused on the same MALDI-MS peaks that Nachtigall et al. (3) used in 

168 their analyses (Table S1). These peaks were derived using a six-step spectra processing workflow including 
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169 spectra transformation and smoothing, baseline removing, spectra calibration, peak detection, and peak 

170 processing.

171 We then constructed a peak intensity matrix on the 88 peaks, identical to that used by Nachtigall and 

172 colleagues (3), for the downstream analysis of a combined dataset incorporating both the South American 

173 (Table S1) and Kazakhstan samples (Figure 2 and Table S2). 

174

175 Fig 2. MALDI-MS peak data generated using nasopharyngeal swabs and processed following the  

176 MALDI-MS/ML pipeline developed by Nachtigall and colleagues (3). 

177 A-C. representative MALDI-MS spectra from symptomatic SARS-CoV-2+ (A), symptomatic non-SARS-

178 CoV-2 (B) and a healthy control sample from Kazakhstan (C). The central line indicates median value of the 

179 spectra, while the shaded region on either side represents the interquartile interval. Insets depict a range from 

180 3000 to 5500 m/z encompassing 70% (62/88) of the identified peaks. d. PCA of the combined dataset 

181 incorporating MALDI-MS data both from Kazakhstan and South America (2020 SARS-CoV+ and 

182 symptomatic SARS-CoV-2-negative)(3).

183

184 We next explored the selected peaks across the comparison groups by reducing the multidimensionality 

185 using principal component analyses and dendrograms. Like Nachtigall et al, we did not detect any obvious 

186 clustering by sub-group, emphasizing the need for a more sensitive approach to discern subtle differences in 

187 the highly multidimensional MALDI-MS peak data (Figure 2D and 2E, Figures S2-S5). Hence, we then 

188 applied to our combined Kazakhstan-South America MALDI-MS peak dataset the original Nachtigall et al. 

189 ML algorithm trained on the original South American samples (3).

190 In keeping with earlier results (3), when tested the South American samples alone, SVM-R provided the 

191 highest ROC AUC, although other models had similarly high-performance characteristics (Table S3 and 

192 Figure 3A-B) for classifying cases of SARS-CoV-2 and non-SARS-CoV-2. 

193
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194 Fig 3. Classification accuracy of the MALDI-ML algorithms assessed on the data from Kazakhstan 

195 and South America.

196 A) Accuracy metrics for each of the seven ML models trained on the South American MALDI-MS data 

197 (Analysis I in the current study) for the differentiation of study sub-groups. B) ROC curves of the top-

198 performing RF and SVM-L algorithms (Analysis I). C) Accuracy metrics for each of the seven ML models 

199 trained on the combined South America-Kazakhstan dataset (Analysis II in the current study) for the 

200 differentiation of study sub-groups. D) ROC curves for the top-performing SVM-R and DT algorithms 

201 (Analysis II).

202

203 Subsequently, we assessed the performance of the same ML algorithms on samples from Kazakhstan. Here, 

204 we observed a broad variation in the ability of the ML models to discern SARS-CoV-2+ samples. RF had the 

205 highest percentage of correctly identified 2020-SARS-CoV-2+ samples (91%) (Figure 3A and Table S4, 

206 Figure S6). Notably, the accuracy for 2021 SARS-CoV-2 was <60% for all models, similar to the accuracy 

207 for identifying NCARI. RF discerned AC with an accuracy of 68%, the highest of all models for this sub-

208 group.

209 Analysis II: Applying the re-trained MALDI/MS-ML to differentiate 

210 ARI.

211 To ensure that we include all relevant MALDI-MS signature peaks representative of all sub-groups, we 

212 performed peak selection on the entire pool of samples containing samples from both Kazakhstan and South 

213 America (n=615). A total of 120 peaks were identified and a peak intensity matrix was constructed (Table 

214 S5). As in Analysis I, PCA and dendrograms did not show any visually apparent clustering of sub-groups 

215 (Figures S7-S10). We then proceeded to train ML models on the combined pool consisting of the 120 peaks, 

216 of which 53 overlapped with the original 88 peaks.

217 Due to the small sample size of the 2022 subset, the SARS-CoV-2 2021 and 2022 subsets were combined 

218 prior to testing the model performance. We then assessed the performance of the trained ML algorithm on 
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219 the South America-Kazakhstan dataset. All models demonstrated similarly high-performance characteristics 

220 in differentiating SARS-CoV-2+ samples. SVM-R and DT slightly outperformed the other five models in 

221 discerning SARS-CoV-2 infection from both NCARI and AC with ROC AUC values of 0.983 [0.958, 0.987] 

222 and 0.972 [0.966, 0.979], respectively (Figures 3C-D and Table S4). SVM-R, in particular, differentiated the 

223 Kazakhstan SARS-CoV-2+, NCARI, and AC subjects with an accuracy of 88.0, 95.0 and 78.0%, 

224 respectively (Figure 3C). Both SVM-R and DT were also highly accurate at differentiating NCARI and AC 

225 sub-groups (Table S4).

226 Discussion

227 Here we aimed to assess the feasibility of deploying MALDI-MS and ML in a clinical lab to differentiate 

228 SARS-CoV-2 from other ARI, particularly in the context of minimal specialized sample preparation. Our 

229 initial application of the original MALDI-MS/ML pipeline, trained on South American samples (3), 

230 demonstrated reduced efficiency in identifying samples from Kazakhstan. Re-training the ML models to 

231 incorporate MALDI peak information from a diverse pool of Kazakhstan samples, including SARS-CoV-2+, 

232 NCARI subjects, and asymptomatic controls, led to a significant improvement in detection accuracy. Taken 

233 as a proof-of-concept, our results support the utility of MALDI-MS/ML, especially in the early phases of 

234 respiratory endemics/pandemics, when limited knowledge is available on the infectious pathogen’s identity 

235 and in low-resource environments, where alternative methods may yet be unavailable. 

236 Our replication studies underscore the importance of considering geographical and population-specific 

237 variations in the application of MALDI-MS/ML. The observed differences in the performance of the original 

238 pipeline trained on South American samples may be attributed to the inherent complexity of NPS, which 

239 contains a mixture of host proteins and diverse microbial species (7,8). The sensitivity and specificity of 

240 MALDI-MS/ML may also be affected by variability in immune response to different viral loads and the 

241 presence of co-infections (9,10). These challenges emphasize the need for careful evaluation and calibration 

242 in the application of MALDI-MS/ML. 

243 Our study has several limitations. The lack of specialized sample preparation, although advantageous for 

244 low-resource settings, may introduce variability and noise into the data, a concern raised by other authors 
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245 (9,10). Due to a relatively small sample size of the NCARI group, we did not further pursue stratification of 

246 this group by the causative agents identified via multiplex PCR. The utility of MALDI-MS/ML in 

247 differentiating various NCARI would be important to examine in the context of the changing post-pandemic 

248 ARI landscape (11). Temporal variation, spanning samples collected over two years (2020-2022), might 

249 have contributed to a high heterogeneity of our results. The differences across groups regarding the basic 

250 demographics may also have a confounding effect on the results. Further validation of the method in a 

251 broader clinical context would be necessary to fully assess the potential for real-world application. 

252 In conclusion, our study provides valuable insights into the potential of MALDI-MS as an accessible 

253 laboratory-based diagnostic tool for ARI. While promising, the implementation of MALDI-MS/ML in real 

254 clinical lab settings will require further optimization, validation, and continuous adaptation to the evolving 

255 epidemiological landscape. Further research is needed to explore the specific components of MALDI-MS 

256 spectra that are most informative for differentiating various ARI. Such investigations will contribute to the 

257 ongoing refinement of this promising diagnostic tool.
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